Tool Bounds
Execution Time | 0.11207509ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.61 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ k(h1(x, y)) -> h1(s(x), y)
, k(h(x)) -> h1(0(), x)
, i(h2(s(x), y, h1(x, z))) -> z
, i(f(x, h(y))) -> y
, h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
, g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
, f(x, h1(y, z)) -> h2(0(), x, h1(y, z))
, f(j(x, y), y) -> g(f(x, k(y)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ j_0(1, 1) -> 1
, f_0(1, 1) -> 1
, f_1(1, 4) -> 3
, k_0(1) -> 1
, k_1(1) -> 4
, g_0(1) -> 1
, g_1(3) -> 1
, g_1(3) -> 3
, h1_0(1, 1) -> 1
, h1_1(1, 1) -> 1
, h1_1(2, 1) -> 1
, h1_1(2, 1) -> 4
, h1_1(5, 1) -> 1
, h1_2(1, 1) -> 4
, h1_2(2, 1) -> 7
, h1_2(5, 1) -> 4
, 0_0() -> 1
, 0_1() -> 2
, 0_2() -> 6
, h2_0(1, 1, 1) -> 1
, h2_1(1, 1, 1) -> 1
, h2_1(1, 1, 1) -> 3
, h2_1(1, 1, 4) -> 1
, h2_1(1, 1, 4) -> 3
, h2_1(2, 1, 1) -> 1
, h2_1(2, 1, 1) -> 3
, h2_1(2, 1, 4) -> 3
, h2_1(8, 1, 1) -> 1
, h2_1(8, 1, 1) -> 3
, h2_1(8, 1, 4) -> 3
, h2_2(5, 1, 4) -> 1
, h2_2(5, 1, 4) -> 3
, h2_2(5, 1, 7) -> 1
, h2_2(5, 1, 7) -> 3
, h2_2(6, 1, 4) -> 3
, h2_2(6, 1, 7) -> 3
, h2_2(9, 1, 4) -> 1
, h2_2(9, 1, 4) -> 3
, h2_2(9, 1, 7) -> 1
, h2_2(9, 1, 7) -> 3
, s_0(1) -> 1
, s_1(1) -> 2
, s_1(2) -> 2
, s_1(5) -> 1
, s_1(6) -> 8
, s_1(8) -> 8
, s_1(9) -> 2
, s_2(1) -> 5
, s_2(2) -> 5
, s_2(5) -> 5
, s_2(6) -> 9
, s_2(8) -> 9
, s_2(9) -> 5
, h_0(1) -> 1
, i_0(1) -> 1}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 27.767616ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.61 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
h(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 0*delta
i(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 2*delta
s(delta, X0) = + 0*X0 + 0 + 2*X0*delta + 0*delta
h1(delta, X1, X0) = + 1*X0 + 0*X1 + 0 + 0*X0*delta + 2*X1*delta + 0*delta
0(delta) = + 0 + 0*delta
h2(delta, X2, X1, X0) = + 1*X0 + 1*X1 + 0*X2 + 0 + 0*X0*delta + 0*X1*delta + 2*X2*delta + 0*delta
j(delta, X1, X0) = + 1*X0 + 1*X1 + 2 + 0*X0*delta + 0*X1*delta + 3*delta
k(delta, X0) = + 1*X0 + 2 + 0*X0*delta + 1*delta
f(delta, X1, X0) = + 1*X0 + 1*X1 + 0 + 0*X0*delta + 0*X1*delta + 2*delta
g(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 1*delta
h_tau_1(delta) = delta/(1 + 0 * delta)
i_tau_1(delta) = delta/(1 + 0 * delta)
s_tau_1(delta) = delta/(0 + 2 * delta)
h1_tau_1(delta) = delta/(0 + 2 * delta)
h1_tau_2(delta) = delta/(1 + 0 * delta)
h2_tau_1(delta) = delta/(0 + 2 * delta)
h2_tau_2(delta) = delta/(1 + 0 * delta)
h2_tau_3(delta) = delta/(1 + 0 * delta)
j_tau_1(delta) = delta/(1 + 0 * delta)
j_tau_2(delta) = delta/(1 + 0 * delta)
k_tau_1(delta) = delta/(1 + 0 * delta)
f_tau_1(delta) = delta/(1 + 0 * delta)
f_tau_2(delta) = delta/(1 + 0 * delta)
g_tau_1(delta) = delta/(1 + 0 * delta)
Time: 27.727868 seconds
Statistics:
Number of monomials: 2779
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.18326497ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.61 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ k(h1(x, y)) -> h1(s(x), y)
, k(h(x)) -> h1(0(), x)
, i(h2(s(x), y, h1(x, z))) -> z
, i(f(x, h(y))) -> y
, h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
, g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
, f(x, h1(y, z)) -> h2(0(), x, h1(y, z))
, f(j(x, y), y) -> g(f(x, k(y)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
j(x1, x2) = [1] x1 + [1] x2 + [3]
f(x1, x2) = [1] x1 + [1] x2 + [2]
k(x1) = [1] x1 + [1]
g(x1) = [1] x1 + [1]
h1(x1, x2) = [1] x1 + [1] x2 + [0]
0() = [0]
h2(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
s(x1) = [1] x1 + [0]
h(x1) = [1] x1 + [0]
i(x1) = [1] x1 + [0]
Hurray, we answered YES(?,O(n^1))Tool IDA
Execution Time | 0.534776ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.61 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ k(h1(x, y)) -> h1(s(x), y)
, k(h(x)) -> h1(0(), x)
, i(h2(s(x), y, h1(x, z))) -> z
, i(f(x, h(y))) -> y
, h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
, g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
, f(x, h1(y, z)) -> h2(0(), x, h1(y, z))
, f(j(x, y), y) -> g(f(x, k(y)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
j(x1, x2) = [1] x1 + [1] x2 + [3]
f(x1, x2) = [1] x1 + [1] x2 + [3]
k(x1) = [1] x1 + [1]
g(x1) = [1] x1 + [1]
h1(x1, x2) = [1] x1 + [1] x2 + [0]
0() = [0]
h2(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
s(x1) = [1] x1 + [0]
h(x1) = [1] x1 + [0]
i(x1) = [1] x1 + [0]
Hurray, we answered YES(?,O(n^1))Tool TRI
Execution Time | 0.146775ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.61 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ k(h1(x, y)) -> h1(s(x), y)
, k(h(x)) -> h1(0(), x)
, i(h2(s(x), y, h1(x, z))) -> z
, i(f(x, h(y))) -> y
, h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
, g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
, f(x, h1(y, z)) -> h2(0(), x, h1(y, z))
, f(j(x, y), y) -> g(f(x, k(y)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
j(x1, x2) = [1] x1 + [1] x2 + [3]
f(x1, x2) = [1] x1 + [1] x2 + [2]
k(x1) = [1] x1 + [1]
g(x1) = [1] x1 + [1]
h1(x1, x2) = [1] x1 + [1] x2 + [0]
0() = [0]
h2(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
s(x1) = [1] x1 + [0]
h(x1) = [1] x1 + [3]
i(x1) = [1] x1 + [0]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 0.413409ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.61 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ k(h1(x, y)) -> h1(s(x), y)
, k(h(x)) -> h1(0(), x)
, i(h2(s(x), y, h1(x, z))) -> z
, i(f(x, h(y))) -> y
, h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
, g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
, f(x, h1(y, z)) -> h2(0(), x, h1(y, z))
, f(j(x, y), y) -> g(f(x, k(y)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
j(x1, x2) = [1 1] x1 + [1 0] x2 + [3]
[0 0] [0 0] [3]
f(x1, x2) = [1 1] x1 + [1 0] x2 + [3]
[0 0] [0 1] [0]
k(x1) = [1 0] x1 + [3]
[0 1] [0]
g(x1) = [1 0] x1 + [2]
[0 1] [0]
h1(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 1] [0]
0() = [0]
[0]
h2(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 0] x3 + [0]
[0 0] [0 0] [0 1] [0]
s(x1) = [1 0] x1 + [0]
[0 0] [0]
h(x1) = [1 3] x1 + [2]
[0 1] [0]
i(x1) = [1 0] x1 + [0]
[0 1] [3]
Hurray, we answered YES(?,O(n^2))