Tool Bounds
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ q3(b(x1)) -> b(q4(x1))
, q3(1'(x1)) -> 1'(q3(x1))
, q0(1'(x1)) -> 1'(q3(x1))
, q2(0'(x1)) -> 0'(q0(x1))
, 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
, 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
, 0(q2(1'(x1))) -> q2(0(1'(x1)))
, 1'(q2(0(x1))) -> q2(1'(0(x1)))
, 0'(q2(0(x1))) -> q2(0'(0(x1)))
, 0(q2(0(x1))) -> q2(0(0(x1)))
, 1'(q1(1(x1))) -> q2(1'(1'(x1)))
, 0'(q1(1(x1))) -> q2(0'(1'(x1)))
, 0(q1(1(x1))) -> q2(0(1'(x1)))
, q1(1'(x1)) -> 1'(q1(x1))
, q1(0(x1)) -> 0(q1(x1))
, q0(0(x1)) -> 0'(q1(x1))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
q4(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 0*delta
b(delta, X0) = + 0*X0 + 2 + 1*X0*delta + 0*delta
q3(delta, X0) = + 1*X0 + 0 + 1*X0*delta + 0*delta
1(delta, X0) = + 1*X0 + 3 + 1*X0*delta + 1*delta
q2(delta, X0) = + 1*X0 + 2 + 1*X0*delta + 0*delta
1'(delta, X0) = + 1*X0 + 1 + 2*X0*delta + 0*delta
0(delta, X0) = + 1*X0 + 1 + 2*X0*delta + 3*delta
q0(delta, X0) = + 1*X0 + 0 + 1*X0*delta + 0*delta
q1(delta, X0) = + 1*X0 + 0 + 2*X0*delta + 0*delta
0'(delta, X0) = + 1*X0 + 1 + 1*X0*delta + 1*delta
q4_tau_1(delta) = delta/(0 + 1 * delta)
b_tau_1(delta) = delta/(0 + 1 * delta)
q3_tau_1(delta) = delta/(1 + 1 * delta)
1_tau_1(delta) = delta/(1 + 1 * delta)
q2_tau_1(delta) = delta/(1 + 1 * delta)
1'_tau_1(delta) = delta/(1 + 2 * delta)
0_tau_1(delta) = delta/(1 + 2 * delta)
q0_tau_1(delta) = delta/(1 + 1 * delta)
q1_tau_1(delta) = delta/(1 + 2 * delta)
0'_tau_1(delta) = delta/(1 + 1 * delta)
Time: 41.871522 seconds
Statistics:
Number of monomials: 3221
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ q3(b(x1)) -> b(q4(x1))
, q3(1'(x1)) -> 1'(q3(x1))
, q0(1'(x1)) -> 1'(q3(x1))
, q2(0'(x1)) -> 0'(q0(x1))
, 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
, 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
, 0(q2(1'(x1))) -> q2(0(1'(x1)))
, 1'(q2(0(x1))) -> q2(1'(0(x1)))
, 0'(q2(0(x1))) -> q2(0'(0(x1)))
, 0(q2(0(x1))) -> q2(0(0(x1)))
, 1'(q1(1(x1))) -> q2(1'(1'(x1)))
, 0'(q1(1(x1))) -> q2(0'(1'(x1)))
, 0(q1(1(x1))) -> q2(0(1'(x1)))
, q1(1'(x1)) -> 1'(q1(x1))
, q1(0(x1)) -> 0(q1(x1))
, q0(0(x1)) -> 0'(q1(x1))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
0(x1) = [1 2] x1 + [0]
[0 1] [3]
q0(x1) = [1 1] x1 + [0]
[0 1] [0]
q1(x1) = [1 2] x1 + [0]
[0 1] [1]
0'(x1) = [1 1] x1 + [0]
[0 1] [2]
1'(x1) = [1 1] x1 + [0]
[0 1] [1]
1(x1) = [1 2] x1 + [0]
[0 1] [3]
q2(x1) = [1 1] x1 + [0]
[0 1] [3]
q3(x1) = [1 1] x1 + [0]
[0 1] [0]
b(x1) = [1 0] x1 + [0]
[0 0] [1]
q4(x1) = [1 0] x1 + [0]
[0 0] [3]
Hurray, we answered YES(?,O(n^2))Tool IDA
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ q3(b(x1)) -> b(q4(x1))
, q3(1'(x1)) -> 1'(q3(x1))
, q0(1'(x1)) -> 1'(q3(x1))
, q2(0'(x1)) -> 0'(q0(x1))
, 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
, 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
, 0(q2(1'(x1))) -> q2(0(1'(x1)))
, 1'(q2(0(x1))) -> q2(1'(0(x1)))
, 0'(q2(0(x1))) -> q2(0'(0(x1)))
, 0(q2(0(x1))) -> q2(0(0(x1)))
, 1'(q1(1(x1))) -> q2(1'(1'(x1)))
, 0'(q1(1(x1))) -> q2(0'(1'(x1)))
, 0(q1(1(x1))) -> q2(0(1'(x1)))
, q1(1'(x1)) -> 1'(q1(x1))
, q1(0(x1)) -> 0(q1(x1))
, q0(0(x1)) -> 0'(q1(x1))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
0(x1) = [1 2] x1 + [0]
[0 1] [2]
q0(x1) = [1 2] x1 + [0]
[0 1] [0]
q1(x1) = [1 2] x1 + [0]
[0 1] [1]
0'(x1) = [1 1] x1 + [0]
[0 1] [1]
1'(x1) = [1 1] x1 + [2]
[0 1] [1]
1(x1) = [1 2] x1 + [0]
[0 1] [3]
q2(x1) = [1 2] x1 + [0]
[0 1] [3]
q3(x1) = [1 2] x1 + [0]
[0 1] [0]
b(x1) = [1 0] x1 + [0]
[0 0] [2]
q4(x1) = [1 0] x1 + [0]
[0 0] [3]
Hurray, we answered YES(?,O(n^2))Tool TRI
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ q3(b(x1)) -> b(q4(x1))
, q3(1'(x1)) -> 1'(q3(x1))
, q0(1'(x1)) -> 1'(q3(x1))
, q2(0'(x1)) -> 0'(q0(x1))
, 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
, 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
, 0(q2(1'(x1))) -> q2(0(1'(x1)))
, 1'(q2(0(x1))) -> q2(1'(0(x1)))
, 0'(q2(0(x1))) -> q2(0'(0(x1)))
, 0(q2(0(x1))) -> q2(0(0(x1)))
, 1'(q1(1(x1))) -> q2(1'(1'(x1)))
, 0'(q1(1(x1))) -> q2(0'(1'(x1)))
, 0(q1(1(x1))) -> q2(0(1'(x1)))
, q1(1'(x1)) -> 1'(q1(x1))
, q1(0(x1)) -> 0(q1(x1))
, q0(0(x1)) -> 0'(q1(x1))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0(x1) = [1 2] x1 + [1]
[0 1] [1]
q0(x1) = [1 1] x1 + [0]
[0 1] [0]
q1(x1) = [1 2] x1 + [0]
[0 1] [0]
0'(x1) = [1 1] x1 + [1]
[0 1] [1]
1'(x1) = [1 1] x1 + [0]
[0 1] [1]
1(x1) = [1 2] x1 + [0]
[0 1] [3]
q2(x1) = [1 1] x1 + [0]
[0 1] [2]
q3(x1) = [1 1] x1 + [0]
[0 1] [0]
b(x1) = [1 3] x1 + [0]
[0 1] [1]
q4(x1) = [1 1] x1 + [0]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI2
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ q3(b(x1)) -> b(q4(x1))
, q3(1'(x1)) -> 1'(q3(x1))
, q0(1'(x1)) -> 1'(q3(x1))
, q2(0'(x1)) -> 0'(q0(x1))
, 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
, 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
, 0(q2(1'(x1))) -> q2(0(1'(x1)))
, 1'(q2(0(x1))) -> q2(1'(0(x1)))
, 0'(q2(0(x1))) -> q2(0'(0(x1)))
, 0(q2(0(x1))) -> q2(0(0(x1)))
, 1'(q1(1(x1))) -> q2(1'(1'(x1)))
, 0'(q1(1(x1))) -> q2(0'(1'(x1)))
, 0(q1(1(x1))) -> q2(0(1'(x1)))
, q1(1'(x1)) -> 1'(q1(x1))
, q1(0(x1)) -> 0(q1(x1))
, q0(0(x1)) -> 0'(q1(x1))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0(x1) = [1 3] x1 + [0]
[0 1] [1]
q0(x1) = [1 1] x1 + [0]
[0 1] [0]
q1(x1) = [1 2] x1 + [0]
[0 1] [0]
0'(x1) = [1 2] x1 + [0]
[0 1] [1]
1'(x1) = [1 3] x1 + [0]
[0 1] [2]
1(x1) = [1 2] x1 + [2]
[0 1] [3]
q2(x1) = [1 1] x1 + [0]
[0 1] [1]
q3(x1) = [1 1] x1 + [0]
[0 1] [0]
b(x1) = [1 3] x1 + [0]
[0 1] [1]
q4(x1) = [1 1] x1 + [0]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))