Problem SK90 2.55

Tool Bounds

Execution Time60.02717ms
Answer
TIMEOUT
InputSK90 2.55

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  f(x, h(y)) -> f(h(x), y)
     , f(x, g(x)) -> x}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool CDI

Execution Time9.549594e-2ms
Answer
MAYBE
InputSK90 2.55

stdout:

MAYBE

Statistics:
Number of monomials: 104
Last formula building started for bound 3
Last SAT solving started for bound 3

Tool EDA

Execution Time0.22989702ms
Answer
YES(?,O(n^2))
InputSK90 2.55

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  f(x, h(y)) -> f(h(x), y)
     , f(x, g(x)) -> x}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^2))

Proof:
  We have the following EDA-non-satisfying matrix interpretation:
  Interpretation Functions:
   g(x1) = [1 0] x1 + [0]
           [0 1]      [0]
   f(x1, x2) = [1 1] x1 + [1 3] x2 + [2]
               [0 0]      [0 1]      [3]
   h(x1) = [1 0] x1 + [0]
           [0 1]      [2]

Hurray, we answered YES(?,O(n^2))

Tool IDA

Execution Time0.40339494ms
Answer
YES(?,O(n^2))
InputSK90 2.55

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  f(x, h(y)) -> f(h(x), y)
     , f(x, g(x)) -> x}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^2))

Proof:
  We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
  Interpretation Functions:
   g(x1) = [1 2] x1 + [3]
           [0 1]      [3]
   f(x1, x2) = [1 1] x1 + [1 3] x2 + [2]
               [0 0]      [0 1]      [3]
   h(x1) = [1 0] x1 + [0]
           [0 1]      [2]

Hurray, we answered YES(?,O(n^2))

Tool TRI

Execution Time9.809303e-2ms
Answer
YES(?,O(n^2))
InputSK90 2.55

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  f(x, h(y)) -> f(h(x), y)
     , f(x, g(x)) -> x}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^2))

Proof:
  We have the following triangular matrix interpretation:
  Interpretation Functions:
   g(x1) = [1 1] x1 + [3]
           [0 1]      [3]
   f(x1, x2) = [1 0] x1 + [1 2] x2 + [0]
               [0 1]      [0 1]      [3]
   h(x1) = [1 0] x1 + [0]
           [0 1]      [2]

Hurray, we answered YES(?,O(n^2))

Tool TRI2

Execution Time7.565093e-2ms
Answer
YES(?,O(n^2))
InputSK90 2.55

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  f(x, h(y)) -> f(h(x), y)
     , f(x, g(x)) -> x}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^2))

Proof:
  We have the following triangular matrix interpretation:
  Interpretation Functions:
   g(x1) = [1 1] x1 + [3]
           [0 1]      [3]
   f(x1, x2) = [1 0] x1 + [1 2] x2 + [0]
               [0 1]      [0 1]      [3]
   h(x1) = [1 0] x1 + [0]
           [0 1]      [2]

Hurray, we answered YES(?,O(n^2))