Tool Bounds
Execution Time | 60.079727ms |
---|
Answer | TIMEOUT |
---|
Input | SK90 4.38 |
---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ g(x, h(y, z)) -> h(g(x, y), z)
, g(h(x, y), z) -> g(x, f(y, z))
, g(f(x, y), z) -> f(x, g(y, z))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
Execution Time | 0.293226ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.38 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
h(delta, X1, X0) = + 0*X0 + 1*X1 + 3 + 2*X0*delta + 0*X1*delta + 0*delta
g(delta, X1, X0) = + 1*X0 + 1*X1 + 0 + 2*X0*delta + 2*X1*delta + 0*delta
f(delta, X1, X0) = + 1*X0 + 0*X1 + 2 + 0*X0*delta + 2*X1*delta + 0*delta
h_tau_1(delta) = delta/(1 + 0 * delta)
h_tau_2(delta) = delta/(0 + 2 * delta)
g_tau_1(delta) = delta/(1 + 2 * delta)
g_tau_2(delta) = delta/(1 + 2 * delta)
f_tau_1(delta) = delta/(0 + 2 * delta)
f_tau_2(delta) = delta/(1 + 0 * delta)
Time: 0.253477 seconds
Statistics:
Number of monomials: 246
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.34818006ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.38 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(x, h(y, z)) -> h(g(x, y), z)
, g(h(x, y), z) -> g(x, f(y, z))
, g(f(x, y), z) -> f(x, g(y, z))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 1] [2]
g(x1, x2) = [1 1] x1 + [1 1] x2 + [2]
[0 1] [0 1] [1]
h(x1, x2) = [1 0] x1 + [1 2] x2 + [3]
[0 1] [0 1] [3]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.5865259ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.38 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(x, h(y, z)) -> h(g(x, y), z)
, g(h(x, y), z) -> g(x, f(y, z))
, g(f(x, y), z) -> f(x, g(y, z))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 1] [1]
g(x1, x2) = [1 1] x1 + [1 1] x2 + [2]
[0 1] [0 1] [0]
h(x1, x2) = [1 0] x1 + [1 3] x2 + [2]
[0 1] [0 1] [1]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.14671087ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.38 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(x, h(y, z)) -> h(g(x, y), z)
, g(h(x, y), z) -> g(x, f(y, z))
, g(f(x, y), z) -> f(x, g(y, z))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 3] x1 + [1 0] x2 + [0]
[0 1] [0 1] [1]
g(x1, x2) = [1 1] x1 + [1 1] x2 + [1]
[0 1] [0 1] [2]
h(x1, x2) = [1 0] x1 + [1 3] x2 + [0]
[0 1] [0 1] [3]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 0.13563204ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.38 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(x, h(y, z)) -> h(g(x, y), z)
, g(h(x, y), z) -> g(x, f(y, z))
, g(f(x, y), z) -> f(x, g(y, z))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 3] x1 + [1 0] x2 + [0]
[0 1] [0 1] [1]
g(x1, x2) = [1 1] x1 + [1 1] x2 + [1]
[0 1] [0 1] [2]
h(x1, x2) = [1 0] x1 + [1 3] x2 + [0]
[0 1] [0 1] [3]
Hurray, we answered YES(?,O(n^2))