Tool Bounds
Execution Time | 4.084301e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | TCT 09 ma3 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ minus(x, s(y)) -> minus(p(x), y)
, minus(x, 0()) -> x
, p(s(x)) -> x
, p(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 0_0() -> 1
, 0_0() -> 2
, 0_1() -> 1
, 0_1() -> 2
, 0_2() -> 1
, 0_2() -> 2
, p_0(1) -> 1
, p_0(1) -> 2
, p_1(1) -> 1
, p_1(1) -> 2
, p_1(2) -> 1
, p_1(2) -> 2
, s_0(1) -> 1
, s_0(1) -> 2
, minus_0(1, 1) -> 1
, minus_0(1, 1) -> 2
, minus_1(2, 1) -> 1
, minus_1(2, 1) -> 2}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 0.124840975ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | TCT 09 ma3 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
minus(delta, X1, X0) = + 1*X0 + 1*X1 + 0 + 1*X0*delta + 0*X1*delta + 0*delta
s(delta, X0) = + 1*X0 + 3 + 0*X0*delta + 1*delta
p(delta, X0) = + 1*X0 + 2 + 0*X0*delta + 3*delta
0(delta) = + 2 + 0*delta
minus_tau_1(delta) = delta/(1 + 0 * delta)
minus_tau_2(delta) = delta/(1 + 1 * delta)
s_tau_1(delta) = delta/(1 + 0 * delta)
p_tau_1(delta) = delta/(1 + 0 * delta)
Time: 0.087808 seconds
Statistics:
Number of monomials: 131
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.14672494ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | TCT 09 ma3 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ minus(x, s(y)) -> minus(p(x), y)
, minus(x, 0()) -> x
, p(s(x)) -> x
, p(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [3]
p(x1) = [1] x1 + [2]
s(x1) = [1] x1 + [3]
minus(x1, x2) = [1] x1 + [1] x2 + [3]
Hurray, we answered YES(?,O(n^1))Tool IDA
Execution Time | 0.19321203ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | TCT 09 ma3 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ minus(x, s(y)) -> minus(p(x), y)
, minus(x, 0()) -> x
, p(s(x)) -> x
, p(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [3]
p(x1) = [1] x1 + [1]
s(x1) = [1] x1 + [3]
minus(x1, x2) = [1] x1 + [1] x2 + [3]
Hurray, we answered YES(?,O(n^1))Tool TRI
Execution Time | 0.10466981ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | TCT 09 ma3 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ minus(x, s(y)) -> minus(p(x), y)
, minus(x, 0()) -> x
, p(s(x)) -> x
, p(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [3]
p(x1) = [1] x1 + [1]
s(x1) = [1] x1 + [3]
minus(x1, x2) = [1] x1 + [1] x2 + [3]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 0.11269903ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | TCT 09 ma3 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ minus(x, s(y)) -> minus(p(x), y)
, minus(x, 0()) -> x
, p(s(x)) -> x
, p(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [0]
[3]
p(x1) = [1 0] x1 + [2]
[0 1] [1]
s(x1) = [1 3] x1 + [0]
[0 1] [3]
minus(x1, x2) = [1 2] x1 + [1 3] x2 + [0]
[0 1] [0 1] [0]
Hurray, we answered YES(?,O(n^2))