Automated Resource Analysis with paicc*
(Extended Abstract)

Michael Schaper?!

1 Department of Computer Science
University of Innsbruck, Austria
michael.schaper@Quibk.ac.at

—— Abstract

In this extended abstract we present paicc, a transformation from guarded control-flow programs
to unstructured loop programs. We make use of recent results on the decidability of polynomial
growth-rate of unstructured loop programs to develop a new method for assessing polynomial
runtime of guarded control-flow programs.

1998 ACM Subject Classification F.3.2, F.4.1
Keywords and phrases program analysis, resource analysis, implicit computational complexity

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Automated resource analysis of imperative programs is an active area of research. In recent
years several approaches have been investigated and implemented, to mention a few: KoAT,
Rank, CoFloCo, Loopus and C4B [8, 1, 10, 12, 9]. In this work-in-progress we present paicc
which aims to combine the state-of-the-art in program analysis and implicit computational
complexity.

Program analysis tools often target low-level but expressive programming languages with
unstructured control-flow, such as LLVM or Java bytecode. For these languages interesting
properties like termination and resource consumption are undecidable. Hence, program
abstractions, heuristics, and incomplete decision procedures are researched and incorporated
in modern tools.

On the other hand, decidable properties of abstract but still expressive programming
fragments have been investigated in implicit computational complexity [3, 7]. Most relevant,
polynomial growth-rate of variables, ie. whether the value of a variable after executing a
program is bounded by a polynomial in the input, is decidable for LOOP programs [3], a
variant of Meyer and Ritchie’s loop programs [11] with weak semantics. In a recent work by
Ben-Amram and Pineles this result has been extended to a variant of LOOP programs with
unstructured control-flow [6, 5]. Notable, this language is very close to, but not quite the
same as, target abstractions used in state-of-the-art resource analysis tools.

In this work we are interested in closing this gap. We are going to present an abstraction
from guarded control-flow programs to unstructured LOOP programs. This abstraction over-
approximates the growth-rate of variables of the original program. In combination with the
analysis of [6, 5] we obtain an automated method for assessing polynomial runtime of the
original program.

* This work was partially supported by DARPA/AFRL contract number FA8750-17-C-088.

© Michael Schaper;
37 licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1-23:5

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2

paicc

2 Preliminaries

We first introduce CFG-GOTO programs. We fix a finite set of program Variables V and
represent programs as labelled control flow graphs (CFGs for short). Nodes are labelled
with locations and edges are labelled with constraints. A constraint C is a conjunction of
(in)equalities of polynomial expressions over V UV’ UZ. Here V' denotes primed versions
of variables in V and indicates the valuation of all variables after traversing an edge in the
CFG. So, constraints express guarded non-deterministic parallel assignments. A configuration
with location [and state & € Z™ is a tuple (I,Z). A trace is a sequence of configurations
(I3, %) =C (liy1,Ti41) =1 ... such that for all j > i there exists an edge l; —Ci lj41 in
the CFG and constraint C; holds with pre-state #; and post-state f; 11 We usually denote
a trace with p and the evaluation of a trace as & ~», &. The size of a value ¢ € Z is its
absolute value, denoted ||¢]|. We abuse notation and extend ||-|| and < componentwise, that
is |2 = (|lz1]l,- - -, |zn]) and & < §iff (21 < y1,. .., 20 < Yn). The growth-rate of a variable
x; wrt. to a set of traces 7 and input size vector 7 € N” is

gre, (T, 1) = sup{[lzi|| [[Z] < AATp € T. &~y &'}

We say that the growth-rate of a variable x; is polynomially bounded in T if there exists a
polynomial p on #, denoted p(Z), st. gr.,(T,7) < p(Z).

To analyse the runtime complezity of a program we make use of the well-known fact
that we can instrument the program with a dedicated counter variable together with tick
instructions and estimate the growth-rate of the counter variable.

» Example 1. Figure 1 depicts the motivating example of [6] together with its CFG-GOTO
representation. When depicting CFG programs we omit the identity constraints, eg. n’ = n.

a:n=>0
-/
t=n d:j'=n,i’'=i-1
assume n>=0 i =n
i=mn; j=n
while i>0:
if j > 0
j=3j-1 e:1<0 c:j>0 j/=5-1
else:
j=mn; i=i-1 @
(a (b)

Figure 1 Illustrating example and its CFG-GOTO representation.

We introduce CFG-LOOP programs as variants of CFG-GOTO programs. For details we refer
to [6, 5]. States are n-tuples over natural numbers, ie. & € N™. Constraints are conjunctions
of inequalities of the form] < c121 + - -+ + cpxy + ek, that is, 2} is not greater than a
linear combination of Z. Here ¢, ...,c,,cr € N and k is a dedicated variable representing an
arbitrary but constant value. Constraints in CFG-LOOP programs do not determine control-
flow and without further restrictions such programs are non-terminating. To remedy this
fact we introduce loop structures. Loop structures are akin to call-graphs and represent a
nesting hierarchy of bounded subprograms, so called loops. Alternatively we can construe
loop structures as an explicit representation of program decomposition.

M. Schaper

More formally. A loop structure of a CFG is a set of subsets of edges, called loops, which
form a rooted tree. The root consists of all edges of the CFG. The children of a loop L
are disjoint proper subsets of L. The cut set of a loop L consists of all edges in L that are
not edges of its descendants. Furthermore, associated to each loop is a bound [that is an
expression c1x1 + - -+ + ¢z, + k. The bound associated to the root is constant 1.

The semantics of a loop L can be interpreted as follows: Assume loop L is entered with
state Z. Then the bound expression of L instantiated with state Z provides a concrete bound
on the number of traversals of an edge of the cut set of L before exiting L.

CFG-LOOP programs have similar properties as LOOP programs, as presented in [3]. A
CFG-LOOP program is always terminating and the growth-rates of variables are bounded by
the class of primitive recursive functions.

» Example 2 (Cont'd). Figure 2 illustrates a CFG-LOOP program. The loop structure is
indicated by dotted boxes. The inner loop consists of edges {b, c}, the edges of its cut set
{b, c} can be traversed at most ||j|| times, before exiting. The outer loop consists of edges
{b, c,d}, the edges of its cut set {d} can be traversed at most [|7| times. The root consists
of all edges, edges a and e can be traversed only once.

Figure 2 CFG-LOOP abstraction of our running example.

We recall the main result of [6]. Sometimes we refer to the growth-rate analysis as
bp-analysis. The bounds that are obtained via the bp-analysis are not precise as it only
proofs the existence of a polynomial that bounds the growth-rate. It is an open problem how
to obtain more precise bounds, like the degree of the polynomial, via the bp-analysis.

» Proposition 1 (Polynomial Growth-Rate). Polynomial growth-rate is decidable for CFG-LOOP
programs.

3 Transformation

In this section we present a (lossy) transformation from CFG-GOTO programs to CFG-LOOP
programs that safely approximates the growth-rate of variables.

3.1 Synthesis of Loop Structures

The loop structure of a CFG is not unique and a semantic rather than syntactic property.
The example program of Figure 1b is used in [6] as motivating example, though no algorithm
for the automated construction of its loop structure is given.

For construction, we synthesize a lexicographic combination of linear ranking functions,
that is a k-dimensional ranking function with co-domain (N¥, <}), consisting of k linear
functions. Here < is the standard lexicographic order on integer vectors. Multidimensional
ranking functions can be used to bound the runtime of subprograms. This variant of
ranking functions have been proposed for runtime analysis in [1] and are used in combination

23:3

CVIT 2016

23:4

paicc

with global size invariants on variables to estimate the cardinality of the state space. In
contrast, here, the obtained bounds are used in combination with the bp-analysis to infer the
growth-rate of variables.

Synthesis of linear ranking functions is a powerful tool in program analysis. Necessary
constraints can be encoded via LP or SMT [2]. In our approach we synthesise ranking
functions with strict and weak oriented components, in notation (>=,77). That is, given a
set of edges we encode following properties: (i) all edges are non-increasing, (ii) some edges
are decreasing and bounded. This provides a bound on decreasing edges and conforms to the
bound of traversing edges of the cut set of a loop.

Following algorithm synthesises a lexicographic combination of linear ranking functions
and constructs a loop structure for the given CFG. The algorithm fails if no ranking function
for the considered (sub)program can be established.

(i) The root node L of the loop structure consists of all edges of the CFG.

(ii) For the considered (sub)program add the edges of each SCC; in the CFG as child node
L; to the current node.

(iii) For each leaf L; synthesize a linear ranking function (>~;,77;) of L; such that >; is
non-empty. The ranking function is a linear polynomial, cixy + - -+ + ¢pxy + ¢x. The
cut set of L; is >=; and the bound I; of L; is ||c1]|z1 + - + ||enl|xn + ||k -

(iv) For L; \ >; apply recursively (ii).

» Proposition 2 (Loop Structure). Given a CFG the proposed algorithm provides a valid
loop structure. Furthermore, let p = (lg, Zp) —¢° --- =1 o’ ... be a program trace of the
CFG with sub-trace p' = (I;, 7;) = ---. Assume that all edges in p’ are contained in some
loop L’ but are not contained in any of its descendants. Let I’ be the bound associated to
L'. Then the number of occurrences of any edge in the cut set of L’ is bounded in p’ by I’
instantiated with the start state of the sub-trace ;.

Conceptually similar approaches for decomposition of programs is also present in other
methods albeit often more implicitly. Though the growth-rate or size-analysis either depends
on globally inferred invariants or incomplete procedures [12, §].

3.2 Local Growth-Rate Abstraction

Inferring the local growth-rate, ie. the growth-rate of a variable along an edge of the CFG, is
a key component in the KoAT tool [8]. In combination with runtime bounds on subprograms
global invariants on variables are inferred, which in turn are used to infer runtime bounds
on subsequent subprograms. Conceptually the bp-analysis and thus paicc work in a similar
way. The key difference is, that KoAT uses more refined bound expressions but at the
same time the proposed growth-rate analysis is known to be incomplete. This trade-off
between expressiveness of the abstraction and the strength of the analysis is what we want
to investigate.

Following algorithm is used in paicc to infer local growth-rates: Let | —C I’ be an edge in
the CFG of a CFG-GOTO program. We synthesize for each variable x; € V two linear ranking
functions from C' satisfying @} > cix1 + -+ + epxn + ek and o < dyxy + - + dpxy, + dik,
representing the lower and upper bound respectively. We define the local growth-rate of x; as
2!, < max((lev |, da)1 + - -+ max(eall, i) + max(ecll [di k. The algorithm may
fail to provide a bound. Following [5] we introduce for this case a special variable unknown
and a special expression z; < unknown. In practice we use the bp-analysis to infer whether
the counter variable depends on unknown.

M. Schaper

» Proposition 3 (Local Growth-Rate). Let I —¢ I’ be an edge in the CFG and (I, Z) —¢ (I, #")
be a sub-trace of a CFG-GOTO program. Furthermore, let D be the local growth-rate obtained
from C. Then (I, ||#||) =P (,]|Z'||) is a trace in the CFG-LOOP program.

» Example 3 (Cont'd). The example program in Figure 2 has all its edges replaced with the
local growth-rate. During execution the variables ¢ and j never increase after assigning n at
first. The bp-analysis infers that 4, j and n have an identity dependency on n, that is they are
bounded by the initial value of n. If we instrument the code with a counter variable together
with tick instructions, we further obtain that the counter has a multiplicative dependency on
n. It follows that the example program runs in polynomial time.

4 Conclusion and Future Work

In this extended abstract we investigated abstractions from guarded control-flow programs to
unstructured LOOP programs incorporating ideas from Rank and KoAT. Using the bp-analysis
we can verify polynomial growth-rate of variables and polynomial runtime of the program.

In the near future we are going to investigate the trade-off between the expressiveness of
the abstractions and the strength of the analysis in practice. A prototype of paicc and initial
experiments are available at http://cbr.uibk.ac.at/tools/paicc/. It is an open problem
whether the bp-analysis can be extended to support expressions with concrete constants [4],
which would provide a natural and more expressive abstraction domain.

—— References

1 C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional Rankings, Program
Termination, and Complexity Bounds of Flowchart Programs. In Proc. 17th SAS, volume
6337 of LNCS, pages 117-133, 2010.

2 R. Bagnara and F. Mesnard. Eventual Linear Ranking Functions. In Proc. of 15th PPDP,
pages 229-238, 2013.

3 A. M. Ben-Amram, N. D. Jones, and L. Kristiansen. Linear, Polynomial or Exponential?
Complexity Inference in Polynomial Time. In Proc. of 4th CiE, 2008, pages 67-76, 2008.

4 A. M. Ben-Amram and L. Kristiansen. On the Edge of Decidability in Complexity Analysis
of Loop Programs. 23(7):1451-1464, 2012.

5 A. M. Ben-Amram and A. Pineles. Growth-Rate Analysis of Flowchart Programs, 2014.
Masterthesis.

6 A. M. Ben-Amram and A. Pineles. Flowchart Programs, Regular Expressions, and Decid-
ability of Polynomial Growth-Rate. In Proc. of 4th VPT@ETAPS, pages 24-49, 2016.

7 A. M. Ben-Amram and M. Vainer. Bounded Termination of Monotonicity-Constraint Trans-
ition Systems. CoRR, abs/1202.4281, 2012. URL: http://arxiv.org/abs/1202.4281.

8 M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating Runtime and
Size Complexity Analysis of Integer Programs. In Proc. 20th TACAS, pages 140-155, 2014.

9 Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional Certified Resource Bounds. In
Proc. of 36th PLDI, pages 467-478, 2015.

10 A. Flores-Montoya and R. Hahnle. Resource Analysis of Complex Programs with Cost
Equations. In Proc. 12th APLAS, pages 275-295, 2014.

11 A. R. Meyer and D. M. Ritchie. The Complexity of Loop Programs. In Proceedings of the
1967 22Nd National Conference, Proc . ACM ’67, pages 465-469. ACM, 1967.

12 M. Sinn, F. Zuleger, and H. Veith. Complexity and Resource Bound Analysis of Imperative
Programs Using Difference Constraints. JAR, 59(1):3-45, 2017.

23:5

CVIT 2016

http://cbr.uibk.ac.at/tools/paicc/
http://arxiv.org/abs/1202.4281

	Introduction
	Preliminaries
	Transformation
	Synthesis of Loop Structures
	Local Growth-Rate Abstraction

	Conclusion and Future Work

