Tool Bounds
Execution Time | 60.034325ms |
---|
Answer | TIMEOUT |
---|
Input | SK90 4.48 |
---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ f(g(x), x, y) -> y
, f(x, x, y) -> x
, f(x, y, g(y)) -> x
, f(x, y, y) -> y
, f(f(x, y, z), u, f(x, y, v)) -> f(x, y, f(z, u, v))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
Execution Time | 0.13051796ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.48 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
g(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 0*delta
f(delta, X2, X1, X0) = + 1*X0 + 1*X1 + 1*X2 + 0 + 0*X0*delta + 0*X1*delta + 0*X2*delta + 2*delta
g_tau_1(delta) = delta/(1 + 0 * delta)
f_tau_1(delta) = delta/(1 + 0 * delta)
f_tau_2(delta) = delta/(1 + 0 * delta)
f_tau_3(delta) = delta/(1 + 0 * delta)
Time: 0.091488 seconds
Statistics:
Number of monomials: 221
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.13018084ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.48 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(g(x), x, y) -> y
, f(x, x, y) -> x
, f(x, y, g(y)) -> x
, f(x, y, y) -> y
, f(f(x, y, z), u, f(x, y, v)) -> f(x, y, f(z, u, v))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
g(x1) = [1] x1 + [1]
Hurray, we answered YES(?,O(n^1))Tool IDA
Execution Time | 0.21844006ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.48 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(g(x), x, y) -> y
, f(x, x, y) -> x
, f(x, y, g(y)) -> x
, f(x, y, y) -> y
, f(f(x, y, z), u, f(x, y, v)) -> f(x, y, f(z, u, v))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
g(x1) = [1] x1 + [1]
Hurray, we answered YES(?,O(n^1))Tool TRI
Execution Time | 8.1003904e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.48 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(g(x), x, y) -> y
, f(x, x, y) -> x
, f(x, y, g(y)) -> x
, f(x, y, y) -> y
, f(f(x, y, z), u, f(x, y, v)) -> f(x, y, f(z, u, v))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
g(x1) = [1] x1 + [1]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 0.10314798ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.48 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(g(x), x, y) -> y
, f(x, x, y) -> x
, f(x, y, g(y)) -> x
, f(x, y, y) -> y
, f(f(x, y, z), u, f(x, y, v)) -> f(x, y, f(z, u, v))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1, x2, x3) = [1 0] x1 + [1 3] x2 + [1 0] x3 + [1]
[0 1] [0 1] [0 1] [0]
g(x1) = [1 0] x1 + [0]
[0 0] [0]
Hurray, we answered YES(?,O(n^2))