Tool Bounds
Execution Time | 2.9001951e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.56 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(c(), d()) -> f(b(), d())
, f(a(), b()) -> f(a(), c())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ a_0() -> 1
, a_1() -> 2
, b_0() -> 1
, b_1() -> 2
, f_0(1, 1) -> 1
, f_1(2, 3) -> 1
, c_0() -> 1
, c_1() -> 3
, d_0() -> 1
, d_1() -> 3}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 6.1939955e-2ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.56 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
d(delta) = + 0 + 0*delta
b(delta) = + 0 + 3*delta
c(delta) = + 2 + 0*delta
a(delta) = + 0 + 0*delta
f(delta, X1, X0) = + 0*X0 + 0*X1 + 0 + 1*X0*delta + 2*X1*delta + 0*delta
f_tau_1(delta) = delta/(0 + 2 * delta)
f_tau_2(delta) = delta/(0 + 1 * delta)
Time: 0.023346 seconds
Statistics:
Number of monomials: 30
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.36096ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.56 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(c(), d()) -> f(b(), d())
, f(a(), b()) -> f(a(), c())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
a() = [1]
[0]
b() = [1]
[0]
f(x1, x2) = [1 2] x1 + [1 0] x2 + [2]
[0 0] [0 0] [0]
c() = [0]
[2]
d() = [0]
[3]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.39866996ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 4.56 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(c(), d()) -> f(b(), d())
, f(a(), b()) -> f(a(), c())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
a() = [0]
[0]
b() = [1]
[0]
f(x1, x2) = [1 2] x1 + [1 0] x2 + [2]
[0 0] [0 0] [0]
c() = [0]
[3]
d() = [0]
[3]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.13676596ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.56 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(c(), d()) -> f(b(), d())
, f(a(), b()) -> f(a(), c())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
a() = [0]
[3]
b() = [1]
[3]
f(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
[0 0] [0 0] [0]
c() = [2]
[0]
d() = [3]
[0]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 0.10763097ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.56 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(c(), d()) -> f(b(), d())
, f(a(), b()) -> f(a(), c())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
a() = [2]
[3]
b() = [1]
[2]
f(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
[0 0] [0 0] [0]
c() = [2]
[0]
d() = [3]
[0]
Hurray, we answered YES(?,O(n^1))