Tool Bounds
Execution Time | 60.037483ms |
---|
Answer | TIMEOUT |
---|
Input | SK90 2.53 |
---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ g(h(x), y) -> h(g(x, y))
, g(h(x), y) -> h(f(x, y))
, f(x, y) -> g(x, y)}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
Execution Time | 0.17140007ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.53 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
h(delta, X0) = + 1*X0 + 3 + 0*X0*delta + 0*delta
f(delta, X1, X0) = + 0*X0 + 1*X1 + 2 + 1*X0*delta + 1*X1*delta + 1*delta
g(delta, X1, X0) = + 0*X0 + 1*X1 + 2 + 1*X0*delta + 1*X1*delta + 0*delta
h_tau_1(delta) = delta/(1 + 0 * delta)
f_tau_1(delta) = delta/(1 + 1 * delta)
f_tau_2(delta) = delta/(0 + 1 * delta)
g_tau_1(delta) = delta/(1 + 1 * delta)
g_tau_2(delta) = delta/(0 + 1 * delta)
Time: 0.133544 seconds
Statistics:
Number of monomials: 172
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.2756071ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.53 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(h(x), y) -> h(g(x, y))
, g(h(x), y) -> h(f(x, y))
, f(x, y) -> g(x, y)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
[0 1] [0 0] [2]
g(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
[0 1] [0 0] [2]
h(x1) = [1 0] x1 + [0]
[0 1] [2]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.53584504ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.53 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(h(x), y) -> h(g(x, y))
, g(h(x), y) -> h(f(x, y))
, f(x, y) -> g(x, y)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 1] x1 + [1 2] x2 + [1]
[0 1] [0 1] [2]
g(x1, x2) = [1 1] x1 + [1 2] x2 + [0]
[0 1] [0 1] [2]
h(x1) = [1 0] x1 + [0]
[0 1] [2]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.10942912ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.53 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(h(x), y) -> h(g(x, y))
, g(h(x), y) -> h(f(x, y))
, f(x, y) -> g(x, y)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 1] x1 + [1 3] x2 + [1]
[0 1] [0 1] [2]
g(x1, x2) = [1 1] x1 + [1 3] x2 + [0]
[0 1] [0 1] [2]
h(x1) = [1 0] x1 + [0]
[0 1] [2]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 7.4472904e-2ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.53 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(h(x), y) -> h(g(x, y))
, g(h(x), y) -> h(f(x, y))
, f(x, y) -> g(x, y)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 1] x1 + [1 3] x2 + [1]
[0 1] [0 1] [2]
g(x1, x2) = [1 1] x1 + [1 3] x2 + [0]
[0 1] [0 1] [2]
h(x1) = [1 0] x1 + [0]
[0 1] [2]
Hurray, we answered YES(?,O(n^2))