Tool Bounds
Execution Time | 3.813505e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.48 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ b(u(x)) -> a(e(x))
, v(e(x)) -> x
, c(u(x)) -> b(x)
, d(u(x)) -> c(x)
, d(x) -> e(u(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ d_0(1) -> 1
, u_0(1) -> 1
, u_1(1) -> 1
, u_1(1) -> 3
, e_0(1) -> 1
, e_1(1) -> 2
, e_1(3) -> 1
, e_2(1) -> 4
, c_0(1) -> 1
, c_1(1) -> 1
, b_0(1) -> 1
, b_1(1) -> 1
, b_2(1) -> 1
, v_0(1) -> 1
, a_0(1) -> 1
, a_1(2) -> 1
, a_2(4) -> 1}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 0.18952012ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.48 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
a(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 0*delta
v(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 1*delta
b(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 1*delta
c(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 3*delta
d(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 3*delta
u(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 1*delta
e(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 0*delta
a_tau_1(delta) = delta/(1 + 0 * delta)
v_tau_1(delta) = delta/(1 + 0 * delta)
b_tau_1(delta) = delta/(1 + 0 * delta)
c_tau_1(delta) = delta/(1 + 0 * delta)
d_tau_1(delta) = delta/(1 + 0 * delta)
u_tau_1(delta) = delta/(1 + 0 * delta)
e_tau_1(delta) = delta/(1 + 0 * delta)
Time: 0.149439 seconds
Statistics:
Number of monomials: 196
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.14221692ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.48 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ b(u(x)) -> a(e(x))
, v(e(x)) -> x
, c(u(x)) -> b(x)
, d(u(x)) -> c(x)
, d(x) -> e(u(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
d(x1) = [1] x1 + [3]
u(x1) = [1] x1 + [1]
e(x1) = [1] x1 + [1]
c(x1) = [1] x1 + [3]
b(x1) = [1] x1 + [3]
v(x1) = [1] x1 + [1]
a(x1) = [1] x1 + [1]
Hurray, we answered YES(?,O(n^1))Tool IDA
Execution Time | 0.24468994ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.48 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ b(u(x)) -> a(e(x))
, v(e(x)) -> x
, c(u(x)) -> b(x)
, d(u(x)) -> c(x)
, d(x) -> e(u(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
d(x1) = [1] x1 + [3]
u(x1) = [1] x1 + [1]
e(x1) = [1] x1 + [1]
c(x1) = [1] x1 + [2]
b(x1) = [1] x1 + [2]
v(x1) = [1] x1 + [1]
a(x1) = [1] x1 + [1]
Hurray, we answered YES(?,O(n^1))Tool TRI
Execution Time | 9.8722935e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.48 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ b(u(x)) -> a(e(x))
, v(e(x)) -> x
, c(u(x)) -> b(x)
, d(u(x)) -> c(x)
, d(x) -> e(u(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
d(x1) = [1] x1 + [3]
u(x1) = [1] x1 + [1]
e(x1) = [1] x1 + [1]
c(x1) = [1] x1 + [3]
b(x1) = [1] x1 + [3]
v(x1) = [1] x1 + [1]
a(x1) = [1] x1 + [1]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 0.11404586ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.48 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ b(u(x)) -> a(e(x))
, v(e(x)) -> x
, c(u(x)) -> b(x)
, d(u(x)) -> c(x)
, d(x) -> e(u(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
d(x1) = [1 1] x1 + [3]
[0 1] [3]
u(x1) = [1 0] x1 + [0]
[0 1] [2]
e(x1) = [1 0] x1 + [0]
[0 1] [1]
c(x1) = [1 1] x1 + [3]
[0 1] [3]
b(x1) = [1 0] x1 + [1]
[0 1] [3]
v(x1) = [1 3] x1 + [3]
[0 1] [3]
a(x1) = [1 0] x1 + [0]
[0 1] [3]
Hurray, we answered YES(?,O(n^2))