Tool Bounds
Execution Time | 6.007099e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.01 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ +(+(x, y), minus(y)) -> x
, +(minus(x), +(x, y)) -> y
, minux(+(x, y)) -> +(minus(y), minus(x))
, minus(minus(x)) -> x}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ minus_0(1) -> 1
, minus_0(1) -> 2
, minus_0(1) -> 3
, minus_1(1) -> 1
, minus_1(1) -> 2
, minus_1(1) -> 3
, minus_1(2) -> 1
, minus_1(2) -> 2
, minus_1(2) -> 3
, minus_1(3) -> 1
, minus_1(3) -> 2
, minus_1(3) -> 3
, +_0(1, 1) -> 1
, +_0(1, 1) -> 2
, +_0(1, 1) -> 3
, +_1(2, 3) -> 1
, +_1(2, 3) -> 2
, +_1(2, 3) -> 3
, minux_0(1) -> 1
, minux_0(1) -> 2
, minux_0(1) -> 3}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 0.61936903ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.01 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
minux(delta, X0) = + 1*X0 + 3 + 0*X0*delta + 3*delta
+(delta, X1, X0) = + 1*X0 + 1*X1 + 1 + 0*X0*delta + 0*X1*delta + 0*delta
minus(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 1*delta
minux_tau_1(delta) = delta/(1 + 0 * delta)
+_tau_1(delta) = delta/(1 + 0 * delta)
+_tau_2(delta) = delta/(1 + 0 * delta)
minus_tau_1(delta) = delta/(1 + 0 * delta)
Time: 0.577445 seconds
Statistics:
Number of monomials: 344
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.13389277ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.01 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ +(+(x, y), minus(y)) -> x
, +(minus(x), +(x, y)) -> y
, minux(+(x, y)) -> +(minus(y), minus(x))
, minus(minus(x)) -> x}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
minus(x1) = [1] x1 + [1]
+(x1, x2) = [1] x1 + [1] x2 + [3]
minux(x1) = [1] x1 + [3]
Hurray, we answered YES(?,O(n^1))Tool IDA
Execution Time | 0.23336911ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.01 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ +(+(x, y), minus(y)) -> x
, +(minus(x), +(x, y)) -> y
, minux(+(x, y)) -> +(minus(y), minus(x))
, minus(minus(x)) -> x}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
minus(x1) = [1] x1 + [1]
+(x1, x2) = [1] x1 + [1] x2 + [1]
minux(x1) = [1] x1 + [3]
Hurray, we answered YES(?,O(n^1))Tool TRI
Execution Time | 6.276989e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.01 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ +(+(x, y), minus(y)) -> x
, +(minus(x), +(x, y)) -> y
, minux(+(x, y)) -> +(minus(y), minus(x))
, minus(minus(x)) -> x}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
minus(x1) = [1] x1 + [1]
+(x1, x2) = [1] x1 + [1] x2 + [0]
minux(x1) = [1] x1 + [3]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 0.11964202ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.01 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ +(+(x, y), minus(y)) -> x
, +(minus(x), +(x, y)) -> y
, minux(+(x, y)) -> +(minus(y), minus(x))
, minus(minus(x)) -> x}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
minus(x1) = [1 0] x1 + [1]
[0 1] [0]
+(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
[0 1] [0 1] [0]
minux(x1) = [1 0] x1 + [3]
[0 1] [3]
Hurray, we answered YES(?,O(n^1))