Tool Bounds
Execution Time | 6.426406e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.16 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(+(x, y)) -> *(f(x), f(y))
, f(+(x, s(0()))) -> +(s(s(0())), f(x))
, f(s(0())) -> *(s(s(0())), f(0()))
, f(s(0())) -> s(s(0()))
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ 0_0() -> 1
, 0_1() -> 10
, 0_2() -> 12
, 0_3() -> 17
, f_0(1) -> 2
, f_0(2) -> 2
, f_0(3) -> 2
, f_0(4) -> 2
, f_0(5) -> 2
, f_1(1) -> 6
, f_1(1) -> 7
, f_1(2) -> 7
, f_1(3) -> 7
, f_1(4) -> 7
, f_1(5) -> 7
, f_1(6) -> 7
, f_1(7) -> 7
, f_1(8) -> 6
, f_1(10) -> 11
, f_2(6) -> 14
, f_2(7) -> 14
, f_2(8) -> 13
, f_2(12) -> 16
, f_2(13) -> 14
, f_2(15) -> 13
, f_3(13) -> 19
, f_3(15) -> 18
, s_0(1) -> 3
, s_0(2) -> 3
, s_0(3) -> 3
, s_0(4) -> 3
, s_0(5) -> 3
, s_1(9) -> 2
, s_1(9) -> 7
, s_1(9) -> 8
, s_1(10) -> 2
, s_1(10) -> 6
, s_1(10) -> 7
, s_1(10) -> 9
, s_2(11) -> 7
, s_2(11) -> 14
, s_2(11) -> 15
, s_2(12) -> 11
, s_3(17) -> 16
, *_0(1, 1) -> 4
, *_0(1, 2) -> 4
, *_0(1, 3) -> 4
, *_0(1, 4) -> 4
, *_0(1, 5) -> 4
, *_0(2, 1) -> 4
, *_0(2, 2) -> 4
, *_0(2, 3) -> 4
, *_0(2, 4) -> 4
, *_0(2, 5) -> 4
, *_0(3, 1) -> 4
, *_0(3, 2) -> 4
, *_0(3, 3) -> 4
, *_0(3, 4) -> 4
, *_0(3, 5) -> 4
, *_0(4, 1) -> 4
, *_0(4, 2) -> 4
, *_0(4, 3) -> 4
, *_0(4, 4) -> 4
, *_0(4, 5) -> 4
, *_0(5, 1) -> 4
, *_0(5, 2) -> 4
, *_0(5, 3) -> 4
, *_0(5, 4) -> 4
, *_0(5, 5) -> 4
, *_1(6, 7) -> 2
, *_1(7, 7) -> 2
, *_1(7, 7) -> 7
, *_1(8, 11) -> 2
, *_1(8, 11) -> 7
, *_2(13, 14) -> 7
, *_2(13, 14) -> 14
, *_2(15, 16) -> 7
, *_2(15, 16) -> 14
, *_3(18, 19) -> 14
, +_0(1, 1) -> 5
, +_0(1, 2) -> 5
, +_0(1, 3) -> 5
, +_0(1, 4) -> 5
, +_0(1, 5) -> 5
, +_0(2, 1) -> 5
, +_0(2, 2) -> 5
, +_0(2, 3) -> 5
, +_0(2, 4) -> 5
, +_0(2, 5) -> 5
, +_0(3, 1) -> 5
, +_0(3, 2) -> 5
, +_0(3, 3) -> 5
, +_0(3, 4) -> 5
, +_0(3, 5) -> 5
, +_0(4, 1) -> 5
, +_0(4, 2) -> 5
, +_0(4, 3) -> 5
, +_0(4, 4) -> 5
, +_0(4, 5) -> 5
, +_0(5, 1) -> 5
, +_0(5, 2) -> 5
, +_0(5, 3) -> 5
, +_0(5, 4) -> 5
, +_0(5, 5) -> 5
, +_1(8, 6) -> 2
, +_1(8, 7) -> 2
, +_1(8, 7) -> 7
, +_2(15, 13) -> 7
, +_2(15, 13) -> 14}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 60.041946ms |
---|
Answer | TIMEOUT |
---|
Input | SK90 4.16 |
---|
stdout:
TIMEOUT
Statistics:
Number of monomials: 11729
Last formula building started for bound 3
Last SAT solving started for bound 0Tool EDA
Execution Time | 0.8836112ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.16 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(+(x, y)) -> *(f(x), f(y))
, f(+(x, s(0()))) -> +(s(s(0())), f(x))
, f(s(0())) -> *(s(s(0())), f(0()))
, f(s(0())) -> s(s(0()))
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [0]
[1]
f(x1) = [1 3] x1 + [0]
[0 1] [3]
s(x1) = [1 0] x1 + [0]
[0 0] [3]
*(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
+(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 1] [0 1] [1]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 1.2109959ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.16 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(+(x, y)) -> *(f(x), f(y))
, f(+(x, s(0()))) -> +(s(s(0())), f(x))
, f(s(0())) -> *(s(s(0())), f(0()))
, f(s(0())) -> s(s(0()))
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [0]
[1]
f(x1) = [1 1] x1 + [0]
[0 1] [1]
s(x1) = [1 0] x1 + [0]
[0 0] [2]
*(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
+(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 1] [0 1] [2]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.38330102ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.16 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(+(x, y)) -> *(f(x), f(y))
, f(+(x, s(0()))) -> +(s(s(0())), f(x))
, f(s(0())) -> *(s(s(0())), f(0()))
, f(s(0())) -> s(s(0()))
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [0]
[0]
f(x1) = [1 1] x1 + [1]
[0 1] [2]
s(x1) = [1 0] x1 + [0]
[0 0] [2]
*(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
+(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
[0 1] [0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 0.35093403ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.16 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(+(x, y)) -> *(f(x), f(y))
, f(+(x, s(0()))) -> +(s(s(0())), f(x))
, f(s(0())) -> *(s(s(0())), f(0()))
, f(s(0())) -> s(s(0()))
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [0]
[2]
f(x1) = [1 1] x1 + [0]
[0 1] [2]
s(x1) = [1 0] x1 + [0]
[0 0] [3]
*(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
+(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
[0 1] [0 1] [2]
Hurray, we answered YES(?,O(n^2))