Tool Bounds
Execution Time | 5.36232e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.56 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(a(), x) -> f(b(), x)
, g(a(), x) -> f(b(), x)
, f(a(), x) -> g(a(), x)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ a_0() -> 1
, a_1() -> 3
, f_0(1, 1) -> 1
, f_1(2, 1) -> 1
, f_2(4, 1) -> 1
, g_0(1, 1) -> 1
, g_1(3, 1) -> 1
, b_0() -> 1
, b_1() -> 2
, b_2() -> 4}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 0.17292905ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.56 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
b(delta) = + 0 + 0*delta
f(delta, X1, X0) = + 0*X0 + 0*X1 + 0 + 2*X0*delta + 2*X1*delta + 2*delta
a(delta) = + 0 + 3*delta
g(delta, X1, X0) = + 0*X0 + 0*X1 + 0 + 2*X0*delta + 2*X1*delta + 0*delta
f_tau_1(delta) = delta/(0 + 2 * delta)
f_tau_2(delta) = delta/(0 + 2 * delta)
g_tau_1(delta) = delta/(0 + 2 * delta)
g_tau_2(delta) = delta/(0 + 2 * delta)
Time: 0.135726 seconds
Statistics:
Number of monomials: 136
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.11097598ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.56 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(a(), x) -> f(b(), x)
, g(a(), x) -> f(b(), x)
, f(a(), x) -> g(a(), x)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
a() = [3]
f(x1, x2) = [1] x1 + [1] x2 + [3]
g(x1, x2) = [1] x1 + [1] x2 + [2]
b() = [1]
Hurray, we answered YES(?,O(n^1))Tool IDA
Execution Time | 0.310189ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.56 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(a(), x) -> f(b(), x)
, g(a(), x) -> f(b(), x)
, f(a(), x) -> g(a(), x)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a() = [3]
f(x1, x2) = [1] x1 + [1] x2 + [3]
g(x1, x2) = [1] x1 + [1] x2 + [2]
b() = [1]
Hurray, we answered YES(?,O(n^1))Tool TRI
Execution Time | 7.109189e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.56 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(a(), x) -> f(b(), x)
, g(a(), x) -> f(b(), x)
, f(a(), x) -> g(a(), x)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
a() = [3]
f(x1, x2) = [1] x1 + [1] x2 + [3]
g(x1, x2) = [1] x1 + [1] x2 + [2]
b() = [1]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 5.7843924e-2ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.56 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(a(), x) -> f(b(), x)
, g(a(), x) -> f(b(), x)
, f(a(), x) -> g(a(), x)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
a() = [2]
[0]
f(x1, x2) = [1 0] x1 + [1 3] x2 + [2]
[0 0] [0 1] [0]
g(x1, x2) = [1 3] x1 + [1 3] x2 + [1]
[0 1] [0 1] [0]
b() = [0]
[3]
Hurray, we answered YES(?,O(n^2))