Problem Zantema 04 z125

Tool Bounds

Execution Time60.036804ms
Answer
TIMEOUT
InputZantema 04 z125

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  n(f(x1)) -> f(n(x1))
     , n(s(x1)) -> f(s(s(x1)))
     , c(c(x1)) -> c(x1)
     , n(a(x1)) -> c(x1)
     , c(f(x1)) -> f(n(a(c(x1))))
     , f(x1) -> n(c(n(a(x1))))}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool CDI

Execution Time8.460689ms
Answer
MAYBE
InputZantema 04 z125

stdout:

MAYBE

Statistics:
Number of monomials: 969
Last formula building started for bound 3
Last SAT solving started for bound 3

Tool EDA

Execution Time61.14377ms
Answer
TIMEOUT
InputZantema 04 z125

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  n(f(x1)) -> f(n(x1))
     , n(s(x1)) -> f(s(s(x1)))
     , c(c(x1)) -> c(x1)
     , n(a(x1)) -> c(x1)
     , c(f(x1)) -> f(n(a(c(x1))))
     , f(x1) -> n(c(n(a(x1))))}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool IDA

Execution Time39.49877ms
Answer
MAYBE
InputZantema 04 z125

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  n(f(x1)) -> f(n(x1))
     , n(s(x1)) -> f(s(s(x1)))
     , c(c(x1)) -> c(x1)
     , n(a(x1)) -> c(x1)
     , c(f(x1)) -> f(n(a(c(x1))))
     , f(x1) -> n(c(n(a(x1))))}
  StartTerms: all
  Strategy: none

Certificate: MAYBE

Proof:
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'matrix-interpretation of dimension 3' failed due to the following reason:
         The input cannot be shown compatible
    
    2) 'matrix-interpretation of dimension 3' failed due to the following reason:
         The input cannot be shown compatible
    
    3) 'matrix-interpretation of dimension 3' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 2' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'matrix-interpretation of dimension 2' failed due to the following reason:
         The input cannot be shown compatible
    
    6) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    

Arrrr..

Tool TRI

Execution Time41.27819ms
Answer
MAYBE
InputZantema 04 z125

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  n(f(x1)) -> f(n(x1))
     , n(s(x1)) -> f(s(s(x1)))
     , c(c(x1)) -> c(x1)
     , n(a(x1)) -> c(x1)
     , c(f(x1)) -> f(n(a(c(x1))))
     , f(x1) -> n(c(n(a(x1))))}
  StartTerms: all
  Strategy: none

Certificate: MAYBE

Proof:
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'matrix-interpretation of dimension 6' failed due to the following reason:
         The input cannot be shown compatible
    
    2) 'matrix-interpretation of dimension 5' failed due to the following reason:
         The input cannot be shown compatible
    
    3) 'matrix-interpretation of dimension 4' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 3' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'matrix-interpretation of dimension 2' failed due to the following reason:
         The input cannot be shown compatible
    
    6) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    

Arrrr..

Tool TRI2

Execution Time0.21749306ms
Answer
MAYBE
InputZantema 04 z125

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  n(f(x1)) -> f(n(x1))
     , n(s(x1)) -> f(s(s(x1)))
     , c(c(x1)) -> c(x1)
     , n(a(x1)) -> c(x1)
     , c(f(x1)) -> f(n(a(c(x1))))
     , f(x1) -> n(c(n(a(x1))))}
  StartTerms: all
  Strategy: none

Certificate: MAYBE

Proof:
  The input cannot be shown compatible

Arrrr..