Tool Bounds
Execution Time | 60.02945ms |
---|
Answer | TIMEOUT |
---|
Input | SK90 2.46 |
---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ b(b(a(x))) -> a(b(b(x)))
, a(a(x)) -> b(b(x))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
Execution Time | 1.7417939ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.46 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
a(delta, X0) = + 1*X0 + 2 + 1*X0*delta + 0*delta
b(delta, X0) = + 1*X0 + 0 + 1*X0*delta + 0*delta
a_tau_1(delta) = delta/(1 + 1 * delta)
b_tau_1(delta) = delta/(1 + 1 * delta)
Time: 1.704770 seconds
Statistics:
Number of monomials: 323
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.42842007ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.46 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ b(b(a(x))) -> a(b(b(x)))
, a(a(x)) -> b(b(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
a(x1) = [1 2] x1 + [0]
[0 1] [1]
b(x1) = [1 2] x1 + [0]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.45636392ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.46 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ b(b(a(x))) -> a(b(b(x)))
, a(a(x)) -> b(b(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
a(x1) = [1 1] x1 + [0]
[0 1] [1]
b(x1) = [1 1] x1 + [0]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.15270591ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.46 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ b(b(a(x))) -> a(b(b(x)))
, a(a(x)) -> b(b(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
a(x1) = [1 2] x1 + [0]
[0 1] [2]
b(x1) = [1 1] x1 + [0]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 0.11341405ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.46 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ b(b(a(x))) -> a(b(b(x)))
, a(a(x)) -> b(b(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
a(x1) = [1 2] x1 + [0]
[0 1] [1]
b(x1) = [1 2] x1 + [0]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))