Reachability for Termination*

4th Austria-Japan Summer Workshop on Term Rewriting

Akihisa Yamada (University of Innsbruck)

* Supported by Austrian Science Fund (FWF) Y-757

Reachability for Termination of Term Rewriting

Akihisa Yamada (University of Innsbruck)

* Supported by Austrian Science Fund (FWF) Y-757

Reachability in the Dependency Framework for Termination of Term Rewriting

Akihisa Yamada (University of Innsbruck)

* Supported by Austrian Science Fund (FWF) Y-757

Terminology proposal

$$s \to_{\mathcal{R}}^* t$$
 t is ~~reachable~~ from s reached

$$\exists \theta. \ s\theta \to_{\mathcal{R}}^* t\theta$$
 t is **reachable** from s [Sternagel & Sternagel '16] $(s \hookrightarrow_{\mathcal{R}} t)$

Example:

Q: start($some_input$) $\hookrightarrow_{\mathcal{R}} error(some_code)$?

A: yes, start(5) $\rightarrow_{\mathcal{R}}^*$ error(DIV0)

Reachability in DP framework

Usable rules (before)

Theorem ([Hirokawa & Middeldorp '04 / Giesl+ '05]):

$$\phi(s) := \bigwedge_{f(s_1, \dots) \leq_{\pi} s} \bigwedge_{f(l_1, \dots) \to r \in \mathcal{R}} f(l_1, \dots) \to r \in \mathcal{U}$$

If $\phi(\text{rhds }\mathcal{P}) \wedge \phi(\text{rhds }\mathcal{U})$, then one can ignore $\mathcal{R} \setminus \mathcal{U}$

Theorem ([Sternagel & Thiemann '10]): same for

$$\phi(s) := \bigwedge_{f(s_1, \dots) \leq_{\pi} s} \bigwedge_{f(l_1, \dots) \to r \in \mathcal{R}} \operatorname{tcap}(s_1) \sim_{\text{unif}} l_1, \dots \Rightarrow f(l_1, \dots) \to r \in \mathcal{U}$$

Usable rules via reachability

Theorem (new): Usable rules technique applies for

$$\phi(s) := \bigwedge_{f(s_1, \dots) \leq_{\pi} s} \bigwedge_{f(l_1, \dots) \to r \in \mathcal{R}} s_1 \hookrightarrow_{\mathcal{R}} l_1, \dots \Rightarrow f(l_1, \dots) \to r \in \mathcal{U}$$

Proof:

I changed original proofs until Isabelle somehow accepted. So it must be true.

TODO: Understand why the proof works

Estimating reachability

- Requirements
 - efficiency: can't be as hard as termination proving
 - completeness: if t is reachable from s, then it must say so
 - soundness (only for nontermination)
- Proposed solutions
- symbol transition graph
 - generalized TCAP-unifiability
 - combination

Symbol transition graph (in NaTT & TTT2)

$$\mathcal{R} = \begin{cases} f(\dots) \to g(\dots) \\ g(\dots) \to c(\dots) \\ h(\dots) \to x \end{cases}$$

- $c(...) \rightarrow_{\mathcal{R}}^{*} t \implies t \text{ must be } c(...)$
- $g(...) \rightarrow_{\mathcal{R}}^{*} t \implies t \text{ must be } g(...) \text{ or } c(...)$
- $\Box f(...) \rightarrow_{\mathcal{R}}^* t \implies t \text{ must be } f(...) \text{ or } g(...) \text{ or } c(...)$
- $h(...) \rightarrow_{\mathcal{R}}^* t \implies don't know$

Theorem (to be formalized):

Define graph $G_{\mathcal{R}} = \langle \mathcal{F}, \exists \rangle$ s.t. $f \exists g$ whenever $f(...) \rightarrow g(...) \in \mathcal{R}$ or $f(...) \rightarrow x \in \mathcal{R}$.

Then $f \supset^* g$ is a complete estimation of $f(...) \hookrightarrow_{\mathcal{R}} g(...)$

Symbol transition graph' (only in TTT2)

Example:

$$\mathcal{R} = \{ f(0,1,x) \to f(x,x,x) \}$$

$$\mathcal{P} = \{ f^{\#}(0,1,x) \to f^{\#}(x,x,x) \}$$

reduced to " $\exists x. \ x \hookrightarrow_{\mathcal{R}} 0 \ \land \ x \hookrightarrow_{\mathcal{R}} 1 \ \land \ x \hookrightarrow_{\mathcal{R}} x'$ "

... UNSAT, since 0 and 1 have no common ancestor in $G_{\mathcal{R}}$

TODO: efficient algorithm for common ancestors (in graph)

Estimating reachability

- Requirements
 - efficiency: can't be as hard as termination proving
 - completeness: if t is reachable from s, then it must say so
 - soundness (only for nontermination)
- Proposed solutions
- symbol transition graph
 - generalized TCAP-unifiability
 - combination

TCAP-unifiability [Giesl+'05]

complete estimation of reachability:

$$s \hookrightarrow_{\mathcal{R}} t \Longrightarrow \operatorname{tcap}_{\mathcal{R}}(s) \sim_{\operatorname{unif}} t$$

Implementation in NaTT: $tcap(s) \sim_{unif} t \Rightarrow$

- $s \in \mathcal{V}$ or
- $t \in \mathcal{V}$ or
- $s = f(s_1, ..., s_n)$ and
 - $t = f(t_1, ..., t_n)$ and $\forall i. tcap(s_i) \sim_{unif} t_i$, or
 - $\exists f(l_1, ..., l_n) \rightarrow r \in \mathcal{R}. \ \forall i. \operatorname{tcap}(s_i) \sim_{\operatorname{unif}} l_i$

TCAP-unifiability [Giesl+'05]

complete estimation of reachability:

$$s \hookrightarrow_{\mathcal{R}} t \Longrightarrow \operatorname{tcap}_{\mathcal{R}}(s) \sim_{\operatorname{unif}} t$$

Implementation in NaTT: $tcap(s) \sim_{unif} t \Rightarrow$

- $s \in \mathcal{V}$ or
- $t \in \mathcal{V}$ or
- $s = f(s_1, ..., s_n)$ and
 - $t = f(t_1, ..., t_n)$ and $\forall i. tcap(s_i) \sim_{unif} t_i$, or
 - $\exists f(l_1, ..., l_n) \rightarrow r \in \mathcal{R}. \ \forall i. tcap(s_i) \sim_{unif} l_i$

TCAP-unifiability reformulated

complete estimation of reachability:

$$s \hookrightarrow_{\mathcal{R}} t \Longrightarrow s \hookrightarrow_{\mathcal{R},1} t$$

```
Definition: s \hookrightarrow_{\mathcal{R},\mathbf{1}} t iff
```

- $s \in \mathcal{V}$ or
- $t \in \mathcal{V}$ or
- $s = f(s_1, ..., s_n)$ and
 - $t = f(t_1, ..., t_n)$ and $\forall i.s_i \hookrightarrow_{\mathcal{R},1} t_i$, or
 - $\exists f(l_1, ..., l_n) \rightarrow r \in \mathcal{R}. \ \forall i.s_i \hookrightarrow_{\mathcal{R}, 1} l_i$

if $s \hookrightarrow_{\mathcal{R}} l \to r \in \mathcal{R}$ then give up

valid only if $r \hookrightarrow_{\mathcal{R}} t$

k-step look-ahead (only in NaTT)

complete estimation of reachability:

$$s \hookrightarrow_{\mathcal{R}} t \Longrightarrow s \hookrightarrow_{\mathcal{R},k} t$$

```
Definition: s \hookrightarrow_{\mathcal{R},k} t iff

• s \in \mathcal{V} or

• t \in \mathcal{V} or

• s = f(s_1, ..., s_n) and

• t = f(t_1, ..., t_n) and \forall i. s_i \hookrightarrow_{\mathcal{R},k} t_i, or

• \exists f(l_1, ..., l_n) \rightarrow r \in \mathcal{R}. \forall i. s_i \hookrightarrow_{\mathcal{R},k} l_i and r \hookrightarrow_{\mathcal{R},k-1} t
```

■ Experiments: (k = 8, empirically chosen)+10 YESs (all known, from MNZ_10)

Estimating reachability

- Requirements
 - efficiency: can't be as hard as termination proving
 - completeness: if t is reachable from s, then it must say so
 - soundness (only for nontermination)
- Proposed solutions
 - symbol transition graph
- generalized TCAP-unifiability
 - combination

Combination (straightforward)

Definition: $s \hookrightarrow_{\mathcal{R},k} t$ iff

- $s \in \mathcal{V}$ or
- $t \in \mathcal{V}$ or
- $s = f(s_1, ..., s_n)$ and
 - $t = f(t_1, ..., t_n)$ and $\forall i. s_i \hookrightarrow_{\mathcal{R}, k} t_i$, or
 - if k=0 then use $G_{\mathcal{R}}$
 - else $\exists f(l_1, ..., l_n) \rightarrow r \in \mathcal{R}. \ \forall i.s_i \hookrightarrow_{\mathcal{R},k} l_i \text{ and } r \hookrightarrow_{\mathcal{R},k-1} t$

Conclusion

- (Almost) exact usable rules via reachability
- New reachability estimation
 - symbol transition graph
 - k-step look-ahead (generalizing TCAP-unifiability)

TODO:

- missing formalizations/implementations/evaluations
- use substitution
- combine with CTRS techniques [Sternagel & Sternagel '16]?