Tool Bounds
Execution Time | 4.9726963e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.44 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ i(a()) -> b()
, h(a()) -> b()
, g(i(x)) -> g(h(x))
, f(h(x)) -> f(i(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ h_0(1) -> 1
, h_1(1) -> 2
, f_0(1) -> 1
, f_1(3) -> 1
, i_0(1) -> 1
, i_1(1) -> 3
, g_0(1) -> 1
, g_1(2) -> 1
, a_0() -> 1
, b_0() -> 1
, b_1() -> 1
, b_1() -> 2
, b_1() -> 3}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 9.32951e-2ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.44 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
a(delta) = + 0 + 1*delta
b(delta) = + 0 + 0*delta
g(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 0*delta
h(delta, X0) = + 0*X0 + 1 + 2*X0*delta + 0*delta
i(delta, X0) = + 0*X0 + 0 + 2*X0*delta + 2*delta
f(delta, X0) = + 1*X0 + 0 + 3*X0*delta + 0*delta
g_tau_1(delta) = delta/(0 + 1 * delta)
h_tau_1(delta) = delta/(0 + 2 * delta)
i_tau_1(delta) = delta/(0 + 2 * delta)
f_tau_1(delta) = delta/(1 + 3 * delta)
Time: 0.054248 seconds
Statistics:
Number of monomials: 98
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.3283038ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.44 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ i(a()) -> b()
, h(a()) -> b()
, g(i(x)) -> g(h(x))
, f(h(x)) -> f(i(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
h(x1) = [1 0] x1 + [3]
[0 0] [1]
f(x1) = [1 0] x1 + [2]
[0 0] [1]
i(x1) = [1 0] x1 + [2]
[0 0] [3]
g(x1) = [1 2] x1 + [0]
[0 0] [1]
a() = [2]
[0]
b() = [0]
[1]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.53002ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.44 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ i(a()) -> b()
, h(a()) -> b()
, g(i(x)) -> g(h(x))
, f(h(x)) -> f(i(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
h(x1) = [1 0] x1 + [3]
[0 0] [1]
f(x1) = [1 0] x1 + [2]
[0 0] [1]
i(x1) = [1 0] x1 + [2]
[0 0] [3]
g(x1) = [1 1] x1 + [0]
[0 0] [1]
a() = [2]
[0]
b() = [0]
[1]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.14532804ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.44 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ i(a()) -> b()
, h(a()) -> b()
, g(i(x)) -> g(h(x))
, f(h(x)) -> f(i(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
h(x1) = [1 1] x1 + [2]
[0 1] [2]
f(x1) = [1 3] x1 + [0]
[0 1] [3]
i(x1) = [1 1] x1 + [3]
[0 0] [0]
g(x1) = [1 0] x1 + [2]
[0 0] [3]
a() = [2]
[0]
b() = [0]
[0]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 9.0991974e-2ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.44 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ i(a()) -> b()
, h(a()) -> b()
, g(i(x)) -> g(h(x))
, f(h(x)) -> f(i(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
h(x1) = [1 1] x1 + [2]
[0 1] [2]
f(x1) = [1 3] x1 + [0]
[0 1] [3]
i(x1) = [1 1] x1 + [3]
[0 0] [0]
g(x1) = [1 0] x1 + [2]
[0 0] [3]
a() = [2]
[0]
b() = [0]
[0]
Hurray, we answered YES(?,O(n^2))