
Resource Analysis of Imperative
Programs

dissertation

by

Michael Schaper

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

advisor: Assoc. Prof. Dr. Georg Moser

Innsbruck, 16 September 2019

dissertation

Resource Analysis of Imperative Programs

Michael Schaper (0715638)
michael.schaper@student.uibk.ac.at

16 September 2019

advisor: Assoc. Prof. Dr. Georg Moser

mailto:michael.schaper@student.uibk.ac.at

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die
vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich den angegebenen
Quellen entnommen wurden, sind als solche kenntlich gemacht.
Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als
Magister-/Master-/Diplomarbeit/Dissertation eingereicht.

Datum Unterschrift

Abstract

This thesis is devoted to resource analysis of imperative programs. Resource analysis falls
within the wide spectrum of static program analysis, which is concerned with automatic
methods for inferring reliable approximate informations about the dynamic behaviour
of computer programs. In resource analysis, we are concerned with approximations of
quantitative properties of program executions, such as the maximal number of execution
steps or memory needed. This topic is an active area of research and several resource
analysis tools have been established in recent years. In this work, we provide the following
contributions.
First, we are concerned with the resource analysis of imperative programs in which states
are formed over a finite set of integer-valued variables. We consider a standard abstract
model of computation, so-called constraint transition systems. When syntactically
restricting the precise notion of the program representation, one can study and implement
dedicated techniques for resource analysis. In this work, we give an overview of theoretical
properties and practical aspects of relevant abstract program representations that are
known from the literature and that are used in modern resource analysis tools.
Second, we are concerned with the resource analysis of imperative programs with heap
allocated data structures. Inspired by recent developments on automating runtime analysis
for term rewriting, we present a term abstraction of programs with heap allocated data.
This abstraction safely approximates the runtime of the target program such that we can
make use of existing tools for the resource analysis. In this work, we outline the term
abstraction and compare it to known approaches.
Third, we are concerned with the resource analysis of probabilistic programs. We consider
a standard imperative programming language that is endowed with probabilistic primitives
for sampling and probabilistic choice. In this work, we present a novel modular approach
to automate the resource analysis of probabilistic programs.
Finally, we present a framework for automation. We provide a Haskell library that is
dedicated to automate resource analysis. In this work, we outline the software architecture
of this library and demonstrate several case studies in which the framework has been
applied successfully.

Acknowledgments

At the beginning of this thesis I want to express my gratitude to all people who have
influenced my work and supported me on this journey.

Foremost, I would like to express my special appreciation and thanks to my supervisor
Georg Moser for his guidance throughout my studies. He sparked my interest in theoretical
computer science and taught me scientific working. This dissertation would not have
been possible without his support and encouraging words.

I am especially grateful to Martin Avanzini. I have learned a lot from our numerous
discussions and working together.

I would like to thank Aart Middeldorp and all members of the Computational Logic
research group, both past and present, for providing a pleasant and fruitful work en-
vironment over the past years. My sincere thanks go to René Thieman for being my
second supervisor. I explicitly mention Thibault Gauthier, Stéphane Gimenez, Alexander
Maringele, Kenji Miyamoto, Julian Nagele, David Obwaller, Thomas Powell, Maria
Schett, Thomas Sternagel, and Sarah Winkler. I appreciate the numerous social events
and joyful activities we have engaged after work.

I am grateful to all of my friends who silently endure my occasional rants. Finally, I
would like to express my gratitude to my parents Ingrid and Knut for their continuous
support and encouragement.

vii

Contents

1 Introduction 1

2 Preliminaries 9

3 Imperative Programs 11
3.1 Introduction . 11
3.2 Overview of the Contribution . 13
3.3 Preliminary Discussion . 15

3.3.1 Directed Graph . 15
3.3.2 Constraint Transition Systems . 16
3.3.3 Complexity Functions and Complexity Bounds 17
3.3.4 A Mundane Approach to Modular Runtime Analysis 19
3.3.5 Ranking Functions . 21
3.3.6 Applications for Numeric Invariants 25
3.3.7 Program Abstraction . 26

3.4 Overview of Abstract Program Representations 27
3.4.1 Loop Programs . 27
3.4.2 Core Programs . 27
3.4.3 Size-Change Constraints Programs 30
3.4.4 Monotonicity Constraints Programs 31
3.4.5 Vector Addition Systems with States 31
3.4.6 Difference Constraints Programs 32
3.4.7 Polynomial Constraints Programs 32

3.5 Automated Resource Analysis with KoAT 36
3.5.1 Polynomial Constraints Programs 36

3.6 Automated Resource Analysis with Loopus 45
3.6.1 Monotonicity Constraints Programs 45
3.6.2 Monotone Difference Constraints Programs 48
3.6.3 Difference Constraints Programs 52

3.7 Automated Resource Analysis with Paicc 58
3.7.1 Loop Programs . 58
3.7.2 Ben-Amram - Jones - Kristiansen Constraints Programs 61

3.8 Overview of Tools . 67
3.9 Comparing Tools and Abstract Program Representations 69
3.10 Concluding Remarks . 74

ix

Contents

4 Imperative Programs with Heap 75
4.1 Introduction . 75
4.2 Preliminaries . 78
4.3 Goto Programs with Records . 78
4.4 Complexity Reflecting Program Abstraction 81

4.4.1 Size Abstraction . 83
4.4.2 Term Abstraction . 87

4.5 Term Abstraction of Object-Oriented Bytecode Programs 93
4.6 Related Work . 95
4.7 Concluding Remarks . 99

5 Imperative Probabilistic Programs 101
5.1 Introduction . 101
5.2 Preliminaries . 104
5.3 Probabilistic While Programs . 106
5.4 Expectation Transformers . 108
5.5 Towards A Modular Analysis . 111
5.6 Automation . 113
5.7 Concluding Remarks . 116

6 Framework for Automation 117
6.1 Introduction . 117
6.2 Architectural Overview . 118
6.3 A Formal Framework for Complexity Analysis 120
6.4 Implementing the Complexity Framework 121

6.4.1 Proof Trees, Processors, and Strategies 121
6.4.2 From the Core to Executables . 126

6.5 Case Studies . 127
6.5.1 Abstract Program Representations 127
6.5.2 Real World Programs . 132

6.6 Concluding Remarks . 134

7 Conclusion 135

x

Chapter 1

Introduction

In this day and age, pocket sized computers accompany us in our daily lives, robots explore
distant planets, and autonomous cars cross our ways on the streets. The technology in
this digital age is controlled by computer programs. Unpredicted behaviour of programs
and software errors can lead to fatal consequences. Static program analysis is a research
area that is concerned with determining safe and computable approximations on the
dynamic behaviour of programs without executing them. It is well-known that interesting
program properties, such as, whether a program terminates on any input, can not be
decided in general. Nevertheless, program analysis is one of the major tools that we have
in our repertoire to exclude unwanted behaviour and establish reliable software.

Resource analysis (sometimes also referred to as cost analysis or complexity analysis) is
a part of program analysis that focuses on quantitative properties of program executions.
Traditional properties of interest include the number of execution steps, the memory used
or the number of function calls. Resource analysis of programs is an active area of research.
In recent years, several approaches have been investigated and implemented, to mention a
few, Absynth [124], AProVe [82], C4B [53], CiaoPP [123, 143], CoFloCo [72], COSTA [1, 4],
HoCA [16], HoSA [12], jat [119] KoAT [51], Loopus [145, 146, 158], paicc [139], Pastis [54],
PUBS [3, 5], RAJA [97, 100], RAML [95], Rank [9], RESA [10, 69], SPEED [84, 87], TCT [18]
and TiML [153]. Static approximation of quantitative properties has a variety of concrete
applications, such as, software quality [7], certification and security [61, 62], worst-case
execution time analysis [156], estimation of energy consumption [83], and approximation
of gas consumption for smart contracts [8].

This work is devoted to resource analysis of imperative programs. In what follows, we
narrow down the scope of the content.

Worst-Case Upper Bounds. Resource analysis reasons about quantitative properties
of program executions. Besides the resource of interest, one usually distinguishes between
(i) best-, average- and worst-case analysis, and (ii) lower and upper bounds. Item (i)
specifies the resource usage in the presence of non-determinism, e.g. best-case analysis
minimises the resource usage over all possible outcomes. Non-determinism can arise due
to dedicated support in the programming language or stratification of the input, e.g.
length of input list. Obtaining precise results is not always possible. Item (ii) indicates
how the analysis approximates the actual resource usage.

In this work, we are concerned with safety properties. We focus on upper bounds on
the worst-case resource usage of programs. That is, we maximise the resource of interest

1

1 Introduction

over all possible outcomes. The resources of interest are runtime and size (or value).
Informally, the worst-case runtime is the maximal number of execution steps with respect
to the input, and the worst-case size is the maximal valuation of an optimisation function
of all reachable states with respect to the input.

Automated Analysis. In this work, we are concerned with fully automated approaches
to resource analysis, much in the spirit of a push-button technology. The main advantage
of automated approaches is that they can be used with little to no prior knowledge and
integrated in bigger tool chains, though, there are unique challenges when automating
approaches in program analysis. In particular, usually the search space of the properties
of interest is huge. Modern automated resource analysis tools often rely on incomplete
heuristics to restrict the search space.

Imperative Programs. Imperative programming is a prominent programming paradigm
that underlies popular languages, such as Fortran, C, Java, etc. In recent years, optimi-
sation and program analysis of low-level intermediate representations, such as LLVM or
Java bytecode, got a lot of attention. This is also the case for resource analysis.

In this work, we focus on the resource analysis of imperative programming languages
with integer-valued variables, much like a restricted version of intermediate representa-
tions. In addition, we explore programs with support for heap allocated data structures
and probabilistic primitives. To reason formally about resource properties, we use ab-
stract reduction systems, i.e. binary relations over program states, as abstract model of
computation.

Methods to Automated Resource Analysis
In what follows, we list several methods and concepts hat are used in tools for the
automated resource analysis of imperative programs. This list is far from complete, but
exemplifies the variety of different approaches and research areas related to this topic.
We remark that tools often combine several approaches together and individual methods
are often conceptually and theoretically related.

Recurrence Relations. The seminal work of Wegbreit [154, 155] is considered to be the
first method that is concerned with automating resource analysis. The work investigates
the runtime behaviour of Lisp programs. In doing so, programs are transformed into
recurrence relations that capture the execution time. Closed-form expressions of the
recurrences can be obtained by dedicated solvers such as PURRS (Bagnara et al. [24]).

Inspired by earlier work on automated complexity analysis of logic programs (Debray
et al. [64, 65]), Navas et al. [123] present resource analysis of Java bytecode programs
with user-definable resource applications. Here, class and method annotations are used to
track the resource of interest. The analysis generates size relations in form of recurrence
equations to represent the input-output relationship of the tracked resources. The
approach is implemented in the CiaoPP (Hermenegildo et al. [91]) framework.

2

Albert et al. [2] propose cost relation systems as language independent representation
for static resource analysis. Cost relations are a variation of recurrence relations that have
a specific form and support non-determinism. These systems form the central problem
representation in the resource analyser COSTA [1, 4], and related work. Dedicated solvers,
like PUBS (Albert et al. [3, 5]) and CoFloCo (Flores-Montoya [72]), infer closed-form
expressions of cost relation systems.

Kincaid et al. [106] combine abstract interpretation and symbolic analysis to generate
recurrence relations that overapproximate the behaviour of loops and exemplify its
application to resource analysis.

Termination Analysis. The worst-case runtime of a program captures the maximal
number of execution steps with respect to the input and is a common resource of interest.
It can be conceived as a quantitative variant of termination analysis, which shows that
the computation halts within a limited number of steps and this number only depends on
the input. This observation motivates to adapt techniques from automated termination
analysis for runtime analysis.

A well-known approach to proof termination of (imperative) programs, which dates
back to Floyd’s seminal work on program analysis [75], is based on ranking functions.
A ranking function is a monotone mapping f : S → D from program states into a well-
founded ordered set. Here, monotone means that each evaluation step s → s′ implies
a decrease in the ranking measure f(s) > f(s′). The program terminates, because an
infinite evaluation s0 → s1 → · · · would induce an infinite chain f(s0) > f(s1) > · · · ,
which is not possible as the target domain is well-founded. When suitable restricting the
construction of ranking functions, upper bounds on the number of executions steps can be
obtained. A sufficient criterion is to fix the target domain to the set of natural numbers
N with the standard ordering. This domain is of particular interest for automation,
since necessary properties of ranking functions can be expressed as an optimisation
problem. For instance, the synthesis of affine linear ranking functions is amenable to
linear programming [25, 132, 141].

The application of ranking functions for runtime analysis has been investigated and em-
ployed for instance in the complexity tools Rank (Alias et al. [9]) and KoAT (Brockschmidt
et al. [51]). Both approaches are based on the synthesis and combination of (affine lin-
ear) ranking functions, which under additional restrictions are used to obtain possible
non-linear upper bounds on the worst-case runtime.

Numeric Invariant Analysis. A conceptual simple approach to resource analysis is
based on counter instrumentation and numeric invariant analysis. The main idea is
to instrument the target program with a counter variable (or tick instructions) that
represents the consumption of the resource of interest during evaluation (cf. Rosendahl
[137]). For instance, we can instrument the program with a global counter variable that
is incremented by one in the body of all loops to represent the total number of loop
iterations for a program run. This reduces the problem of resource analysis to the problem
of inferring numeric invariants on the counter variable and advocates the application of

3

1 Introduction

standard numeric invariant domains such as octagon [117] and polyhedra [60].
Gulwani et al. [87] identify additional challenges for the resource analysis of imperative

programs. Imperative and in particular low-level programs often admit complex dis-
junctive control flow and non-linear resource usage. This excludes the straight-forward
integration of many existing tools that focus on the inference of numeric linear invariants
that are valid for all paths. The tool SPEED [87] promotes the application of multiple
counter variables that can be incremented and resetted. The main idea is that resets
imply multiplicative dependencies between counter variables, similar to the usage of
variable indices that can be found in nested for loops. This way linear invariants can be
used to obtain non-linear bounds on the resource usage.

Program Verification. Nielson [126] extends Hoare logic [93] for total correctness to
prove properties about the execution time of programs. Morally, a triple {P}C{b ⇓ Q}
states that if the evaluation of program C starts from an initial state s0 satisfying P ,
then it terminates in a state satisfying Q after at most b(s0) steps, in which b is a bound
expression that is evaluated in the initial state s0.

A comparable notion of quantitative Hoare triples is introduced by Carbonneaux et al.
[53, 54], which forms the central notion of the resource analysis tools C4B and Pastis.
The proposed approach is based on Tarjan’s and Sleator’s potential method for amortised
complexity analysis [148, 151]. Here, a potential is a measure that maps program states
to non-negative numbers and indicates how many resources are left for consumption in
the rest of the computation. The initial potential indicates the bound on the resource
consumption for the whole program. The rules of quantitative Hoare logic are used to
generate verification conditions that capture the change in the potential. A solution to
the generated constraints provide a concrete bound expression for the initial potential.
The method presented in Carbonneaux et al. [53, 54] is amenable to linear programming.
Ngo et al. [124] extend this approach to probabilistic programs in the tool Absynth.

Atkey [10] is concerned with static resource analysis of imperative programs with heap
allocated data structures. The central idea is to extend separation logic [135] with a logic
of resource consumption. Fenacci and MacKenzie [69] provide an implementation for the
resource analysis of Java bytecode programs.

Kaminski et al. [105] present a calculus based on weakest precondition transformers
for the expected runtime of probabilistic programs. The proposed method is shown to be
equivalent to Nielson [126] in the case of deterministic programs, i.e. programs without
probabilistic and non-deterministic behaviour. Based on this weakest precondition
transformer, Avanzini, Schaper, and Moser [20] present a fully automated and modular
approach to the expected cost analysis of probabilistic While programs.

Implicit Computational Complexity. The research field of implicit computational com-
plexity is concerned with machine independent characterisations of complexity classes.
The key idea is to syntactically restrict programs to control the resources needed for
computation. The seminal work of Bellantoni and Cook [26] for instance, provides a
recursion theoretic characterisation of the complexity class FP, i.e. the class of com-

4

putable functions in polynomial time. The proposed predicative recursion scheme is akin
to primitive recursion but syntactically restricts the precise notion of composition and
recursion. The main idea is that the arguments of a function f(x1, . . . , xn ; y1, . . . , xn)
are partitioned into normal (on the left) and safe (on the right) arguments. Morally,
normal arguments are used to control the recursion, while safe arguments are used for the
computation of the value, and by restricting the growth of normal arguments the depth
of recursion is controlled. This mechanism is also referred to as tiering. Conceptually
related ideas are used in automated resource analysis.

Hainry and Péchoux [90] present a type system with tiering to inspect the runtime of
object-oriented programs. The tiering mechanism is used to control the growth of the
valuation of variables that control recursion and loop iteration. A well-typed terminating
program runs in polynomial time. The type system can be automated, and a more precise
polynomial bound is obtained by inspecting the maximal nesting depth of loops.

Type Systems. Hofmann and Jost [96] present a type system for analysing amortised
heap space usage of first-order functional programs. The central idea of this method are
type-based potentitals that govern the resource usage. This system has been adapted by the
same authors to object-oriented Java-like programs [97]. Hofmann and Rodriguez [99, 100]
automate this approach for object-oriented programs in RAJA, but the implementation is
restricted to linear bounds. Hoffmann et al. [94, 95] adapt this approach to polynomial
resource bounds for ML programs in the resource analysis tool RAML.

Abstract Program Representations. Ben-Amram et al. [39] and related work is con-
cerned with decidable growth-rate properties for imperative programs. The growth-rate
of a variable relates its output valuation with the input valuation of all arguments. The
main idea of [39] and related work is to restrict programs syntactically in such a way
that a certificate on the growth-rate of a variable can be effectively inferred. Here, a
certificate represents a class of functions, for instance linear functions or polynomials.
This growth-rate analysis forms the basis of the complexity tool paicc, which is developed
by the author of this thesis [139].

Zuleger et al. [158] and Sinn et al. [145, 146] investigate different abstract program
representations for the static resource analysis of LLVM programs. The restriction of
the program syntax promotes dedicated and efficient methods for the bound inference
mechanism. Standard techniques for invariant analysis are used to obtain an abstract
representation from the target program. Several approaches based on different represen-
tations are implemented in the tool Loopus.

Overview of the Contribution
In what follows, we outline the central contributions of this thesis. In Chapter 2 we
introduce common definitions and notations. Chapters 3 to 6 constitute the main content
of this work. Each of these chapters can be studied independently. Finally, we conclude
this work in Chapter 7.

5

1 Introduction

Imperative Programs. In Chapter 3 we are concerned with the resource analysis of
imperative programs. We restrict our attention on the worst-case resource usage of a
standard imperative programming fragment with integer-valued variables. As formal
program representation we consider so-called constraint transition systems, which are
labelled transitions systems in which edges are decorated with Boolean expressions
over integer-valued variables. These systems are eligible to represent programs with
unstructured control flow, which can be found in modern intermediate representations,
such as LLVM or Java bytecode. Our main focus of interest, are abstract program
representations. By abstract programs, we mean programs with a non-standard semantics
in which details are abstracted by non-determinism. In syntactically restricting the precise
notion of constraints, one can distinguish between different abstract representations.
Notably, the representations may differ in theoretical properties, and are amenable to
dedicated approaches to resource analysis in practice. Theoretical properties of interest
include termination and polynomial runtime of programs.

In this work, we provide an overview of theoretical properties and resource analysis
tools which are related to constraint transition systems. In doing so, we recall abstract
program representations that are known from the literature and provide an overview of
the theoretical properties of interest. Moreover, we discuss and compare recent resource
analysis tools and investigate how different abstract program representations are used in
practice. The material presented in this chapter is based on Schaper and Moser [140]:

On Abstract Program Representations for Automated Resource Analysis.

Imperative Programs With Heap. In Chapter 4 we are concerned with the resource
analysis of imperative programs with heap allocated data. We consider a standard impera-
tive programming language with support for allocation and manipulation of records. For
the resource analysis, we consider complexity reflecting transformations, that is, programs
are transformed into abstract programs such that the resource of interest, like runtime, is
overapproximated in the abstraction. The main motivation is to reuse existing tools for
resource analysis.

In this work, we revisit two known transformations from the literature which differ in
the abstract program representations. We demonstrate a size abstraction to constraint
transition systems and a term abstraction to constraint term rewrite systems. We provide
a uniform presentation and give additional insights on the representations used. The
material presented in this chapter is based on Moser and Schaper [119]:

From Jinja Bytecode to Term Rewriting: A Complexity Reflecting Transformation.

Imperative Probabilistic Programs. In Chapter 5 we are concerned with the resource
analysis of imperative probabilistic programs. We study the resource usage analysis of
an imperative programming language that is endowed with probabilistic primitives for
sampling and probabilistic choice. Probabilistic program analysis is interested to reason
about all probabilistic branches. This gives rise to new theoretical and practical challenges.
For the resource analysis, we inspect the expected resource consumption, that is, we
average the resource consumption over all probabilistic branches.

6

In this work, we present a fully automated and modular resource analysis of probabilistic
programs. Here, modular means that programs are decomposed into smaller subprograms
that are analysed separately. More specific, we provide sound conditions for a modular
analysis of the expected resource consumption of sequential and nested loops. Moreover,
we give insights about automation of the main result and implementation of the prototype.
The material presented in this chapter is based on Avanzini, Schaper, and Moser [20]:

Modular Runtime Complexity Analysis of Probabilistic While Programs.

Framework for Automation. In Chapter 6 we present a framework for automation. The
Tyrolean Complexity Tool TCT is a framework for automated resource analysis. It is based
on a theoretic combination framework for complexity, which advocates a transformational
approach. In doing, so we make use of different abstract program representations that are
known from the literature. The framework encourages rapid prototyping and features
a rich tactic-like proof search to facilitate automation. At its core is the seamless
integration and combination of different abstract program representations and resource
analysis thereof.

In this work, we provide an overview of TCT. We present the software architecture and
give insights about its implementation. To demonstrate the viability of the framework, we
illustrate several case studies, which include the resource analysis of constraint transition
systems, term rewrite systems, higher-order functional programs, and object-oriented
bytecode programs. The material presented in this chapter is based on Avanzini, Moser,
and Schaper [18]:

TcT: Tyrolean Complexity Tool.

7

Chapter 2

Preliminaries

In this chapter we provide common definitions and notions that are used throughout
this work. We use abstract reduction systems to give language independent definitions
of termination, worst-case runtime complexity and worst-case size complexity. In the
course of this work, we introduce several variations of these definitions that express more
refined notions of complexity. For details on abstract reductions systems, we refer to
Baader and Nipkow [22].

Definition 2.1 (Partial Order). A partial order w ⊆ A × A on a set A is a reflexive,
transitive and anti-symmetric binary relation. Let a, b ∈ A. We write a A b for a w b
and a 6= b.

Definition 2.2 (Weak Monotonicity). Let (A,w) be a set A equipped with a partial
order w ⊆ A× A. We say that the function f : An → A is weakly monotone in its i-th
argument with respect to w, if ai w b implies

f(a1, . . . , ai, . . . , an) w f(a1, . . . , b, . . . , an)

for all a1, . . . , an, b ∈ A. It is said to be weakly monotone, if it is weakly monotone in all
its arguments.

Definition 2.3 (Upper Bound). Let A be a set and let (B,w) be a set B equipped with
a partial order w ⊆ B ×B. We say that f : A→ B is an upper bound of g : A→ B, in
notation f < g, if f(a) w g(a) for all a ∈ A.

Given two relations R ⊆ A×B and S ⊆ B×C. The composition of R and S is defined
by

R · S , {(a, c) ∈ A× C | ∃b ∈ B. (a, b) ∈ A and (b, c) ∈ B} .

Definition 2.4 (Abstract Reduction System). An abstract reduction system (ARS for
short) is a pair A = (A,−→) consisting of a set A and a binary relation −→ on A. An
element (a, b) ∈ −→ is called a reduction step from a to b. We write a −→A b instead of
(a, b) ∈ −→. Moreover, if A is clear from the context we just write a −→ b.

9

2 Preliminaries

Let A = (A,→) and B = (B,→) be two ARSs such that B ⊆ A. We derive the
following binary relations:

−→0 , {(a, a) | a ∈ A} (identity)
−→n+1 , −→n · −→ ((n+ 1)-fold composition)
−→= , −→ ∪ −→0 (reflexive closure)
−→+ ,

⋃
n>0 −→n (transitive closure)

−→∗ , −→+ ∪ −→0 (reflexive transitive closure)
−→A/B , −→

∗
B · −→A · −→∗B A relative to B

We say that there exists a reduction sequence from a to b (of length n), if a −→∗ b (a −→n b).

Definition 2.5 (Termination). Let A = (A,→) be an ARS. An element a ∈ A is called
terminating if there are no infinite reduction sequences starting from a. The ARS A is
called terminating on S ⊆ A if all a ∈ S are terminating.

In this work, P(A) denotes the powerset of a set A. For the domains N, Z, Q and R
we use superscript ∞ to denote its extension with infinity and subscript > 0 to denote
its restriction to the non-negative domain. For a function f : A→ B, we use dom(f) and
rng(f) to denote the domain and range of f . Central to our discussion on the worst-case
runtime of a program is the notion of derivation height.

Definition 2.6 (Derivation Height, Bounded). Let A = (A,→) be an ARS. The deriva-
tion height dhA : A→ N∞ of a ∈ A with respect to A is defined by

dhA(a) , sup {n | ∃b. a −→n b} .

The ARS A is called bounded on S ⊆ A, if for every a ∈ S, there exists m ∈ N such that
a −→n b implies n 6 m. This is equivalent to saying that dhA(a) <∞ for every a ∈ S.

The problem whether A is bounded (on S ⊆ A) is called the bounded termination
problem (on S) (cf. Ben-Amram and Vainer [38]).

Definition 2.7 (Canonical Runtime Complexity, Canonical Size Complexity). Let A =
(A,→) be an ARS. The canonical worst-case runtime complexity rcA : P(A)→ N∞ of A
on S ⊆ A is defined by

rcA(S) , sup {dhA(a) | a ∈ S} .

Let f : A → N. The canonical worst-case size complexity scfA : P(A) → N∞ of A on
S ⊆ A with respect to f is defined by

scfA(S) , sup {f(b) | ∃b. a −→∗ b and a ∈ S} .

10

Chapter 3

Imperative Programs

In this chapter we are concerned with automated resource analysis of imperative programs.
As model of computation we consider constraint transition systems with integer-valued
variables. We discuss three modern tools, namely KoAT, Loopus and paicc. In doing so, we
pay special attention to the program representations that are used in the implementations
for automating the analyses. We outline key concepts of the different tools and recall
known theoretical results on termination and complexity on related representations.

This chapter is based on Schaper and Moser [140]. Section 3.1 provides an informal
discussion to resource analysis of integer programs. In Section 3.2 we outline the contri-
bution of this chapter. Section 3.3 introduces constraint transition systems and common
notations that are used throughout this chapter. In Section 3.4 we recall theoretical
properties of related program representations that are known from the literature. We
provide an overview of the resource analysis tools KoAT, Loopus and paicc in Section 3.5,
Section 3.6 and Section 3.7, respectively. A summary of the key concepts of the individual
tools is then given in Section 3.8, while we report on different case studies in Section 3.9.
Finally, we conclude in Section 3.10.

3.1 Introduction
Automated resource analysis of imperative programs is an active area of research. In
recent years several approaches have been investigated and implemented, to mention a
few, AProVe [76], C4B [53], CiaoPP [123], CoFloCo [72], COSTA [1, 4], jat [119] KoAT [51],
Loopus [145, 146, 158], paicc [139], Pastis [54], PUBS [3, 5], RAJA [97, 100], Rank [9],
RESA [10, 69], and SPEED [84, 87]. Various results have been established in implicit
computational complexity, which are related to the resource analysis of imperative
programming languages, based on syntax [108], data-flow [39, 103, 127], graphs [121],
interpretations [115], and types [90, 97, 114]. On the other hand, well-known approaches in
program analysis are exploited to inspect the resource behaviour of imperative programs,
which include, program abstraction [119, 146], ranking functions [3, 9, 46] and invariant
analysis [87]. In this chapter we investigate the state-of-the art in automated resource
analysis of imperative programming languages. We link theory and practice of related
approaches emerging from the implicit computational complexity and the program analysis
community.

We focus on a restricted set of (abstract) program representations that are known from
the literature. To be more specific, we investigate the automated resource analysis of

11

3 Imperative Programs

integer constraint transition systems. These systems are expressed via control flow graphs
over a finite set of integer-valued program variables. Edges in the control flow graphs are
associated with constraints over arithmetic expressions that induce the one-step reduction
relation of the program. Based on the exact form of the constraints one can syntactically
distinguish between different abstract program representations. These representations
vary in expressiveness and computational power. Most relevant, we are interested how
different representations are exploited in automated resource analysis. The resources
of interest include worst-case runtime, that is, the maximal length of a program trace,
and worst-case size, that is, the maximal valuation of a program state with respect to a
chosen function or norm.

Before introducing any notion of programs and resources formally, we present an
illustrative example that provides an informal attempt to reason about the worst-case
runtime of a program. We imagine this scenario from the view point of a developer who
reasons about the runtime of the program using experience, some observations and basic
mathematics.

Example 3.1 (Motivating Example). Consider the following motivating program. All
variables range over the domain of integers, and the scope of the loop body is indicated
by indentation.

main(x ,y)
while(x > 0)

x = x − 1; y = y + x ; z = y
while(z > 0)

z = z − 1
The program has two loops, an outer loop and an inner loop. First, we inspect the
outer loop. The guard of the loop is x > 0. The variable x is bounded from below by
zero, it is decreasing by one in the loop body, and it is unaffected by the inner loop.
It follows that the body of the outer loop can be executed at most x times. Next,
we inspect the inner loop, its guard is z > 0. The variable z is bounded from below
by zero and it is decreasing by one in the loop body. Thus, the inner loop alone can
be iterated at most z times, however, z is modified in the outer loop. To express the
runtime of the inner loop with respect to the whole program, we are interested in (i) how
often the loop can be accessed, and (ii) how big z can be in terms of the initial input.
We already know that (i) is the iteration bound of the outer loop, viz x. Considering
item (ii), the variable z is not increasing in the inner loop. Thus, we inspect the outer
loop. Variable z depends on variable y, which on the other hand depends on itself and
variable x. Roughly, the input value of y is incremented by x at most x times. Thus, an
approximation for input z for the inner loop is y + x2. To obtain the total runtime of
the program we add the runtime of the outer loop x and the runtime of the inner loop
x · (y + x2). If we inspect the expression carefully, then it is not a runtime bound if one
of the input parameters is negative. We argue that a valid upper bound on the runtime
is max(0, x) + max(0, x) · (max(0, y) + x2). This bound is not precise because the input
for the inner loop z is overapproximated by its maximal valuation.

12

3.2 Overview of the Contribution

The informal reasoning is based upon different observations of program properties.
It relies on measuring progress, approximating values, and inferring dependencies be-
tween properties. It reasons about observations for the whole program, and for smaller
components. Program analysis tools for resource estimation make this observations
concrete. They reason formally about resources of the original program based upon
different abstract program representations. These abstract program representations have
theoretical and practical impact on the analysis itself.

In the course of this chapter, we investigate different tools and abstract program
representations that are used in practice. We are interested in relating theory and
practice of tools and the program representations used. Next, we provide an overview of
the contribution.

3.2 Overview of the Contribution

In this section we provide an overview of the contribution and outline the rest of this
chapter. For reference consider Figure 3.1.

Program

syntactic/semantic abstraction
numeric invariant analysis

iCTS

Loopus

MDCMC DC

paicc

BJK

KoAT

POL

compilation

Figure 3.1: Overview of Discussed Approaches.

We are interested in the automated inference of upper bounds on the worst-case runtime
complexity for imperative programs. The worst-case runtime of an input is the maximal
number of evaluation steps of a program run, or analogously the maximal length of
a program trace. As starting point for our discussion, we consider integer constraint
transition systems (iCTSs for short) that serve as formal representation of programs in
terms of control flow graphs with constraints over a finite set of integer-valued variables.

We focus on theoretical and practical properties of different abstract program repre-
sentations that are obtained by syntactically restricting the exact notion of constraints.
Abstract program representations constitute (non-standard) programs that are obtained

13

3 Imperative Programs

by lossy abstractions of the target program, and provide a language independent repre-
sentation of the problem. In doing so, we are going to inspect the complexity analysis
tools KoAT (Brockschmidt et al. [51]), Loopus (Zuleger et al. [158], Sinn et al. [145, 146]),
and paicc (Schaper [139]). The individual approaches to resource analysis are based on
different abstract program representations. The tool paicc is developed and maintained
by the author of this thesis.

When studying abstract representations, it is not immediate how they are obtained
from standard programs. In the general case, the transformation from programs to
an abstract representation is lossy and relies on heuristics. Here, lossy indicates that
the program executions from the original target program are overapproximated by the
program executions of the abstraction. In this work, we group used approaches in
syntactic and semantic abstraction and numeric invariant analysis.

Following the above discussion, we comment on Figure 3.1. Without loss of generality,
we assume that iCTS programs are obtained from real-world programs by compilation.
This representation is suitable to formally represent pure integer programs with un-
structured control flow that are obtained from (a restricted version of) intermediate
representations and low-level bytecode languages such as LLVM and Java bytecode. Such
programs can be also derived via numerical abstractions from heap manipulating programs
(see for example [76, 113]).

The tool KoAT processes transition systems, where constraints are inequalities of
polynomial expressions (POL). This representation is very expressive and captures the
semantics of standard operations precisely.

Different abstract representations from the literature have been investigated within
the scope of the development of Loopus. Among them, representations based on mono-
tonicity constraints (MC) [29, 30, 38], monotone difference constraints (MDC) [101],
and difference constraints (DC) [27] have been taken into consideration and applied in
practice.

Decidable properties of abstract but still expressive programming fragments have been
investigated in implicit computational complexity. We focus on the development on
decidable growth-rate properties for Core programs [28, 33, 34, 36, 37, 39]. The approach
has been implemented together with a suitable program abstraction to Ben-Amram -
Jones - Kristiansen (BJK) constraints in the prototype paicc [139].

Outline. In Section 3.3 we provide basic terminology and recall techniques from the
program analysis literature that are relevant to discuss the approaches to runtime
analysis of the individual tools. Then, in Section 3.4 we provide an overview of theoretical
properties of the abstract program representations of interest. In particular, we consider
the properties (bounded) termination and (polynomial) runtime complexity. In Section 3.5,
Section 3.6 and Section 3.7, we discuss the tools KoAT, Loopus and paicc, respectively.
Section 3.8 provides an overview of the studied tools. Then, in Section 3.9 we inspect
several case studies to practically relate different approaches. Finally, we conclude
this chapter in Section 3.10. The theoretical overview in Section 3.4 and each tool in
Sections 3.5 to 3.7 can be studied independently.

14

3.3 Preliminary Discussion

3.3 Preliminary Discussion

In this section we fix the notation of relevant standard definitions before introducing
constraint transitions systems formally. Afterwards, we recall program analysis techniques
that are known from the literature and which are helpful to discuss the subsequent
approaches to resource analysis.

3.3.1 Directed Graph

Throughout this chapter we use standard properties on directed graphs to syntactically
restrict the control flow in constraint transition systems.

Definition 3.2 (Directed Graph). A directed graph (with edge labels) G = (N,E) over
the set L of labels consists of a finite set N of nodes and a set E ⊆ N × L×N of edges.
We usually write u l−→ v ∈ G instead of (u, l, v) ∈ E. If the label is not relevant we just
write u −→ v.

Definition 3.3 (Paths). Let G = (N,E) be a directed graph. A path from source u to
target v is a sequence of edges such that u −→∗ v. A path is called simple, if all its nodes
are distinct. The path u −→+ u is called cyclic at u. A cyclic path u −→ u is a self-loop. If
u −→∗ v is a simple path, then u −→∗ v −→ u is called simple cyclic at u.

Definition 3.4 ((Strongly) Connected Components). Two nodes u and v are connected,
whenever there is a path from u to v or a path from v to u. A connected component
is a set CC ⊆ E of edges such that all its nodes are connected. Two nodes u and v
are strongly connected, whenever there is a path from u to v and a path from v to u.
A strongly connected component is a set SCC ⊆ E of edges such that all its nodes are
strongly connected. A (strongly) connected component is said to be trivial if it does not
contain any edges, otherwise it is non-trivial.

Definition 3.5 (Subgraph). Let G = (N,E) be a directed graph and G′ = (N ′, E′) with
N ′ ⊆ N and E′ ⊆ E be a subgraph. Usually we just write G′ ⊆ G. Suppose v ∈ N \N ′
and v′ ∈ N ′. The set of incoming edges of G′ is defined by all edges v l−→ v′ ∈ E \E′, and
the set of outgoing edges of G′ is defined by all edges v′ l−→ v ∈ E \E′. The set of entry
nodes of G′ is defined by all target nodes of incoming edges, and the set of exit nodes of
G′ is defined by all source nodes of outgoing edges.

Definition 3.6 (Reducible Graph, Loop Header, Loop Path). Let G = (N,E) be a
directed graph with a unique initial node, i.e. a node with no incoming edges. A node u
dominates a node v if all paths from the initial node to v must go through u. An edge
u l−→ v is a back-edge if v dominates u. G is reducible if G becomes acyclic after removing
all back-edges. If G is reducible then each SCC of G has a unique entry point, that is, a
node which dominates all nodes in the SCC. We call this node the loop header of the
SCC. Suppose l is a loop header. A loop path is a simple cyclic path l −→∗ l starting at
the loop header.

15

3 Imperative Programs

3.3.2 Constraint Transition Systems

As model of computation we consider constraint transition systems (CTSs for short). Let
Var (Var′) denote a countable set of variables (primed variables) and Loc denote a finite
set of (program) locations. We denote by BExp the set of Boolean expression over Var
and Var′. We keep the domain of the valuation of variables and the precise notion of
BExp abstract for now, however, we are going to inspect different domains within the
course of this chapter.

Definition 3.7 (Constraint Transition System). A constraint transition system (CTS
for short) is a directed graph T = (N,E) such that N ⊆ Loc and E ⊆ Loc× BExp× Loc.
Let T be a constraint transition system. An edge l φ−→ l′ is called a transition with source
location l, target location l′ and constraint φ.

By convention, for a given constraint φ, variables in Var indicate the valuation of
variables at source locations and primed variables in Var′ indicate the valuation of
variables at target locations. When depicting programs, we use different representations.
Usually we provide a set of transitions 〈l, l′, φ〉, which sometimes is accompanied by a
control flow graph. Sometimes we use syntax for while or loop programs and assume a
straightforward translation to transition systems. For brevity, we often drop the canonical
exit location when depicting CTS programs. We illustrate non-deterministic control flow
and unconstrained assignments with (*).

Example 3.8 (Cont’d from Example 3.1). We provide an alternative representation for
the motivating program in Example 3.1.

l0

l1

l2

l3

τ1

τ2

τ5

τ3

τ4

τ1 : 〈l0, l1, x′ = x ∧ y′ = y ∧ z′ = z〉
τ2 : 〈l1, l2, x > 0 ∧ x′ = x− 1 ∧ y′ = y + x ∧ z′ = x+ y〉
τ3 : 〈l2, l2, z > 0 ∧ x′ = x ∧ y′ = y ∧ z′ = z − 1〉
τ4 : 〈l2, l1, z 6 0 ∧ x′ = x ∧ y′ = y ∧ z′ = z〉
τ5 : 〈l1, l3, x 6 0 ∧ x′ = x ∧ y′ = y ∧ z′ = z〉

Let D denote the target domain for variables, usually the integer or natural numbers.
The set of stores is given by Σ , Var→ D and associates variables to the target domain.
The set of configurations is given by Conf , Loc× Σ. We indicate that the constraint
φ holds for source store (or valuation) σ and target store σ′ with σ, σ′ |= φ, i.e. the
constraint φ evaluates to true when substituting variables x ∈ Var with σ(x) and variables
x′ ∈ Var′ with σ′(x′) in φ. The one-step reduction relation (l, σ) −→ (l′, σ′) for transition
〈l, l′, φ〉 is defined by σ, σ′ |= φ.

Let T be a CTS. Then, the one-step reduction relation of T induces the ARS (Conf,−→T)
over program configurations. Throughout this chapter, we occasionally make use of
relevant notions on ARSs if no confusion can arise.

16

3.3 Preliminary Discussion

3.3.3 Complexity Functions and Complexity Bounds
In the course of this chapter we are going to discuss different tools for the automated
runtime analysis. Given a program, a tool provides feedback to the user in form of
complexity bounds. We address some challenges that arise in defining the (worst-case
runtime) complexity of a program and expressing (upper) bounds on the complexity in
automation.

As illustrating case, we consider merge sort (cf. Cormen et al. [58]). We say that
merge sort has worst-case (runtime) complexity O(n log n), in which n denotes the input
size, i.e. the number of elements to sort. We point out some observations. First, the
complexity is expressed in terms of the input size. In this case the input size is the
number of elements to sort or analogously the length of the list. Second, the complexity
bound is weakly monotone in its argument. Here, weak monotonicity reflects the intuition
that the complexity depends on the input size and that the complexity increases when
the input size increases. Third, the complexity bound is comprehensible in the sense
that it is expressed using standard notation and it is easy to understand. This is also
important when we are interested in comparing different algorithms or the output of
different tools.

These observations provide some challenges in automation. When inspecting the
complexity of programs by hand one can precisely state what is measured and how it
is measured. This option is restricted in the automated setting. Consider for instance
programs where the input arguments are integer. It is not obvious what the input
size should be. We recall two standard approaches how to formally define complexity
functions.

First, one fixes the notion of input size and defines the complexity function in terms of
the input size. Formally, the input size is usually represented in terms of a norm or a set
of norms. Here, a norm is a mapping Σ→ N. For instance, one may define the runtime
complexity rc : Nn → N∞ as a function in the absolute values of the program variables

rc(n1, . . . , nn) , sup{dh((l0, σ0)) | abs(σ0(xi)) 6 ni for all 1 6 i 6 n} .

This definition does reflect most of the previous observations. The complexity is defined
in the input size of all arguments and by definition it is weakly monotone in all arguments.
However, the main disadvantage is that the input size is fixed and may not necessarily
reflect the program property of interest, which is usually not known. Moreover, the
definition itself already introduces imprecision. It is not necessarily the case that a
program has the same complexity for negative and positive values. The problem becomes
more apparent in a modular setting, when bounds on the complexity functions are
combined from subprograms, then the imprecision may accumulate.

Second, one defines the complexity function in terms of the initial valuation or configu-
ration. For instance, one may fix the runtime complexity rc : Σ→ N∞ to

rc(σ0) , sup{dh((l0, σ0))} .

While this definition is precise, it does not comply with our previous observations. In
particular, it is not obvious what the input size is and unclear how a change in the

17

3 Imperative Programs

valuation changes the complexity. This observation becomes again relevant in a modular
setting.

Throughout this chapter we opt for the second alternative. In what follows, we formally
introduce the worst-case runtime complexity and worst-case size complexity for constraint
transition systems. To mitigate some of the discussed problems we introduce bound
expressions. Bound expressions provide a comprehensible representation of complexity
bounds making use of the fact that we can naturally lift functions from the integer
domain to the natural domain by standard operations.

Runtime Complexity and Size Complexity

Throughout this work we focus on upper bound analysis of the worst-case behaviour of
programs. Informally, the worst-case runtime of a program corresponds to the maximal
number of evaluation steps or analogously the maximal length of a program trace, while
the worst-case size maximises a function over all reachable valuations. We are going to
inspect different variations that are of interest when discussing modular approaches to
the automated complexity analysis. If no confusion can arise, we sometimes drop the
term upper or worst-case.

We define the runtime complexity and size complexity as functions in the initial
valuation.

Definition 3.9 (Runtime Complexity, Size Complexity). Let T be a transition system
and I ⊆ Loc denote a set of initial locations. The worst-case runtime complexity
rcIT : Σ→ N∞ of T on I is defined by

rcIT (σ0) , sup{dhT ((l0, σ0)) | l0 ∈ I} .

Let f : Σ→ N∞. The worst-case size complexity scIT : Σ→ N∞ of T on I with respect
to f is defined by

scIT (σ0) , sup{f(σ)|(l0, σ0) −→∗T (l, σ) and l0 ∈ I} .

Complexity Bounds

We fix the notion of bound expressions (cf. Albert et al. [6]).

Definition 3.10 (Bound Expression). In the following a, b denote arithmetic expressions
over the variables, n denotes a norm, and c, d denote bound expressions.

a, b ::= a+ b | a ∗ b | i ∈ Z | x ∈ Var

n ::= max(a, 0) | abs(a) | k ∈ N
c, d ::= n | max(c, d) | c+ d | c · d | 2c

For two bound expressions c, d and variable x we denote by c[d/x] the substitution of
x by d in c. We write c[di/xi] to indicate the parallel substitution of xi by di in c for
1 6 i 6 n .

18

3.3 Preliminary Discussion

The function f : Σ → N∞ is an upper bound on g : Σ → N∞, in notation f < g, if
f(σ) > g(σ) for all σ ∈ Σ (see also Definition 2.3). For a bound expression b we indicate
the interpretation with respect to a valuation by b : Σ→ N. Consequently, we say that a
bound expression rb is an upper bound on the worst-case runtime if rb < rcIT .

We remark that for any valuation the interpretation of a norm n evaluates to N and
by construction bound expressions are weakly monotone in all arguments.

3.3.4 A Mundane Approach to Modular Runtime Analysis
In what follows we discuss common observations to the modular runtime analysis. Here,
we provide a conceptual overview rather than details. More details are given when
discussing the individual approaches in Sections 3.5 to 3.7. We discuss two interesting
cases. The first case inspects the sequential application of two distinct programs, and
the second case considers the alternating application of two nested programs. For the
sake of the argument, we assume that the individual programs have dedicated unique
entry and exit nodes such that the programs can be plugged together.

Assume that we have two distinct programs T1 and T2 with runtime upper bounds
λσ.f1(σ) and λσ′.f2(σ′), respectively. We discuss how known bounds can be used to
express the runtime on T1 followed by T2. Figure 3.2 illustrates the main idea.

T1 : λσ.f1(σ)

T2 : λσ′.f2(σ′)

T1 + T2 : λσ.f1(σ) + df2e(σ)

T1 + T2 : λσ.f1(σ) + f ′2(dg1e(σ), . . . , dgme(σ))

Figure 3.2: Modular Analysis of Sequential CTS Programs.

The first observation is that appending T2 to T1 does not affect the runtime of T1. On
the other hand, we have to factor in the evaluations of T1 before executing T2. We want to
express the upper bound f2(σ′) in terms of the initial input of T1. Informally, we want to
assess the input size for the evaluations in T2, or analogously, we want to asses the output
size for the evaluations in T1. However, since we have not fixed the notion of input size
we have to choose an appropriate one. The trivial candidate is to consider f2 itself, i.e.
we infer a size bound of T1 with respect to f2. The size complexity of T1 with respect to
f2 is defined by the maximal valuation of f2 applied to any store σ′ that is reachable from
the input store σ. In particular this includes all final stores of T1 and thus all input stores
of T2. Now consider that f2 can be a complex expression, e.g. a non-linear polynomial.
To simplify the problem we inspect f2. Suppose that f2(σ′) = λσ.f ′2(g1(σ′), . . . , gm(σ′))
such that f ′2 is weakly monotone in its arguments, then it is usually enough to find upper
bounds dg1e, . . . , dgme on the size complexity of T1 with respect to g1, . . . , gm.

19

3 Imperative Programs

By restricting the shape of bound expressions, like in Definition 3.10, it is easy to
control the decomposition. In particular bound expressions are always weakly monotone
in all arguments.

Above we have addressed the issue of sequentially applying two programs. Figure 3.3
illustrates the case of nested programs T2 ⊆ T1. Such programs are typically derived
from programs with nested while loops.

T1 : λσ.f1(σ)

T2 : λσ′.f2(σ′)

T1 ∗ T2 : λσ.f1(σ) + f1(σ) · df2e(σ)

T1 ∗ T2 : λσ.f1(σ) + f1(σ) · f ′2(dg1e(σ), . . . , dgme(σ))

Figure 3.3: Modular Analysis of Nested CTS Programs.

Here λσ.f1(σ) is an upper bound on the runtime of T1 relative to T2, i.e. we suppose
T2 does not affect the runtime of T1, and λσ′.f2(σ′) is an upper bound on the runtime of
T2. In contrast to the sequential application, the subprogram T2 may be evaluated more
than once. Informally, we bound the maximal number of evaluating T2 by the runtime of
T1. Furthermore, we express the upper bound on the subprogram in terms of the input
of T1. Akin to the sequential case, we investigate the upper bound on the size complexity
of T1 with respect to f2. The expression df2e denotes an upper bound on the runtime
for evaluating T2 once in terms of the input of T1. Putting it all together, we take the
upper bound of T1 plus the upper bound of T2 for a single evaluation times the maximal
number T2 can be evaluated, f1(σ) + f1(σ) · df2e(σ). Again, we can simplify the analysis
by inspecting the shape of f2.

While the previous discussion provides insights how bounds can be composed, it does
not address how to decompose programs with unstructured control flow. We provide
additional insights about decomposing CTSs programs when presenting lexicographic
ranking functions in Section 3.3.5.

Example 3.11 (Non-Determinism). Consider the following variation of Example 3.8.
Here, we replace the nesting of loops by non-deterministically choosing either one. This
does not affect the worst-case runtime, but complicates our informal reasoning that relied
on the structure of the loops.

l0

l1

τ1

τ3τ2

τ1 : 〈l0, l1, x′ = x ∧ y′ = y ∧ z′ = z〉
τ2 : 〈l1, l1, x > 0 ∧ x′ = x− 1 ∧ y′ = y + x ∧ z′ = x+ y〉
τ3 : 〈l1, l1, z > 0 ∧ x′ = x ∧ y′ = y ∧ z′ = z − 1〉

20

3.3 Preliminary Discussion

3.3.5 Ranking Functions

Ranking functions (RFs for short) map program states into a well-founded ordered set
such that an evaluation step implies a decrease in the order. This is a well-researched
topic in (automated) termination analysis as ranking functions provide a certificate for
the absence of non-terminating sequences. When suitable restricted, ranking functions
of termination proofs can be used for runtime analysis (see for example [3, 9, 14, 51]).
The main idea is to estimate the cardinality of the co-domain of the ranking function in
terms of the input.

Example 3.12 (Linear Ranking Function). Consider the set of natural numbers equipped
with the standard order (N,>). The expression max(0, n) is a ranking function for the
program while(n > 0){ n = n − 1 }. For each iteration step, i.e. if n > 0 holds, we have
max(0, n) > max(0, n − 1). For all inputs n, the co-domain of the ranking function is
given by max(0, n).

Different notions of ranking functions have been investigated for termination analysis,
for instance, lexicographic [44], disjunctive [57], eventual linear [23], and multiphase [111]
ranking functions. These variations are often too expressive to obtain runtime bounds
directly.

Example 3.13 (Lexicographic Ranking Function). Consider the product domain of
natural numbers equipped with the lexicographic order (N2,>lex), in which (x, y) >lex

(x′, y′) iff x > x′ ∨ (x = x′ ∧ y > y′). The example below is a motivational example for
lexicographic ranking functions. The assignment y = ∗ is unconstrained, i.e. the variable
y can take any integer value. The program can be shown to be terminating via the
lexicographic ranking function (max(0, x),max(0, y)). However, since y can take any value
the program is not bounded on inputs with x > 0, i.e. there is no function f : N2 → N in
the input arguments that bounds the number of iterations. In particular, the cardinality
of the co-domain cannot be expressed as a bound in the input arguments.

while(x > 0 ∧ y > 0)
if(x > 0) { x = x − 1; y = ∗ }
else { y = y − 1 }

In the following we comment on two common applications for ranking functions.

(i) We discuss linear (and polynomial) ranking functions to estimate runtime bounds.

(ii) We present lexicographic combinations of ranking functions as a way to decompose
programs.

We recall the notion of (non-trivial) quasi-ranking functions of (cf. Ben-Amram and
Genaim [31]). We do not fix the shape of the ranking functions, but fix the target domain
to the non-negative rational numbers equipped with the standard order, (Q>0,>).

21

3 Imperative Programs

Definition 3.14 (Quasi-Ranking Function). Consider a mapping η : Loc × Σ → Q>0.
Let T be a set of transitions with τ : 〈l, l′, φ〉 ∈ T . We define the following properties:

∀σ, σ′ ∈ Σ. σ, σ′ |= φ =⇒ η(l;σ) > 0 (bounded)
∀σ, σ′ ∈ Σ. σ, σ′ |= φ =⇒ η(l;σ)− η(l′;σ′) > 1 (decreasing)
∀σ, σ′ ∈ Σ. σ, σ′ |= φ =⇒ η(l;σ)− η(l′;σ′) > 0 (non-increasing)

We say that η
(i) is a quasi-RF for T if all transitions satisfy non-increasing,

(ii) is a non-trivial quasi-RF for T if all transitions satisfy non-increasing and at least
one transition satisfies decreasing and bounded, and

(iii) is a RF for T if all transitions satisfy decreasing and bounded.

Synthesis of Linear Ranking Functions

A special case that is often considered in implementations are (affine) linear RFs when
constraints conform to convex polyhedra. We provide the general idea how the individual
properties for synthesising RFs can be encoded as a linear programming (LP) problem
(cf. [9, 23, 25, 111]). The synthesis approach is based on the application of the affine
version of Farka’s Lemma (see Schrijver [141]), which states that if the polyhedron
P = {~x ∈ Rn | pi(~x)} is non-empty, then every affine linear function p(x) that is non-
negative on P can be written as p(~x) = λ0 +

∑m
i=1 λipi(~x) with λ0, λi > 0. Now consider

the following statement, where f : Zn → Q is unknown:
∀~x ∈ Zn.

∧
i pi(~x) > 0 =⇒ f(~x) > 0

We associate a template expression with f. Let f(~x) = a0 +
∑n
j=1 ajxj with unknown

coefficients a0, aj ∈ Q. Then, by applying Farka’s Lemma we obtain:
a0 +

∑n
j=1 ajxj = λ0 +

∑m
i=1 λipi(~x)

Finally, we encode this equality to an equality over the coefficients as LP problem. When
encoding properties for the synthesis of RFs, we associate to each location an affine linear
template η(l;σ) = al0 +

∑n
j=1 aljσ(xj) and apply the previous encoding.

We remark that this procedure is sound but not complete for the general case. Com-
pleteness of synthesising RFs has been studied independently for different programs and
domains. As an illustrating example, consider the work by Ben-Amram and Genaim [31]
on the inference of affine linear RFs for multipath linear-constraint loops. A multipath
loop program corresponds to a single while loop with alternative paths in the loop
body that can be chosen non-deterministically. The loop guard and variable updates are
restricted to affine linear expressions. For such programs, the inference of affine linear
RFs is complete when the variables range over the integer or rational domain. More
specific, the problem is decidable in polynomial time for the rational domain, whereas
it is decidable in exponential time for the integer domain. The inference algorithm has
been implemented in the tool iRankFinder1.

1http://www.loopkiller.com/irankfinder/interfaces/web/

22

http://www.loopkiller.com/irankfinder/interfaces/web/

3.3 Preliminary Discussion

Inference of Upper Bounds

We have indicated before that ranking functions are used in automated runtime analysis.
In what follows we make this observation concrete for CTS programs. We focus on upper
bounds inferred from linear (and polynomial) RFs. For a more formal discussion consider
for instance Avanzini and Moser [14], Brockschmidt et al. [51].

Let T be a constraint transition system. W.l.o.g. let l0 be the only initial location of
T , i.e. there is no transition with target location l0. Suppose that η is a polynomial RF
for T . Then (l, σ) −→T (l′, σ′) implies η(l;σ) > 1 + η(l′;σ′) and η(l;σ) > 0. It follows
directly that for all non-empty traces (l0, σ0) −→n+1

T (l′, σ′) starting with (l0, σ0), we have
η(l0;σ0) > n+ 1. What is left is to consider the case in which the initial configuration
(l0, σ0) cannot be reduced. In this case η(l0;σ0) may actually be negative. However, for
all σ0, we have max(0, η(l0;σ0)) > rcl0T (σ0). If there are multiple initial locations it is
enough to take the maximum.

The synthesis approach, discussed above, is appealing since it can be expressed as
a linear programming problem. However, complexity bounds often are non-linear and
disjunctive, and polynomial ranking functions (without max) in particular do not cope
well with sign-changes. Compare with the informal analysis of Example 3.1.

However, the synthesis approach is useful in a modular setting and is used in tools
such as PUBS [3] and KoAT [51]. Consider for instance the problem of inferring an
upper bound on the number of occurrences of a single transition (or the number of
iterations of a loop), which can be investigated with the synthesis of non-trivial quasi-RFs.
Formally, this can be expressed by inspecting the runtime complexity of the relation
−→τ/T = −→∗T · −→r · −→∗T .

In the course of this chapter we are going to discuss this idea and similar ones in more
detail.

Example 3.15 (Cont’d from Example 3.11). We define the non-trivial quasi-RF η(l0;σ) =
η(l1;σ) = σ(x) that is decreasing and bounded for τ2 and non-increasing for τ3. In any
evaluation starting from (l0, σ0) the transition τ2 occurs at most max(0, σ0(x)) times.

Lexicographic Ranking Function

Next, we present lexicographic ranking functions (LexRFs for short). Most of the discussed
approaches in sequent sections rely explicitly or implicitly on LexRFs. Formally there are
different notions of LexRFs. For an overview we refer to Ben-Amram and Genaim [32].
Here, we consider mult-dimensional ranking functions as presented in Alias et al. [9],
that is, a combination of ranking components 〈η1, . . . , ηd〉, with lexicographic descent.

Definition 3.16 (Lexicographic Ranking Function). Consider the well-founded order
(Qd
>0,>lex), in which

(x1, . . . , xd) >lex (x′1, . . . , x′d) iff
xi > 1 + x′i for any 1 6 i 6 d and xj > x

′
j for all 1 6 j < i .

23

3 Imperative Programs

We write x >lex x
′ if x = x′ or x >lex x

′. We say that 〈η1, . . . , ηd〉 is a lexicographic
combination of ranking functions (or just lexicographic ranking function) for T if for all
transitions 〈l, l′, φ〉 ∈ T

∀σ, σ′ ∈ Σ. σ, σ′ |= φ =⇒ (η1(l;σ), . . . , ηd(l;σ)) >lex (01, . . . , 0d)
∀σ, σ′ ∈ Σ. σ, σ′ |= φ =⇒ (η1(l;σ), . . . , ηd(l;σ)) >lex (η1(l′;σ′), . . . , ηd(l′;σ′))

We recall three applications of LexRFs.

Termination. Sometimes resource analysis is coupled with an external termination
argument. For instance, Hainry and Péchoux [90] propose a type system to control
resources for programs with heap allocated data. While the system ensures that the
domain space does not grow uncontrollable, it does not guarantee termination. LexRFs
provide a powerful mechanism for (automated) termination analysis.

Runtime Analysis. As illustrated above in Example 3.13, it is not possible to infer
upper bounds on the runtime from LexRFs in the general case. In particular, programs
which can be shown to terminate using a lexicographic RF may not be bounded (see
Definition 2.6 on page 10). However, in restricted cases we can still inspect the cardinality
of the co-domain. Consider a LexRF 〈η1, . . . , ηd〉, where the co-domain of the norms
range from 0 to some upper bound M . The upper bound may be derived from size bound
analysis or numeric invariants. Then the cardinality of the co-domain of the LexRF is
Md. Therefore, any trace terminates in at most Md steps. This idea is used, for instance,
in the complexity analyser Rank [9].

Program Decomposition. The most relevant application that we consider in this chapter
is program decomposition. The ranking properties bounded, decreasing and non-increasing
provide dependencies on the growth of variables or expressions. This can be used in
connection with syntactic based decomposition techniques to construct a nested hierarchy
of subprograms. In the following, let SCC denote a strongly connected component of a
transition system. Consider some program T . We set T ′ = T .

(i) Compute all SCCi of (sub)program T ′.

(ii) For each SCCi let ηi be a RF of SCCi that is non-increasing for all transitions of
SCCi and bounded and decreasing for at least one transition, w.l.o.g. the transitions
{τi1 , . . . , τin} ⊆ SCCi satisfy bounded and decreasing.

(iii) Take SCCi \ {τi1 , . . . , τin} and apply recursively (i).

We obtain a hierarchy of subprograms that reflects the ranking properties on expressions
ηi. In a modular approach we make use of this hierarchy by analysing transition bounds
and size bounds on norms locally and combining it conforming to specified rules to obtain
global bounds.

24

3.3 Preliminary Discussion

We provide this observation here, since all discussed approaches in Sections 3.5 to 3.7
either explicitly or implicitly rely on lexicographic RFs. The above presented decomposi-
tion should be considered as a helpful guideline. The exact details vary for the individual
approaches and will be outlined in the subsequent sections.

3.3.6 Applications for Numeric Invariants
Next, we recall applications for standard numeric invariant generation that are related to
resource analysis.

Inference of Upper Bounds

Numeric invariants can be used directly to infer upper bounds on the resource of interest
or indirectly within a modular approach.

Counter Instrumentation. A conceptual simple approach to worst-case runtime analysis
is based on counter instrumentation (cf. Rosendahl [137]). Briefly, one instruments the
program with a counter variable to count the number of loop iterations. Then, upper
bounds on the maximal valuation of the counter variable imply an upper bound on the
number of loop iterations.

Such upper bounds can in principle be inferred by off-the-shelf numeric invariant
generation tools. However, two challenges that arise in bound analysis is that complexity
bounds often are non-linear and disjunctive. Compare with the informal analysis
of Example 3.1. This excludes the direct application of common numeric domains such
as octagon [117] and polyhedra [60].

A more modular approach based on multiple counter variables has been proposed
by Gulwani et al. [87] and implemented in the tool SPEED. On the other hand, Cadek
et al. [52] investigate new approaches to the inference of non-linear and disjunctive
invariants based on recent developments in bound analysis.

Modular Runtime Analysis. In Section 3.3.4 we discuss two approaches to modular
resource analysis based on size bounds. Numeric invariant generation can be used to
obtain size bounds on variables or expressions. Most notably, in a modular setting the
problem can often be decomposed into a smaller program. For instance to assess an
upper bound on the expression max(0, x) ·max(0, y) it is enough to investigate the size
bound on max(0, x) and max(0, y) separately. This makes standard numeric invariant
generation more viable.

A concrete application of this idea is exploited by Alias et al. [9] in Rank. Here
size bounds are used to estimate the co-domain of individual components of a multi-
dimensional ranking functions.

Supporting Invariants

Next, we provide a trivial example where the synthesis approach for linear ranking
functions presented in Section 3.3.5 fails.

25

3 Imperative Programs

Example 3.17 (Supporting Invariants). Consider the following program. This example
has no affine linear RF with respect to Definition 3.14. The definition crudely approxi-
mates the set of reachable states by the constraints itself and is not able to infer the loop
invariant (y > 0) from the assumption which is necessary to generate a ranking function.

assume(y > 0)
while(x > 0)

x = x − y

l0

l1

τ1

τ2

τ1 : 〈l0, l1, y > 0 ∧ x′ = x ∧ y′ = y〉
τ2 : 〈l1, l2, x > 0 ∧ x′ = x− y ∧ y′ = y〉

A common approach to make the generation of ranking functions for programs more
viable in practice is to provide supporting invariants [44, 111], which make the approxi-
mation of reachable states more precise.

We recall two known approaches. First, invariants that are inferred by encoding induc-
tive invariants [41, 56]. This approach interacts well with SAT/SMT based approaches
to generate ranking functions. Second, one makes use of the wealth of research in
data-flow analysis and abstract numerical domains. In particular well-known abstractions
like octagon and polyhedra combine well with the synthesis approach of linear ranking
functions.

3.3.7 Program Abstraction
Next, we discuss a simple approach to lossy program abstractions using transition
invariants. Here, lossy means that any trace of the original program is also a trace of
the abstraction. Therefore, the abstraction is sound for termination and upper bound
analysis.

Definition 3.18 (Transition Invariant). Let T be a transition system. A constraint ψ
is called a transition invariant for 〈l, l′, φ〉 ∈ T , if for all valuations σ, σ′ ∈ Σ, σ, σ′ |= φ
implies σ, σ′ |= ψ.

As a direct consequence we obtain the following statement. Suppose that ψi for
1 6 i 6 n are transition invariants for some transition τ ∈ T . Then,

∧n
i=1 ψi is also a

transition invariant for τ .
Now consider an abstraction T ′ of T which is obtained by replacing each constraint by

a set of transition invariants. The next observation follows directly. Suppose there exists
a trace (not necessarily starting from an initial configuration) (l, σ) −→n

T (l′, σ′). Then,
there exists a trace (l, σ) −→n

T ′ (l′, σ′).

26

3.4 Overview of Abstract Program Representations

3.4 Overview of Abstract Program Representations
In this section we provide an overview of theoretical properties for abstract program repre-
sentations that are known from the literature. We focus on a selected few representations
that are related to the tools which are discussed in this chapter and are interested in
the decision problems termination, bounded termination and (polynomial) worst-case
runtime complexity. For decidable problems we provide the complexity of the decision
procedure, if available.

We use standard notations P, PSPACE and EXPTIME to denote the complexity classes
polynomial time, polynomial space and exponential time, respectively. With PRIMREC
we denote the class of primitive recursive functions. We conclude this section with a
table that provides all referenced results.

3.4.1 Loop Programs
Meyer and Ritchie [116] present Loop programs which consists of a small set of commands
that characterise PRIMREC.

C,D ::= LOOP X {C} | C;D | X := 0 | X := X+1 | X := Y

Most commands are straightforward. The valuation of the program variables range over
the natural numbers. The command LOOP X {C} executes the command C exactly X
times and the variable X cannot be modified within C.

Termination. By definition, the number of iterations of a loop is bounded by the
valuation of the loop variable. Hence, all Loop programs are terminating.

Bounded Termination. The valuation of variables in Loop programs are bounded by
primitive recursive functions. The runtime of Loop programs can be expressed via counter
instrumentation, and therefore, the runtime complexity of Loop programs is also bounded
by a primitive recursive function.

Runtime Complexity. If we are interested in polynomial runtime bounds, then the
decision problem is undecidable. This follows from a reduction of the halting problem for
Turing machines (see Ben-Amram and Kristiansen [34]).

3.4.2 Core Programs
Inspired by earlier work on the computational complexity of imperative programming
languages (see for example [103, 108, 127]), Ben-Amram et al. [39] present a core language.
Here, we refer to programs that conform to the core language as Core programs. Core
programs are a variant of Loop programs with weak semantics, that is, the abstraction of
conditional control flow with non-deterministic flow.

C,D ::= loop X {C} | choice {C} {D} | C;D | skip |
X := Y | X := Y+Z | X := X*Z

27

3 Imperative Programs

The command loop X {C} executes the command C 0, 1 . . . at most X times, and the
command choice {C} {D} indicates non-deterministic choice. In contrast to more
standard programming languages, Core does not support numeric constants. Most
relevant for our discussion, the polynomial growth-rate of variables, i.e. whether the
valuation of a variable after executing a program is bounded by a polynomial in the
input, is decidable for Core programs [39]. The growth-rate analysis discussed in [39] is
presented as an application of abstract interpretation [59]. It is a compositional bottom-up
analysis making use of the structural definition of the Core programming language. We
provide additional details about the growth-rate analysis in Section 3.7 when discussing
the tool paicc.

Termination & Bounded Termination. Like Loop programs, Core programs are termi-
nating, and the valuation of all program variables are bounded by primitive recursive
functions.

Runtime Complexity. The worst-case runtime complexity of Core programs can be
defined via counter instrumentation. Hence, the decision problem, whether the runtime
is bounded by a polynomial in the input, is decidable. Moreover, it is decidable in P.

Various extensions of the polynomial-growth rate problem for Core have been studied.

Weak Assignment. Assignments in Core can be interpreted as weak (or lossy) as-
signments [34, 39], that is, X <= Y instead of X := Y. This is relevant if one considers
Core as a target abstract representation for termination and complexity analysis.

Support for Reset with Zero. The polynomial growth-rate problem is decidable when
adding support for reset with zero X := 0 to the Core language [28, 36]. In particular,
the problem is PSPACE-complete. The key idea is to associate locations with a context
that indicates which variables are assigned to zero. This allows to refine the control flow
and in turn, the growth-rate analysis with respect to the context. This can be formally
expressed as an application of transition partitioning [136] or elaboration [38].

Definite Loops. Extending Core with definite loops, i.e. loops with exact iteration
count, makes the polynomial growth-rate problem undecidable again [34]. This is also
the case when weak assignments are considered.

Support for Increment. Decidable growth-rates for Core programs supporting con-
stants or more specific increments is an open problem [28, 34]. Consider the following
Core program with support for reset X := 0 and increment X := Y+1.

U := 0; V := 0; Y := Z
loop Y

Z := U; U := V+1; V := Z

28

3.4 Overview of Abstract Program Representations

The precise growth-rate of Z can be expressed as z′ 6 b1
2zc, where z′ corresponds to the

final value of Z. One key observation for (standard) Core programs is that the growth-rate
of variables is not decreasing, in the sense that the final valuation of a variable is not less
than the initial valuation of any variable. This fact is exploited in the compositionality of
the growth-rate analysis. The expression z′ 6 b1

2zc however contradicts this observation
and its growth-rate is not monotone under iteration. Consider wrapping the previous
program within another loop, then the valuation of Z decreases with increasing iteration
count.

Tight Bounds. At the time of writing Ben-Amram and Hamilton [33] present the
inference of tight polynomial bounds on the growth-rate of variables for Core programs. The
proposed analysis is conceptually similar to the original one. However, it makes use of a
more refined abstract domain. A multi-polynomial is a sequence of (abstract) polynomial
expression with undetermined coefficients, and represents simultaneous growth-rate
bounds on all program variables. The growth-rate analysis infers bounds in form of a set
of multi-polynomials. For instance, consider a program with variables X,Y and Z. The
set

{
〈x, y, z〉, 〈x, x2 + y, x2 + z〉

}
indicates that for each run the growth-rate of X,Y,Z is

bounded by 〈x, y, z〉 or 〈x, x2 + y, x2 + z〉.
The main result states that the inference is tight, that is, for each run there exists

a multi-polynomial in the inferred set such that the final valuation of all variables is
bounded up to a constant factor, and for each multi-polynomial in the inferred set there
exists a run such that the final valuation of all variables corresponds to a multi-polynomial
up to a constant factor.

The proposed algorithm in [33] runs in EXPTIME. However, the precise complexity
of the problem has not been inspected yet. The runtime can be inspected via counter
instrumentation. In the overview we write Θ(Nk), where k ∈ N denotes the maximal
degree of all polynomial expressions that bound the counter and N denotes the maximal
value of the input arguments.

Flowchart Programs. Ben-Amram and Pineles [36, 37] introduce loop annotated
flowchart programs where edges of the flowchart programs are associated with assignments
that conform to Core expressions. Informally this corresponds to an unstructured version
of Core programs. To mimic the behaviour of loop commands, flowchart programs are
associated with a loop structure. A loop structure is a nesting hierarchy of subprograms,
in which each subprogram is associated with a local iteration bound that indicates the
maximum length of a path that can be taken within the subprogram. This variant is a
strict generalisation in the sense that all Core programs can be represented as flowchart
variant but not the converse.

When discussing the worst-case runtime analysis of imperative programs with the
tool paicc in Section 3.7, we represent such programs as CTSs with BJK constraints.
This is a purely syntactical variant that allows for a more uniform representation of
programs. A BJK order constraint is an inequality constraint x′ 6 p(x1, . . . , xn) where
p(x1, . . . , xn) is a polynomial expression (or composed Core expression) with variables in

29

3 Imperative Programs

Var and coefficients in N. A BJK program is a CTS where edges are associated with
conjunctions of BJK order constraints, in which variables range over the natural numbers.
We restrict to fan-in free programs. A fan-in free program implies that for each variable
x′ ∈ Var′ there is at most one order constraint x′ 6 p(x1, . . . , xn) associated to each edge.
Otherwise, BJK programs would support minimisation of expressions. Furthermore, we
always assume that BJK programs are associated with a loop structure. Most relevant,
the polynomial growth-rate problem is also decidable in P for BJK programs.

3.4.3 Size-Change Constraints Programs

A size-change order constraint is an inequality x > y′ or x > y′ with x ∈ Var and y ∈ Var′

in which variables range over a well-founded domain. A size-change program SC is a
CTS where edges are associated with a conjunction of size-change order constraints.

Termination. Lee et al. [110] introduce the size-change principle for termination. The
size-change termination (SCT for short) criterion is a language independent method for
proving termination of programs. The main idea of SCT is that a program terminates
if every infinite computation implies an infinite descent in a well-founded domain. The
SCT problem is decidable, more specifically it is PSPACE-complete [110]. Ben-Amram
and Lee [35] investigate applications of the SCT criterion and provide a polynomial time
algorithm that is incomplete in the general but complete for specific subclasses that
restrict non-determinism in the size-change argument.

The termination problem for SC programs where the variables range over N is completely
characterised by the SCT criterion, i.e. a (SC,N) program is terminating if and only
if it is size-change terminating. The result is derived as a special case of monotonicity
constraints programs (Ben-Amram [29]), which we are going to discuss below.

Bounded Termination. The bounded termination problem for SC programs with do-
main N is decidable in PSPACE. In particular bounded termination implies that the
worst-case runtime is in O(N |V |). Here N ∈ N specifies the maximal input argument
and |V | denotes the number of variables. We derive this information as a special case of
monotonicity constraints programs (Ben-Amram and Vainer [38]), which we are going to
discuss below.

Runtime Complexity. Colcombet et al. [55] study the asymptotic worst-case runtime
complexity of size-change programs in terms of max-plus automata. The complexity for
a terminating SC program is a polynomial Θ(Nk) with rational exponent k.

The special case of fan-out free SC programs has been studied by Zuleger [157]. In
fan-out free programs, all transitions are associated with at most one constraint x > y′

(or x > y′) for all x ∈ Var. Informally, fan-out free programs are not duplicating. The
complexity is a polynomial Θ(Nk) with natural exponent k ∈ N. The exponent can be
inferred by a PSPACE algorithm.

30

3.4 Overview of Abstract Program Representations

3.4.4 Monotonicity Constraints Programs
Monotonicity constraints form a generalisation of size-change constraints. A monotonicity
order constraint is an inequality constraint x > y or x > y for x, y ∈ Var ∪ Var′. A
monotonicity constraints program MC is a CTS where edges are associated with a
conjunction of monotonicity constraints. An approach for runtime analysis in Loopus
based on MC programs in which variables range over Z is discussed in Section 3.6.1.

Termination. Ben-Amram [29] presents a sound and complete method to the termina-
tion problem of MC programs over a well-founded domain in terms of the size-change
termination principle. The termination problem of MC programs over a well-founded
domain is PSPACE-complete. This algorithm has been generalised to the integer domain
by Ben-Amram [30].

Bounded Termination. Ben-Amram and Vainer [38] show that the bounded termination
problem for MC programs over Z is PSPACE-complete. MC programs that are bounded
terminating are implicitly bounded by a polynomial in the initial values, and the exponent
is at most the dimension of the state, i.e. the number of variables.

Runtime Complexity. It is an open problem whether precise (asymptotic) bounds can
be obtained for MC programs.

3.4.5 Vector Addition Systems with States
Vector addition systems with states (VASS) are programs where states are defined as
n-tuples over the natural numbers and an evaluation step conforms to an addition with a
n-tuple of integer (cf. Hopcroft and Pansiot [101]). We can represent VASS programs as
CTSs with equality constraints x′ = x+ k for each x ∈ Var with k ∈ Z and where the
variables range over N. In Section 3.6.2 we discuss the worst-case runtime analysis of
monotone difference constraint programs MDC in Loopus. MDC programs are similar
to VASS with weakened constraints of the form x′ 6 x+ k.

Termination. The termination problem for VASS programs is decidable in P (Brázdil
et al. [45]). We provide some insights below when discussing the runtime complexity.

Bounded Termination. The class WCPN denotes the weakly computable functions by
Petri Nets (and equivalently VASS programs). Morally, a total function f(x) is weakly
computable, if there exists a VASS program such that for all x ∈ N there exists a
terminating program run (linit, x) −→∗ (lfinal, x′) with x′ = f(x) and for all terminating
program runs (linit, x) −→∗ (lfinal, x′) we have x′ 6 f(x). Weakly computable functions
are primitive recursive, i.e. WCPN ⊆ PRIMREC (Leroux and Schnoebelen [112]). Given a
VASS program. Suppose we instrument the program with a counter variable to represent
the runtime. Then, if the program is terminating the final valuation of the counter
variable is bounded by a weakly computable function.

31

3 Imperative Programs

Runtime Complexity. The construction of precise asymptotic bounds for VASS pro-
grams is discussed by Brázdil et al. [45]. In particular, it provides (i) a decision procedure
to the termination problem, (ii) a characterisation of linear bounded VASS based on the
existence of a linear ranking function, and (iii) a characterisation of a restricted class
of programs with precise asymptotic bounds that are obtained based on the existence
of a set of linear quasi-ranking functions and the nesting depth of the lexicographic
decomposition.

Briefly, the termination problem is decidable in P. The linear bound problem, i.e.
whether the runtime of a terminating program is in Θ(N) is also decidable in P. Here
N corresponds to a chosen vector norm. Item (iii) captures the case of terminating
non-linear programs. However, the decision procedure captures only a restricted class
of problems. This restriction is not syntactical but given by a decidable property for
quasi-ranking functions. That is why we mark the result with ‡ in the overview. The
asymptotic complexity bounds that are obtained for the last case correspond to Θ(Nk)
with 1 < k 6 d, k ∈ N and d being the dimension of the vector (or the number of
variables).

3.4.6 Difference Constraints Programs

A difference order constraint is an inequality x′ 6 y + k, where x′ ∈ Var′, y ∈ Var and
k ∈ Z, and a difference constraint is a conjunction of difference order constraints. A
difference constraints program DC is a CTS with difference constraints and in which the
valuation of variables range over N. In Section 3.6.3 we discuss the worst-case runtime
analysis of fan-in free DC programs in Loopus. A fan-in free program has constraints in
which there is at most one order constraint x′ 6 y + k for each variable x′ ∈ Var′.

Termination. Ben-Amram [27] investigates termination of DC programs based on an
extension of the size-change termination criterion. The termination problem is PSPACE-
complete for fan-in free DC programs. In the general case the termination problem is
undecidable. As a direct consequence the bounded termination problem and the runtime
complexity problem are undecidable for DC programs.

3.4.7 Polynomial Constraints Programs

The most expressive program representation that we consider are based on polynomial
order constraints. A polynomial order constraint is an (in-)equality of polynomial
expressions over Var and Var′ with integer coefficients. A polynomial constraints program
POL is a CTS where constraints are conjunctions of polynomial order constraints and
the valuation of variables range over Z. The properties of interest, termination, bounded
termination, and runtime complexity are undecidable for POL programs. In Section 3.5
we discuss the worst-case runtime analysis of POL programs in the tool KoAT.

32

3.4 Overview of Abstract Program Representations

Overview

Although, the program representations are very similar they are incomparable for the
most part. In Figure 3.4 we compare the expressiveness of the discussed representations.
We say that representation A is as expressive as representation B, if all B programs have
an equivalent A program. Here, equivalent means that for any initial configuration the
set of program traces that are obtained from both programs are identical. We use a solid
arrow from B to A to indicate that A generalises B syntactically, and a dashed arrow to
indicate that A generalises B with some additional assumptions.

(POL,Z)

(DC,N)(MC,Z)

(SC,N)

(VASS,N)(BJK,N)

Core

Figure 3.4: Hierarchy of Program Representations.

The POL order constraints syntactically subsume the order constraints of all other
representations. It is easy to restrict the domain of variables to N with extra constraints
x > 0 for all variables.

To express a BJK program as POL program, it is necessary to emulate local iteration
bounds on subprograms that are induced by its loop structure. Morally, we replace
bounded iteration loop X{...} with conditional flow while(x > 0 ∧ ∗){x = x − 1;...} .
This can also be done for loop structures of BJK programs and allows to control the
maximal length of traces within subprograms. Core programs can be easily transformed
to BJK programs. The nesting hierarchy of loops of a Core program determines the loop
structure of the BJK program. To emulate the BJK order constraints x′ 6 x+ x and
x′ 6 x ∗ y in other representations besides POL, additional loops within the CFG would
be necessary.

Aside from POL programs, only variables of MC programs range over the integers.
The known theoretical results for MC programs also hold for the natural domain. If the
domain is restricted to N, then MC order constraints subsume SC order constraints.
DC order constraints syntactically subsume SC order constraints.
The DC and VASS program representation allow order constraints x′ 6 x + 1 and

x = x+1, respectively, which otherwise can only be represented in POL. The assignment
x′ = x+ 1 can be represented in VASS but not in DC. On the other hand, to emulate a
weak assignment x′ 6 x+ 1 in VASS an additional loop is necessary.

33

3 Imperative Programs

Table 3.1 provides all referenced results. Undecidable problems are marked with 7 and
open problems are marked with ?. Here 1 denotes that it is an implicit property of the
abstract program representation. We indicate with † that the result is derived from a
more general result. With ‡ in VASS we indicate that the property does not hold for
all VASS programs but a restricted subset, which depends on a decidable criterion on
quasi-ranking functions.

34

3.4
O

verview
ofA

bstract
Program

R
epresentations

Abstract Program Termination Bounded Termination Polynomial Runtime Complexity

Loop 3 1 PRIMREC 1 7 7

Core 3 1 PRIMREC 1 polynomially bounded [39] P

Core tight bounds 3 1 PRIMREC 1 Θ(Nk), k ∈ N [33] EXPTIME

Core weak assignment 3 1 PRIMREC 1 polynomially bounded [39] PSPACE

Core X := 0 3 1 PRIMREC 1 polynomially bounded [28] PSPACE

Core X := Y+1 3 1 PRIMREC 1 ? [34] ?

Core definite loop 3 1 PRIMREC 1 7 [34] 7

(BJK,N) fan-in free 3 1 PRIMREC 1 polynomially bounded [37] P

(SC,N) fan-out free 3 PSPACE [110]† O(N |V |) [38]† PSPACE Θ(Nk), k ∈ N [157] PSPACE

(SC,N) 3 PSPACE [110] O(N |V |) [38]† PSPACE Θ(Nk), k ∈ Q [55] ?

(MC,Z) 3 PSPACE [29] O(N |V |) [38] PSPACE ? ?

(VASS,N) 3 P [45] WCPN [112] P Θ(Nk), k ∈ N [45]‡ P

(DC,N) fan-in free 3 PSPACE [27] ? ? ? ?

(DC,N) 7 7 7 7 7 7

(POL,Z) 7 7 7 7 7 7

Table 3.1: Overview of Decidable Properties of Abstract Program Representations.

35

3 Imperative Programs

3.5 Automated Resource Analysis with KoAT

Brockschmidt et al. [50, 51] investigate automated runtime and size complexity analysis
of integer programs. The approach is implemented in the tool KoAT2 and focuses on
modularity via alternating runtime and size complexity analysis. KoAT is used for the
resource analysis of C, or more precisely LLVM programs, Java bytecode programs,
and term rewrite systems. The tool llvm2KITTeL3 provides a lossy abstraction of
LLVM programs to constraint transition systems (Falke et al. [68]), which is sound
for termination, runtime and size analysis. This abstraction captures the semantics of
bytecode programs closely, suitably abstracting unsupported operations like array access
and pointer arithmetic. The AProVe4 verifier (Giesl et al. [82]) uses KoAT as back-end
for the resource analysis of Java bytecode programs (Frohn and Giesl [76]). The proposed
abstraction for Java bytecode programs incorporates numerical abstractions for heap
allocated data. The tool is also used as back-end for the automated runtime complexity
analysis of term rewrite systems (Naaf et al. [122]).

In what follows, we mostly restrict to the core approach that is presented in [50]. We
summarise the extensions of [51] at the end of this section.

3.5.1 Polynomial Constraints Programs

We comment on the program representation processed by KoAT.

Program Representation

Programs in Brockschmidt et al. [51] are called integer transition systems and are ana-
logues to constraint transition systems with integer-valued variables. The implementation
processes a more restricted format in which constraints are conjunctions of (in)equalities
of polynomial expressions with integer coefficients. Disjunctive control flow is represented
using multiple transitions. We call such programs polynomial constraints programs (or
POL programs).
POL programs generalise textbook Goto programs (or any equivalent model) where

assignments and conditions are restricted to polynomial expressions. This often allows a
straightforward translation from unstructured program representations, such as LLVM or
Java bytecode, to POL programs. For termination and upper bound resource analysis,
unsupported operations are usually approximated with unconstrained assignments (or
unbounded non-determinism). The representation is expressive enough to capture
common domains for numeric invariant generation, such as the octagon and polyhedra
domain. Hence, POL programs can be naturally augmented with assumptions and
invariants that are given by the user or inferred with external tools.

2https://github.com/s-falke/kittel-koat/
3https://github.com/s-falke/llvm2kittel/
4http://aprove.informatik.rwth-aachen.de/

36

https://github.com/s-falke/kittel-koat/
https://github.com/s-falke/llvm2kittel/
http://aprove.informatik.rwth-aachen.de/

3.5 Automated Resource Analysis with KoAT

Example 3.19 (Motivating Example). We recall the motivating example from the
preliminary discussion (see Example 3.11). It is easy to see, that the program is indeed
a POL program.

l0

l1

τ1

τ3τ2

τ1 : 〈l0, l1, x′ = x ∧ y′ = y ∧ z′ = z〉
τ2 : 〈l1, l1, x > 0 ∧ x′ = x− 1 ∧ y′ = y + x ∧ z′ = x+ y〉
τ3 : 〈l1, l1, z > 0 ∧ x′ = x ∧ y′ = y ∧ z′ = z − 1〉

Motivation. The program representation is very expressive and precise, in fact, it is a
well-researched representation that allows to make use of well-known established results
from the literature. The upper bound inference relies on the synthesis of polynomial
ranking functions. However, to make the approach viable in practice modularity is
essential.

Program Abstraction

With regard to the overview given in Figure 3.1, we assume that POL programs are
obtained from iCTS programs by syntactically restricting to polynomial order constraints
and decorating the programs with additional supporting invariants that are obtained
from standard numeric invariant generation. The tool KoAT infers additional invariants
based on the octagonal domain using the APRON5 library [102].

Bound Analysis

In this section we present the key aspects of the runtime analysis of KoAT. We conclude
with an illustrative example.

Norms and Bound Expressions

The approach expresses the runtime and size complexity in terms of a fixed set of norms,
that is, the absolute value of all program variables. This is a design choice that restricts
the problem space for the size bounds of interest to the absolute value of all variables
and promotes the application of dedicated methods. Complexity bounds are expressions
composed of non-negative constants, the absolute value of variables, maximum, addition,
multiplication and exponentiation. We observe that complexity bounds are weakly
monotone with respect to the chosen norm, such that an increase in the absolute value
of a variable implies an increase in the complexity. When depicting bound expressions
we often omit the valuation if it is clear from the context. Further, we write |x| instead
of abs(σ(x)) to denote the absolute value of x.

5http://apron.cri.ensmp.fr/library/

37

http://apron.cri.ensmp.fr/library/

3 Imperative Programs

Example 3.20 (Bound Expression). Consider the following two programs.
while(x > 0) while(x < 0)

x = x − 1 x = x + 1
y = y + 1 y = y − 1

The complexity bound on the runtime complexity that is inferred by KoAT for both
programs is |x|, i.e. the number of iterations is bounded by the absolute value of the
initial value σ0(x). The complexity bound on the size complexity of the norm |y| that is
inferred by KoAT is |y| + |x|, i.e. the final valuation of y is in the range of −(|y| + |x|)
and |y| + |x| with respect to the initial values σ0(x) and σ0(y).

In what follows we provide an overview of the worst-case runtime and size analysis
presented in Brockschmidt et al. [50]. First, we introduce the notion of global and local
transition bounds, as well as global and local size bounds. The algorithm does not rely
on an explicit notion of decomposition but expresses the runtime bound in a top-down
fashion with mutual recursive dependencies of local and global bounds. Afterwards, we
provide an example inference.

In the rest of this section let T be a constraint transitions system such that there is a
single initial location l0 ∈ Loc, i.e. there is no transition in T with target location l0, and
all locations in T are reachable from l0. Moreover, any proper subprogram T ′ ⊂ T that
we consider is connected and does not contain l0.

Global Transition Bounds

A global transition bound for τ ∈ T bounds the maximal number of occurrences of the
transition τ in any program run of T in terms of the initial valuation (or absolute value
thereof). More formally, a global transition bound for transition τ ∈ T is a complexity
bound tbT (τ) such that

tbT (τ) < rcl0τ/T .

We recall that −→τ/T = −→∗T · −→τ · −→∗T . The runtime complexity problem of T can then
be expressed as the sum of all global transition bounds for τ ∈ T . We present the method
to infer global transition bounds after introducing some additional notions.

Local Transition Bounds

Local transition bounds are the specialisation of global transition bounds for subprograms
T ′ ⊆ T . A local transition bound for transition τ ∈ T ′ is a complexity bound tblT ′(τ)
such that

tblT ′(τ) < rclτ/T ′ .

The local transition bound is specialised for a specific location. Consider for instance a
subprogram that forms a SCC in the CFG with multiple entry locations. Then, the local
transition bounds can be inspected individually with respect to all entry locations. One
approach that is implemented in KoAT to infer local transition bounds is by generating
non-trivial quasi-polynomial ranking functions (see Section 3.3.5 on page 23 for details).

38

3.5 Automated Resource Analysis with KoAT

Local Size Bounds

The local size bound (or local growth) captures the change of a norm, i.e. the growth
of the absolute value of a variable with respect to a single transition. More formally, a
local size bound on variable x with respect to transition τ : 〈l, l′, φ〉 is a complexity bound
sbτ (x) such that

sbτ (x) < λσ. sup{|σ′(x)| | σ, σ′ |= φ} .

This is a specialisation of transition invariants for the chosen norm (see Section 3.3.7 on
page 26). If τ is fixed or not important we present local size bounds in form of inequalities,
e.g. |x′| 6 |y|. KoAT uses the following syntactical classification of local size bounds.

– identity: assignment of a variable or constant, e.g. |x′| 6 |y|, |x′| 6 0

– increment: assignment of a variable plus a constant, e.g. |x′| 6 |y| + 1

– additive: assignment of a sum of variables plus a constant, e.g. |x′| 6 |x| + |z | + 1

– multiplicative: assignment of a weighted sum of variables plus a constant, e.g.
|x′| 6 2(|y| + |z | + 1)

The classification is used to infer closed-form expressions of global size bounds. We
provide more details below.

Local size bounds can be inferred for all transitions and variables individually and
imply flow dependencies of variables along transitions. For example, let |x′| 6 |y| + |z |
be a local size bound, then the norm |x′| at the target location depends on y and z.
The local size bounds are inferred in KoAT using syntactical pattern matching and
constraint solving. For the latter, consider that we can adapt the synthesis approach
of ranking functions to find lower and upper bounds on x′ w.r.t. constraint φ. Lower
and upper bounds can then be combined to a local size bound taking the maximum of
the absolute value of its coefficients. For example, suppose σ, σ′ |= 2y + (−4) > x′ and
σ, σ′ |= y + (−z) 6 x′. Then σ, σ′ |= 2 |y| + abs(−4) > x′ and σ, σ′ |= |y| + |z | > (−x′)
We obtain the local size bound |x′| 6 2 |y| + |z | + 4.

Global Size Bounds

A global size bound expresses a bound on the maximum of a norm at a target location
of some transition. More formally, a global size bound on variable x with respect to
transition τ ∈ T is a complexity bound sbτ/T (x) such that

sbτ/T (x) < λσ0. sup{|σ′(x)| | (l0, σ0) −→∗T · −→τ (l′, σ′)} .

The global size bounds of a program are obtained by inspecting the flow dependencies
between variables and obtaining closed-form bound expressions from local size bounds.

The flow dependencies that are induced by local size bounds can be represented as a
graph, termed result variable graph in [50, 51]. The result variable graph of a program
has nodes (|x′|, τ) ∈ Var×T . Each node is labelled by its local size bound sbτ (x). There

39

3 Imperative Programs

is an edge from (|x′|i, τi) to (|x′|j , τj), if (i) there exists a location l ∈ Loc in the CFG
such that l is the target location of τi and the source location of τj , i.e. τj succeeds τi,
and (ii) there is a flow-dependency from |x|i to |x′|j , i.e. |x|i occurs in the local bound
at (|x′|j , τj).

Example 3.21 (Result Variable Graph of Example 3.19). Below we depict the result
variable graph for our running example. If we inspect the CFG of the program, then one
of the interesting cases to consider is the size bound on |z | for transition τ3, which is
also the local transition bound for τ3. The result variable graph shows that it depends
only on itself and |x| + |y|, which on the other hand depends on all transitions.

τ1 τ2 τ3

|x′|

|z′|

|y′|

|x| |x| |x|

|z | |x| + |y| |z |

|y| |x| + |y| |y|

The analysis makes use of its strongly connected components (SCCs). We say that
a SCC is trivial if it does not contain any edges, otherwise it is non-trivial. The global
size bound of a variable that conforms to a trivial SCC in this graph can be expressed
as the composition of its local size bound and global size bounds of its predecessors.
Non-trivial SCCs denote cyclic dependencies of variables that grow under repetition. To
obtain closed-form expressions for variables, global transition bounds, i.e. bounds on the
repetition, and growth classes are considered. We illustrate the main idea of obtaining
closed-form bound expressions with the next example.

Example 3.22 (Closed-Form Size Bounds). Suppose that the global transition bound
inferred for the loop is | i | . The closed-form expressions for all norms are given on the
right side.

while(i > 0)
i = i − 1 // identity
w = w + 2 // increment
x = x + k // additive
y = y + w // additive
z = z + z // multiplicative

i′	6	i				
w′	6	w	+ 2	i		
x′	6	x	+	i	·	k
y′	6	y	+	i	·(w
z′	6 2ˆ(i	·	z)	

The valuation of i′ is restricted by | i | during evaluation. To obtain a bound on |w′| we
take the initial bound |w| plus | i | times the constant 2. The bound for |x′| is obtained
similarly, here k is a constant variable expression. There is a flow dependency from w
to y but not vice-versa. The case for |y′| is similar to the case |x′| but depends on the
closed-form of |w′|. The last case |z′| is duplicating and implies an exponential growth.

40

3.5 Automated Resource Analysis with KoAT

In the previous example we capture the main idea of obtaining closed-form expressions
for the individual classes. We restrict to a simple case where flow-dependencies induce
only trivial SCCs in the result variable graph and non-trivial SCCs with one node,
hence we do not obtain mutual recursive flow dependencies. We omit the technical
details that are necessary to obtain closed-form expressions in the general case and refer
to Brockschmidt et al. [50, 51]. Briefly, an upper bound can be obtained by inspecting all
transitions of the SCC separately, like above, and taking the sum of all obtained bound
expressions.

Additionally, the result variable graph is used to safely infer duplicating flow, which
implies exponential growth under iteration.

Example 3.23 (Duplicating Flow). Consider the following example. Duplicating flow
manifests in diamond shaped flow patterns.

while(i > 0)
i = i − 1
y = x
z = x
x = y + z // duplicating

x

y

z

x

Inference of Global Transition Bounds

We present the two main methods to infer global transition bounds.
First, consider the subprogram T ′ = T . Then any local transition bound inferred on

τ ∈ T ′ is also a global transition bound on τ ∈ T . Local transition bounds are inferred
via the synthesis of polynomial quasi-ranking functions.

Second, for a subprogram T ′ ⊂ T a modular approach based on runtime and size
complexity is applied. The proposed approach is akin to the informal discussion in Sec-
tion 3.3.4 on page 19 of the modular runtime analysis of nested programs. An important
detail of the analysis in KoAT is that it is path-sensitive. Here, path-sensitive means that
runtime and size bounds are associated to transitions (rather than locations) and that
transitions that flow into the subprogram are considered separately.

W.l.o.g. assume that there is only one incoming transition τ : 〈l, l′, φ〉 ∈ T \ T ′ of the
subprogram, i.e. the source location l is defined in T \ T ′ and the target location l′ is
defined in T ′.

– A global transition bound for τ ∈ T bounds the maximal number the subprogram
T ′ can be entered via τ .

– A local transition bound for τ ′ ∈ T ′ w.r.t. the subprogram T ′ bounds the number
of occurrences of τ ′ in any evaluation of T ′. Crucially the bound is defined in terms
of the input valuation at location l when entering T ′ via τ .

– A global transition bound for τ ′ ∈ T for a single execution of the subprogram T ′ is
obtained by providing global size bounds on the norms w.r.t. τ . We obtain a global
transition bound for τ ′ ∈ T for all executions of the subprogram T ′ by multiplying
it with the global transition bound of τ .

41

3 Imperative Programs

In the case that there is more than one incoming transition τ ∈ T \ T ′ we inspect the
individual cases separately and take the sum of the inferred bounds.

Strategy. We have presented the individual components of the complexity analysis in
KoAT. Now, we combine those components to a strategy for the inference of complexity
bounds on the runtime complexity. Local size and local transition bounds (for T ′ = T)
only depend on T and can be inferred on-demand. Global size and transition bounds are
propagated top-down, that is, SCCs in T and the variable flow are resolved in topological
order alternating between the inference of global transition and global size bounds.

Lexicographic Ranking Function. Although, it is not immediate the inference is con-
ceptually close to the decompositional approach based on lexicographic ranking functions
(cf. Brockschmidt et al. [51] and Section 3.3.5). The main idea being, that each local
bound, which is inferred for a subprogram, amounts to a component in the ranking
function. As the construction is hidden in the individual steps we refer to it as being
implicit in the overview of the tools in Section 3.8.

Example 3.24 (Runtime Inference). We recall the running example and conclude with
the upper bound inference on its worst-case runtime complexity.

l0

l1

τ1

τ3τ2

τ1 : 〈l0, l1, x′ = x ∧ y′ = y ∧ z′ = z〉
τ2 : 〈l1, l1, x > 0 ∧ x′ = x− 1 ∧ y′ = y + x ∧ z′ = x+ y〉
τ3 : 〈l1, l1, z > 0 ∧ x′ = x ∧ y′ = y ∧ z′ = z − 1〉

Step 1: We assume T ′ = T and try to infer local (and therefore global) transition bounds
via the synthesis of polynomial quasi-ranking functions. We iterate this process until the
synthesis fails. We obtain linear global transition bounds for τ1 and τ2.

– global transition bound tbT (τ1) = 1 via RF η(l0;σ) = 1 η(l1;σ) = 0

– global transition bound tbT (τ2) = |x| via RF η(l0;σ) = η(l1;σ) = σ(x)

What is left to obtain an upper bound on the worst-case runtime complexity of T , is to
infer a global transition bound for τ3. We set T ′ = {τ3}.

Step 2: We infer the following local size bounds by inspecting each transition and norm
separately.

– local size bounds for τ1, τ2 and τ3

x′	6	x		x′	6	x		x′	6	x		
y′	6	y		y′	6	x	+	y		y′	6	y
z′	6	z		z′	6	x	+	y		z′	6	z

42

3.5 Automated Resource Analysis with KoAT

Step 3: We use the obtained local size bounds and global transition bounds to infer
global size bounds.

– global size bounds for τ1 and τ2

x′	6	x		x′	6	x				
y′	6	y		y′	6	x	2 +	x	+	y
z′	6	z		z′	6	x	2 + 2	x	+	y

The indicated expressions bound the size of the norms at the target location.

Step 4: We synthesise a local transition bound for τ ∈ T ′ w.r.t. T ′.

– local transition bound tbl1T ′(τ3) = |z | via RF η(l1;σ) = σ(z).

Step 5: The local transition bound of τ3 w.r.t. T ′ and location l1 is |z | . The transitions
τ1 and τ2 have target location l1. The global transition bound of τ3 is obtained by
considering how often τ1 and τ2 can occur in an evaluation (their global transition
bounds) and upper bounds on |z | (their global sizebounds).

– global transition bound

tbT (τ3) = tbT (τ1) · tbl1T ′(τ3)[sbτ1/T (xi)/xi] + tbT (τ2) · tbl1T ′(τ3)[sbτ2/T (xi)/xi]
= 1 · |z | [sbτ1/T (xi)/xi] + |x| · |z | [sbτ2/T (xi)/xi]
= 1 · |z | [|z |/z] + |x| · |z | [|x|2 + 2 |x| + |y|/z]
= |z | + |x| · (|x|2 + 2 |x| + |y|)

We have obtained global transition bounds for all transitions and therefore obtain the
following upper bound on the worst-case runtime complexity.

tbT (τ1) + tbT (τ2) + tbT (τ3) = 1 + |x| + |x|3 + 2 |x|2 + |x| · |y| + |z | .

Extensions

In this section we comment on some extension that are presented in [51].

Recursive Programs. KoAT supports multiple recursive calls by collecting calls on the
right-hand sides of transitions. The notion of transitions is extended to 〈l, {l′i}, φ〉, i.e.
the target is a set of locations. The proposed approach is conceptually similar to the
original one, but requires a stronger notion of ranking functions.

Cost Models. KoAT supports weighted integer transition systems, that is, transitions
are associated with a bound expression. Then, the runtime corresponds to a specific cost
model in which all transitions are weighted with bound expression constant one. This
enables some interesting use cases. For instance, by adapting the program abstraction
suitably, KoAT can analyse different cost models, such as the number of function calls or

43

3 Imperative Programs

heap allocations. Additionally, it allows for a bottom-up strategy, by isolating subprograms
of the original problem which can be analysed separately and incorporated again as
weight. Morally, subprograms are replaced by its weight (or cost) of evaluating it. The
tool AProVe makes use of this strategy to analyse (non-recursive) function calls for Java
programs individually (Frohn and Giesl [76]).

Exponential Growth Rates. Whereas the initial version focuses on polynomial bounds, [51]
provides a more refined approach for analysing exponential bounds. This includes a
variation of ranking functions for exponential runtime and more precise size analysis.

44

3.6 Automated Resource Analysis with Loopus

3.6 Automated Resource Analysis with Loopus

Zuleger et al. [158] and Sinn et al. [145, 146] investigate different abstract program
representations that are known from the literature for the inference of (symbolic) bounds
on loops for C and LLVM programs. The central idea is to use the abstract domains to
reflect the change in a norm and specialise the inference of upper bound resource analysis.
In what follows, we outline the central concepts that have been implemented in the tool
Loopus6.

Overview. At first, in Section 3.6.1 we discuss reachability bound analysis of integer
programs using an abstract program representations based on monotonicity constraints
[158]. Then, in Section 3.6.2 we provide an overview of the resource analysis using
constraint transition systems with monotone difference constraints [145]. Finally, in
Section 3.6.3 we recall the bound analysis with difference constraints [146], which forms
the basis for the most recent version of the tool Loopus at the time of writing.

3.6.1 Monotonicity Constraints Programs

Zuleger et al. [158] investigate bound analysis of integer programs using constraint
transition systems with monotonicity constraints over the integer domain. The program
representation is inspired by earlier work on the size-change termination problem by
Lee et al. [110]. We have discussed theoretical properties of monotonicity constraints
programs before in Section 3.4.4. Next, we recall its definition.

Program Representation

A monotonicity order constraint is an inequality x > y or x > y for x, y ∈ Var ∪ Var′,
and a monotonicity constraint is a conjunction of monotonicity order constraints. A
monotonicity constraints program MC is a CTS where transitions are associated with a
monotonicity constraint and the valuation of the variables range over the integers. The
tool Loopus restricts to MC programs that have a reducible control flow graphs with a
unique initial location l0 (see Definition 3.6 on page 15).

Motivation. The analysis based on MC constraints is motivated by the idea that
loops often admit state based behaviour with different loop phases. Loop invariants
that are inferred from standard numeric invariant domains such as the octagon and
polyhedra domain reason about all paths. In contrast, the MC domain is naturally
disjunctive. Given a finite set of variables, the domain of MC constraints is finite and
so is its powerset construction. These properties motivate to use MC constraints to
infer disjunctive invariants. Notably, MC constraints syntactically capture the ranking
function properties bounded (x > 0), non-increasing (x > x′) and decreasing (x > x′)
(see Definition 3.14 on page 21) .

6http://forsyte.at/software/loopus/

45

http://forsyte.at/software/loopus/

3 Imperative Programs

Example 3.25 (Motivating Example). The following program illustrates one of the
motivating examples in Zuleger et al. [158].

main(n)
i = 0

l1 : while(i < n)
i = i + 1
j = 0

l2 : while(i < n ∧ ∗)
i = i + 1
j = j + 1

if(j > 0)
i = i −1

τ0 : 〈l0, l1, ∧ i′ = 0 ∧ j′ = j ∧ n′ = n〉
τ1 : 〈l1, l2, i < n ∧ i′ = i+ 1 ∧ j′ = 0 ∧ n′ = n〉
τ2 : 〈l2, l2, i < n ∧ i′ = i+ 1 ∧ j′ = j + 1 ∧ n′ = n〉
τ3 : 〈l2, l1, j > 0 ∧ i′ = i− 1 ∧ j′ = j ∧ n′ = n〉
τ4 : 〈l2, l1, j 6 0 ∧ i′ = i ∧ j′ = j ∧ n′ = n〉

Program Abstraction

The proposed abstraction and bound analysis is based on the reachability bound problem
for individual loop headers (cf. Gulwani and Zuleger [86]). Formally, suppose l is a
location and T ′ = {τ ∈ T | τ has target location l}. Then, the reachability bound for
location l is a complexity bound rbT (l) such that

rbT (l) < rcl0T ′/T .

The reachability bound problem inspects the maximal number of visits to a specified
location. The proposed approach restricts to reducible CFGs. In a reducible CFG all
SCCs have a unique entry location, its loop header. A bound on the worst-case runtime
for the whole program can be obtained by analysing each loop header individually.

The proposed program abstraction is akin to the transition predicate abstraction
presented by Podelski and Rybalchenko [133]. For the viability of the approach it
is essential that variables of the MC domain represent symbolic expressions. Those
symbolic expressions are usually called norms and are inferred with heuristics. A standard
heuristic is to collect norms from conditions that reflect the ranking properties bounded
and decreasing. For instance, expressions x− 1 and y − z are inferred for while(x > 0
∧ y > z){. . .}. Here, x and y − z are bounded by 0 at the entry of the loop. For the

loop to terminate, we expect that one of them is decreasing, which amounts to infer the
relation x > x′ or y − z > y′ − z′ for the body of the loop.

The abstraction performs a pathwise abstraction of simple cyclic paths from the loop
header to itself. In the process nested loops are summarised bottom-up constructing
disjunctive invariants that represent the reflexive and transitive transition invariant of
the loop. Consider a transition system with a self-loop τ : 〈l, l, φ〉. Here, the reflexive
and transitive transition invariant is a disjunction of monotonicity constraints φ′ such
that σ, σ′ |= φ′ for all traces (l, σ) −→∗τ (l, σ′). The result of the abstraction is a set of
transitions with a single location, the loop header.

Additional precision is gained by contextualisation, that is, the refinement of the control
flow graph based on the feasibility of sequentially executing transitions within a specified

46

3.6 Automated Resource Analysis with Loopus

context. Conceptually, contextualisation corresponds to the inference of loop phases.
Example 3.28 on page 48 illustrates the application of contextualisation.

Example 3.26 (Cont’d from Example 3.25). We inspect the reachability bound of l1. In
doing so, the inner loop is summarised by its reflexive and transitive transition invariant.
This invariant is obtained by repeatedly (i) abstracting transition constraints to MC
constraints, and (ii) composing transitions, until a fixed-point is reached. The following
loop summary is obtained for the inner loop at program location l2. We display the
disjunctive constraint using multiple transitions. Here, τ2a represents the case where
the inner loop is not iterated once and τ2b represents the case where the inner loop is
iterated arbitrarily often, but at least once.

τ2a : 〈l2, l2, n′ − i′ = n− i ∧ j′ = j〉
τ2b : 〈l2, l2, n− i > 0 ∧ n′ − i′ < n− i ∧ j′ > j〉

The proposed pathwise abstraction inspects the composition of all simple cyclic paths
from l1 to l1, which are l1 τ1−→ l2

τ3−→ l1 and l1 τ1−→ l2
τ4−→ l1. In doing so, the inner loop at

location l2 is replaced by its loop summary. The following transitions are obtained from
the MC abstraction.

l1
τ1−→ l2

τ3−→ l1 : 〈l1, l1, n− i > 0 ∧ n− i > n′ − i′ ∧ j′ > 0〉
l1

τ1−→ l2
τ4−→ l1 : 〈l1, l1, n− i > 0 ∧ n− i > n′ − i′ ∧ j′ > 0〉

Bound Analysis

The bound analysis is akin to the lexicographic decomposition presented in Section 3.3.5
on page 24. Observe that the ranking properties bounded, decreasing, and non-increasing
can be expressed as MC constraints, n > 0, n > n′, and n > n′, respectively. At this
stage the decomposition is purely syntactical and can be computed effectively. The
bound analysis symbolically unfolds the additive and multiplicative dependencies of the
decomposition. Morally, sequential components are summed up and nested components
are multiplied. Closed-forms are obtained by incorporating global size invariants on
variables (or norms) w.r.t. the input. These are obtained by standard numeric invariant
generation.

Example 3.27 (Cont’d from Example 3.26). The expression n − i is bounded and
decreasing. An upper bound n− i in terms of the input is n since i = 0 before reaching
l1. The reachability bound rbT (l1) = max(0, n) is obtained for l1.

We remark that the proposed abstraction and bound analysis do not capture the
growth of norms. Although, a relation x′ 6 x+ 1 can be expressed in this domain (here
x+ 1 is a norm), there is no means to obtain closed-form bound expressions for repeated
application of this relation. Here, the connection to the size-change abstraction presented
in Lee et al. [110] becomes apparent, in which expressions that grow are not reflected
within the abstraction.

47

3 Imperative Programs

Next, we exemplify the application of contextualisation. Morally, we associate con-
straints to locations and check the feasibility of sequentially applying two transitions.
This technique is independent of the constraint domain but motivated to refine the CFG
of disjunctive invariants.

Example 3.28 (Contextualisation). The following example illustrates an application of
contextualisation.

main(x ,y ,n)
l0 : while(x > 0)

if(y > 0)
x = n
y = y − 1

else
x = x − 1

l0 τ2τ1

τ1 : 〈l0, l0, x > 0 ∧ y > 0 > ∧ x = n ∧ y > y′ ∧ n′ = n〉
τ2 : 〈l0, l0, x > 0 ∧ x > x′ ∧ y > y′ ∧ n′ = n〉

It is easy to see that transition τ1 cannot succeed τ2 in any program trace. The system
below provides an equivalent program with a refined CFG. We restrict to inspecting the
case whether the relation y > 0 holds.

ly>0 ly60τ1
τ1 τ2

τ1 : x > 0 ∧ y > 0 > ∧ x′ = n ∧ y > y′ ∧ n′ = n

τ2 : x > 0 ∧ x > x′ ∧ y > y′ ∧ n′ = n

Most relevant, the bound that is inferred by the algorithm is better for the refined program.
This is due to the fact that the CFG of the original program is conceived as a single SCC
with nested loops and the CFG of the refined program is conceived as two sequential
SCCs. The bound inference algorithm multiplies the bounds of nested loops, while adding
the bounds of sequential loops. See also the discussion on modular bound analysis in
Section 3.3.4 on page 19. With the size invariant max(x, n) on x we obtain the bound
max(0,max(x, n)) ·max(0, y) for the original program and max(0,max(x, n)) + max(0, y)
for the refined program.

3.6.2 Monotone Difference Constraints Programs

Sinn et al. [145] propose (parameterised lossy) vector addition systems with states (pa-
rameterised lossy VASS) as suitable abstract program representation for bound analysis.
VASS programs have been introduced by Hopcroft and Pansiot [101] and the subclass
lossy VASS by Bouajjani and Mayr [42]. Here, lossy indicates that assignments are
interpreted weakly, e.g. x′ 6 x+1 instead of x′ = x+1. The term parameterised indicates
the support of symbolic constant expressions k in assignments x′ 6 x+k. In what follows,
we use the equivalent notion of monotone difference constraints programs MDC which
have been introduced in Sinn [144]. We have discussed known theoretical properties of
VASS and MDC programs in Section 3.4.5.

48

3.6 Automated Resource Analysis with Loopus

Program Representation

A monotone difference order constraint is an inequality x′ 6 x+k with x′ ∈ Var′, x ∈ Var
and k is a (symbolic) constant expression over Z. The variables range over N. We say that
a constraint x′ 6 x+ k is an increment if k > 0 and a decrement if k < 0. A monotone
difference constraints program MDC is a CTS with monotone difference order constraints
over the natural numbers. The resource analysis in the tool Loopus restricts to MDC
programs that have a reducible control flow graph (see Definition 3.6 on page 15).

Motivation. MDC constraints are syntactically restricted in comparison to standard
programs. More specific, assignments of variables and conditional flow (x′ 6 y ∧ y 6= x)
cannot be expressed precisely. Adding support for symbolic constants allows incorporating
external knowledge in terms of size bounds. For example, x′ 6 x + sb(y) where sb(y)
denotes a bound on the size complexity of y. Most noteworthy, the syntactic restriction
of MDC constraints allows for a efficient and controlled resource analysis.

Example 3.29 (Motivating Example). Consider one of the motivating examples of
[145]. It is easy to see that all assignment can be abstracted to MDC constraints when
interpreting assignments weakly, i.e. with not greater than.

main(m)
i = m; n = 0

l1 : while(i > 0)
i = i − 1

l2 : if(∗)
n = n + 1

else
l3 : while(n > 0 ∧ ∗)

n = n − 1
l4 : skip

l1

l2

l4 l3

l0
τ1

τ2

τ 3
τ4

τ5τ6

τ 7

Program Abstraction

MDC constraints represent increment and decrement operations on a tuple of norms. To
analyse C or iCTS programs a suitable abstraction is necessary. The authors propose an
abstraction based on inferring transition invariants and symbolic execution. The program
abstraction constitutes of three steps: (i) guessing norms, (ii) abstraction of transitions,
and (iii) abstraction of the control flow.

By the definition of MDC constraints, a candidate norm x satisfies the following
properties. The predicate x′ > 0 is invariant for all locations and for every transition the
predicate x′ 6 x+ k is invariant for some constant expression k. We emphasize that k
is not restricted to a number but is considered to be a constant expression, hence it is
possible to obtain k as a global invariant.

Central to the proposed analysis is the inspection of individual loop paths. We recall,
if the CFG is reducible then each SCC of the CFG has a unique entry node, its loop

49

3 Imperative Programs

header, which dominates all nodes of the SCC. A loop path is a simple cyclic path l −→∗ l
starting at the loop header. When inferring upper bounds, the proposed approach uses
norms as ranking arguments to bound the number of iterations of a loop path. Candidate
expressions for norms are obtained by inspecting loop paths. An expression should satisfy
the properties bounded and decreasing for at least one loop path (see Definition 3.14 on
page 21). In what follows, given a (loop) path of the CFG l0

τ1−→ l1
τ2−→ l2 · · · we write

τ1 · τ2 · · · .

Example 3.30 (Cont’d from Example 3.29). Location l1 and l3 denote labels for loop
header. The paths τ2 · τ3 · τ7 and τ2 · τ4 · τ6 · τ7 are loop paths for l1, and the path τ5 is a
loop path for l3. The path τ6 · τ7 · τ2 · τ4 is not a loop path for l3 since l3 is dominated
by l1. The norms max(0, i) and max(0, n) are obtained from the loop conditions. The
expression max(0, i) is decreasing for all loop paths of l1 and max(0, n) is decreasing for
all loop paths of l3.

To simplify the bound analysis, MDC programs are further abstracted to transition
systems with only one location. The proposed control flow abstraction extracts for each
loop header all loop paths and fixes source and target location to a single location. We
write π = τ1 ·τ2 · · · for the transition that is obtained by the composition of all transitions
along the path. The composition of transitions is straightforward for MDC constraints.
For instance, the sequential application of x′ 6 x+ k1 and x′ 6 x+ k2 is modelled by
x′ 6 x+ k1 + k2.

Example 3.31 (Cont’d from Example 3.30). We illustrate the loop paths that are
obtained from the control flow abstraction as single transitions.

τ2 · τ3 · τ7 = π1 : 〈•, •, n′ 6 n+ 1 ∧ i′ 6 i− 1〉
τ2 · τ4 · τ6 · τ7 = π2 : 〈•, •, n′ 6 n ∧ i′ 6 i− 1〉

τ5 = π3 : 〈•, •, n′ 6 n− 1 ∧ i′ 6 i〉

Bound Analysis

The proposed bound analysis inspects the maximal number a loop path π can occur in
any trace of T . Let π be the transition that is obtained from the path τ1 · · · τn. Then
the path bound of π is a complexity bound pbT (π) such that

pbT (π) < rcl0π/T .

The worst-case runtime of T is then given by the sum of the path bounds of all loop
paths (plus some constant for all transitions that do not appear in any loop path).

In the following, let T denote the transition system that is obtained from the control
flow abstraction of a MDC program. We summarise the worst-case runtime analysis of
T . First, the proposed algorithm attempts to construct a lexicographic combination of
ranking functions (see Section 3.3.5 on page 23). For a program T with n transitions

50

3.6 Automated Resource Analysis with Loopus

the constructions returns a LexRF 〈x1 : τ1, . . . , xn : τn〉 with n components, if successful.
By definition, MDC constraints are bounded from below by 0. The ranking properties
decreasing and non-increasing can be checked syntactically. This allows for a simple and
efficient construction of the LexRF.

(i) Choose τ ∈ T such that there is a norm x that is decreasing for τ and non-increasing
for all transitions in T . Append x : τ as the next component of the LexRF.

(ii) Repeat for T \ {τ}.

The construction may fail if item (i) cannot be fulfilled. If the inference of a ranking
function is successful, the path bound can be inferred for all components. The inference
relies on the following observation for incremental growth. Consider the transition
〈τ : •, •, x′ 6 x− 1, y′ 6 y + k〉 for k > 0.

while(x > 0)
assume(x > 0 ∧ y > 0 ∧ k > 0)
x = x − 1
y = y + k

Then the final value of y is bounded by y + x · k. In particular, the growth of y is
a (parameterised) linear expression. We emphasise that constraints do not express
resets (e.g. x′ 6 N) and that the decomposition that is implied by the LexRF is not
multiplicative but additive, that is, the iteration bounds of the components are summed
up rather than multiplied. Intuitively, for a LexRF 〈x1 : τ1, . . . , xn : τn〉 that is obtained
from a MDC program the worst-case runtime can be expressed by successive loops,
therefore maximising the valuation of all variables.

while(x1 > 0)
τ1

. . .
while(xn > 0)
τ2

Here, xi is decreasing for τi and the valuation of xj for i < j may increase, though it can
always be approximated using the previous observation.

Example 3.32 (Cont’d from Example 3.31). This program has a three component
LexRF 〈i : π1, i : π2, n : π3〉. We obtain the bounds max(0, i) for π1, max(0, i) for π2,
and max(0, n) + max(0, i) · 1 for π3. Taking the initial assignments i = m and n = 0
into account, we obtain the path bounds pb(π1) = pb(π2) = pb(π3) = max(0,m). Thus,
max(0, 3m) is an upper bound on the worst-case runtime.

The proposed construction of the LexRF returns a ranking function with n components,
in which n is the number of transitions. Sinn et al. [145] propose a preprocessing step
to merge transitions, thus reducing the number of transitions and improving precision.
Two transitions τ1 and τ2 can be merged if all decrements decrease by the same amount.
Transition τ3 is obtained from τ1 and τ2 by taking the maximum k for each constraint.

51

3 Imperative Programs

Example 3.33 (Cont’d from Example 3.32). Transition π1 and transition π2 can be
merged into

π12 : 〈•, •, n′ 6 max(n, n+ 1) ∧ i′ 6 i− 1〉 .

Then, we obtain a LexRF 〈i : π12, n : π3〉 and an improved upper bound max(0, 2m).

We conclude with the runtime analysis of a variation of the motivating example from
the overview.

Example 3.34 (MDC analysis of Example 3.11). The referenced program is not aMDC
program. We consider a variation (which is not equivalent). The assignment z′ = y + x
is replaced with z′ 6 z + sb(x), where sb(x) is a symbolic constant that represents the
size bound of x. For the norms max(0, x) and max(0, z) the following transitions are
obtained from the control flow abstraction.

τ2 : 〈•, •, x′ 6 x− 1 ∧ z′ 6 z + sb(x)〉
τ3 : 〈•, •, x′ 6 x ∧ z′ 6 z − 1〉

We construct a two component LexRF 〈x : τ2, z : τ3〉. The inferred upper bounds are
pb(τ2) = max(0, x) and pb(τ3) = max(0, z) + max(0, x) ·max(0, sb(x)). Suppose that the
invariant max(0, σ0(x)) > sb(x) holds, that is, the valuation of x is bounded by the initial
valuation of x. Then, the upper bound is max(0, x) + max(0, z) + max(0, x) ·max(0, x).

3.6.3 Difference Constraints Programs

Sinn [144] and Sinn et al. [146] investigate difference constraints as suitable abstract
representation to resource analysis. At the time of writing this representation forms the
basis of the latest iteration of the Loopus tool. We have discussed theoretical properties
of difference constraints programs before in Section 3.4.4. Next, we recall its definition.

Program Representation

A difference order constraint is an inequality x′ 6 y + k, where x′ ∈ Var′, y ∈ Var and
k ∈ Z, and a difference constraint is a conjunction of difference order constraints. A
difference constraints program DC is a CTS with difference constraints and where the
valuation of variables range over N. A difference constraint is called fan-in free if for all
x′ ∈ Var′ there exists at most one order constraint x′ 6 y + k. A DC program is called
fan-in free if all difference constraints are fan-in free. It is helpful to think of fan-in free
programs as programs with parallel updates. The tool Loopus restricts to fan-in free
programs with a unique initial location l0.

Motivation. While MDC constraints focus on increments and decrements of the form
x′ 6 x+ k, DC constraints also support resets of the form x′ 6 y + k with x 6= y. The
bound inference is designed to exploit properties of increments and resets.

52

3.6 Automated Resource Analysis with Loopus

Example 3.35 (Motivating Example). It is easy to verify that this program is a DC
program if we interpret assignments weakly, e.g. i 6 i− 1 instead of i = i.

l0 : main(n,m)
i = n
k = m

l1 : while(i > 0)
i = i − 1
k = k + 1
j = k

l2 : while(j > 0)
j = j −1

l0

l1

l2

τ1

τ2

τ3

τ4

Program Abstraction

The proposed program abstraction recursively infers a set of transition invariants DC. A
difference order constraint x′ 6 y+ k is called a transition invariant for 〈l, l′, φ〉 ∈ T if for
all σ, σ′ ∈ Σ, σ, σ′ |= φ implies σ, σ′ |= σ′(x′) 6 σ(y) + k (see Definition 3.18 on page 26).
The approach suggests deriving an initial set of variables (or norms) from the conditions
of the loop header and individual loop paths. For instance, the norm max(0, a − b) is
derived from a condition a > b. Starting from an initial set of norms, transition invariants
and additional norms are recursively inferred. For each norm n1 and transition 〈l, l′, φ〉
the suggested method checks if there already exists an order constraint n′1 6 n2 + k in
DC, in which n′1 is obtained from n1 by symbolic execution. If not, the method tries to
infer a new order constraint n′1 6 n2 + k, in which n2 is either taken from the existing
set of norms or heuristically obtained from n1. In the latter case, n2 is added to the set
of norms. Termination is enforced by limiting the maximum number of recursive steps.

Bound Analysis

At the core of the analysis is the definition of local bounds and the inspection of its domain
space. Each transition is associated with a local bound. A local bound is a variable
(or norm) that satisfies the following property. Let (l0, σ0) →∗ (l, σ) →τ · (l′, σ′)
denote a terminating program run starting with initial configuration (l0, σ0) over some
intermediate configuration (l, σ) to a terminal configuration (l′, σ′). Then the valuation of
the local bound associated to τ bounds the number of its occurrences in (l, σ) (l′, σ′),
i.e. the bound for a transition during a program run is given by the valuation of its local
bound. A natural candidate for local bounds of transitions is given by decrements.

The bound inference is based on mutual recursive definitions of transition bounds and
variable bounds. A transition bound for transition τ ∈ T is a complexity bound tbT (τ)
such that

tbT (τ) < rcl0τ/T .
A variable bound for x ∈ Var is a complexity bound vbT (x) such that

vbT (x) < λσ0. sup{σ′(x) | (l0, σ0) −→∗T (l′, σ′)} .

53

3 Imperative Programs

We syntactically differentiate between two kinds of DC constraints, namely increments
(x′ 6 x + k ∧ k > 0) and resets (x′ 6 y + k ∧ y 6= x). We omit some details but use
the following definition to illustrate the main idea (cf. [144, Section 3.3]). We write
x′ 6 y+k ∈ τ to indicate whether x′ 6 x+k is an order constraint of the transition τ and
assume that the local bound associated to transition τ is x. Then x′ 6 x+ k ∈ τ ′ ∧ k > 0
is an increment of variable x for some transition τ ′ and x′ 6 y + k ∈ τ ′ ∧ x 6= y is a
reset of variable x for some transition τ ′. Moreover, for the sake of simplicity we assume
that the input arguments are constants and therefore vb(x) = max(0, x) for all input
arguments.

tb(τ) =
∑

x′6x+k∈τ ′∧k>0
tb(τ ′) · k +

∑
x′6y+k∈τ ′∧x 6=y

tb(τ ′) ·max(0, vb(y) + k)

vb(x) =
∑

x′6x+k∈τ ′∧k>0
tb(τ ′) · k + max

x′6y+k∈τ ′∧x 6=y
(0, vb(y) + k)

The definition of variable and transition bounds are based on all increments and resets of
the program. The variable bound is obtained by inspecting the growth induced by the
number of increments together with the maximum of its resets. The transition bound is
related to the variable bound of its local bound but additionally incorporates the induced
domain space of the number of resets.

The bound inference is defined recursively and may not terminate. In particular, in
the presence of cyclic dependencies induced by increments. There is a close connection to
lexicographic ranking functions. If the bound inference terminates, then a lexicographic
ranking function can be obtained from the local bounds, moreover, if there exists a
lexicographic ranking function then the bound inference terminates (cf. [144]). The tool
Loopus infers a lexicographic ranking functions prior to the bound analysis to ensure its
termination.

Example 3.36 (Cont’d from Example 3.35). Unrolling the definition of transition bound
and variable bound, we obtain the following equations:

vb(m) = max(0,m) vb(n) = max(0, n)
vb(i) = max(0, vb(n)) vb(j) = max(0, vb(k))
vb(k) = tb(τ2) · 1 + max(0, vb(m))
tb(τ1) = 1 tb(τ4) = tb(τ2)
tb(τ2) = 0 + tb(τ1) ·max(0, vb(n)) tb(τ3) = 0 + tb(τ2) ·max(0, vb(k))

We apply some simplifications. The transition bound for τ1 is constant 1, and for
transition τ4 it depends only on transition τ2. Variables n and m are constant. The
associated local bound for τ2 and τ3 is i and j, respectively. We obtain tb(τ4) = tb(τ2) =
max(0, n) and tb(τ3) = max(0, n) ·max(0,max(0, n) + max(0,m)).

54

3.6 Automated Resource Analysis with Loopus

Extensions

Several improvements based upon the main idea have been investigated and presented in
Sinn [144]. We only present a selected few.

Symbolic Increments. Symbolic increments extend DC constraints to x′ 6 y+ k where
k is a symbolic constant evaluating to an integer. The main application is to support
constraints of the form x′ 6 x + z with z ∈ Var, which are not conform to DC, using
x′ 6 x+ vb(z). By supporting symbolic increments DC programs generalise (fan-in free)
MDC programs (cf. Section 3.6.2).

Contextualisation via Reset Chains. In this section we discuss an extension based
on reset chains to improve the precision of the analysis (cf. [144, Section 3.5]). In the
definition of tb, resets are considered separately. The main idea of this refinement is to
consider resets not separately but in terms of reset chains. A reset chain is a sequence
x1

τ1→ · · · τn−1→ xn that forms a chain of resets x1 6 x2 + c1 · · ·xn 6 xn−1 + cn. The
extension refines tb based on reset chains. We present the main idea with the following
example.

Example 3.37 (Reset Chains). As illustrating example consider the following transitions
with local bound x for τ5. All transitions except τ5 are resets. The most right figure
displays the reset graph. There is an edge x τ→ y for any reset x′ 6 y + c with y 6= x
defined for τ . A path in the reset graph is a reset chain.

l1 l2 l3

l4

l5

τ1 τ2 τ3

τ4

τ5

τ1 : z′ 6 N + 1
τ2 : z′ 6M + 2
τ3 : x′ 6 y
τ4 : x′ 6 z + 3
τ5 : x′ 6 x− 1

N M

z y

x

τ1 τ2

τ4 τ3

According to the basic definition the transition bound of τ5 depends on variable bounds
y and z. When unrolling the definitions, we obtain:

vb(z) = max(vb(N) + 1, vb(M) + 2)
tb(τ5) = tb(τ3) ·max(0, vb(y)) + tb(τ4) ·max(0, vb(z) + 3)

For the sake of the example, we assume that tb(τ4) = tb(τ1) + tb(τ2) + tb(τ3). It is
not difficult to extend the program in such a way by adding additional transitions with
decrements on a unique variable from l4 to l1, l2 and l3.

We identify two sources of imprecision in the above formula for tb(τ5). First, the bound
depends on vb(y). It is easy to see that the bound should only depend on the valuation
of z and its valuation is not affected by y. Second, the bound depends on tb(τ4), which

55

3 Imperative Programs

by our assumption corresponds to the sum of the transition bounds of the preceding
transitions.

Based on the reset graph, the proposed analysis identifies a set of sound and optimal
reset chains. Informally, a sound reset chain is one that occurs in any program run, and
a optimal reset chain is a maximal reset chain.

Here τ3 is not a sound reset chain. The reset chains N τ1→ z
τ4→ x and M

τ2→ z
τ4→ x are

maximal and sound. A refined bound is obtained by inspecting all reset chains separately.
We obtain the following transition bound.

tb(τ5) = minτ ′∈{τ1,τ4} tb(τ ′) ·max(0, vb(N) + 1 + 3)
+ minτ ′∈{τ2,τ4} tb(τ ′) ·max(0, vb(M) + 2 + 3)

The transition bound of a reset chain is approximated by the minimum (taking into
account that the transitions are evaluated in sequence) of the individual transition bounds.
Constant expressions are summed up along the chain.

Path-Sensitive Analysis. In this section we discuss path-sensitive analysis (cf. [144,
Section 3.8]). While the proposed approach supports increments and resets we focus only
on increments. The main idea is to compose increments and decrements along a path.
We illustrate the main idea with the following example.

Example 3.38 (Path-Sensitive Analysis). Consider the following program with local
transition bound x for τ5.

l0

l1 l2

l3

τ1 τ2

τ3τ4

τ5

τ1 : 〈l0, l1, x′ 6 x0 ∧ y′ 6 y0〉
τ2 : 〈l1, l2, x′ 6 x− 3 ∧ y′ 6 y〉
τ3 : 〈l2, l1, x′ 6 x+ 2 ∧ y′ 6 y − 1〉
τ4 : 〈l1, l3, x′ 6 x〉
τ5 : 〈l3, l3, x′ 6 x− 1〉

There is an increment x′ 6 x+ 2 defined for τ3. Hence, tb(τ5) = tb(τ3) · 2 +max(0, x0). It
is easy to see that we can improve upon this bound considering the following observation.
The transition τ2 is always succeeded by τ3. Moreover, we have x′ 6 x − 1 for its
composition τ2 · τ3. This eliminates the increment and tb(τ5) = max(0, x0).

The proposed extension refines the original definition of tb composing increments and
decrements along simple cyclic paths instead of single transitions. We omit the formal
definition here.

We conclude with the analysis of a variation of the motivating example from the
overview.

56

3.6 Automated Resource Analysis with Loopus

Example 3.39 (DC analysis of Example 3.11). The assignments y′ = y+x and z′ = y+x
are not difference order constraints. We make use of the symbolic increments extension
and write y′ 6 y + vb(x) and z′ 6 y. Furthermore, we use the constant expressions x0,
y0 and z0 to indicate the initial arguments.

l0

l1

τ1

τ3τ2

τ1 : 〈l0, l1, x′ 6 x0 ∧ y′ 6 y0 ∧ z′ 6 z0〉
τ2 : 〈l1, l1, x > 0 ∧ x′ 6 x− 1 ∧ y′ 6 y + vb(x) ∧ z′ = y〉
τ3 : 〈l1, l1, z > 0 ∧ x′ 6 x ∧ y′ 6 y ∧ z′ 6 z − 1〉

Suppose that the local bound of τ2 and τ3 is x and z, respectively, and the transition
bound of τ1 is set to constant 1. Then, unrolling the definition we obtain the following
constraints.

tb(τ1) = 1 vb(x) = max(0, vb(x0))
tb(τ2) = tb(τ1) ·max(0, vb(x0)) vb(y) = tb(τ2) · vb(x) + max(0, vb(y0))
tb(τ3) = tb(τ1) ·max(0, vb(z0)) vb(z) = max(0, vb(z0)) + max(0, vb(y))

+ tb(τ2) ·max(0, vb(y))

We obtain tb(τ2) = max(0, x0) and vb(y) = max(0, x0) ·max(0, x0) + max(0, y0). Finally,
we have tb(τ3) = max(0, vb(z0)) +max(0, x0) · (max(0, x0) ·max(0, x0) +max(0, y0)). The
reader may want compare the result with the informal discussion of the introductory
program in Example 3.1.

57

3 Imperative Programs

3.7 Automated Resource Analysis with Paicc
In the following we comment on the ongoing work on decidable growth-rate properties for
loop programs [28, 33, 34, 36, 37, 39]. Ben-Amram et al. [39] present a core programming
language in which the polynomial growth-rate problem of variables, i.e. the problem
whether the final valuation of a variable is bounded by a polynomial in the input
valuation, is decidable.

Here, we refer to this core language as Core programs. Core programs are a variant of
Meyer and Ritchie’s loop programs [116] with weak semantics, that is, the abstraction of
conditional control flow with non-deterministic control flow. The worst-case runtime of
a Core program is given via counter instrumentation and growth-rate analysis thereof.
Ben-Amram and Pineles [36, 37] have extended the main result to flowchart programs in
which edges are associated with core statements. Schaper [139] presents an abstraction
from integer-valued CTSs to flowchart programs with core statements. The abstraction
together with the growth-rate analysis have been implemented in the prototype paicc
(program analysis and implicit computational complexity), which is available online at

http://cbr.uibk.ac.at/tools/paicc/ .

In the most recent related work, Ben-Amram and Hamilton [33] improve upon the original
result and investigate tight worst-case bounds for Core programs.

Overview. In Section 3.7.1 we recall Core programs and the key concepts of the growth-
rate analysis presented in [39]. Afterwards, in Section 3.7.2 we introduce constraint
transition systems with Ben-Amram - Jones - Kristiansen constraints (BJK programs).
The program representation is derived from flowchart programs with core expressions [37].
Furthermore, we provide insights about the program abstraction and automation in the
tool paicc.

3.7.1 Loop Programs

We have discussed theoretical properties of Core and BJK programs in Section 3.4.2. In
order to present the analysis implemented in paicc, we recall the central notions.

Program Representation

Program states in Core are n-tuples over the natural numbers, where n is the number
of (global) variables of the program. Expressions are terms over variables and binary
operations, addition and multiplication. In contrast to more standard programming
languages, Core does not support numeric constants. Statements consist of (weak)
assignments, skip, non-deterministic choice and indefinite loops. A weak assignment is an
assignment that can be interpreted as not greater than. For example, the evaluation of
x = x + y is interpreted as the value of x after the assignment is not greater than x+ y.
An indefinite loop is a loop that may exit any time before completion of the iteration
count. For a loop statement loop x {S} we call x the bound variable and S the body of

58

http://cbr.uibk.ac.at/tools/paicc/

3.7 Automated Resource Analysis with Paicc

the loop. The bound variable may not be modified within the loop body, and the body
of the loop is executed 0, 1, . . . up to x times.

The usage of non-determinism in Core has multiple motivations. First, we are interested
in a program fragment with decidable growth-rate properties. Standard loop programs
are known to represent the class of primitive recursive functions [116], and the polynomial
growth-rate problem is undecidable for such programs. This follows immediately by a
reduction from the equivalence problem of primitive recursive functions (cf. Kahrs [104]).
Second, we consider Core programs from the view point of program and data-flow analysis.
Due to non-determinism Core programs represent relations rather than functions. We can
motivate Core programs as abstract representation of the collecting semantics of more
expressive programs (cf. Nielson et al. [125]). We make use of this observation when
presenting the abstraction from integer programs.

Example 3.40 (Illustrating Example). Consider this variation of one of the motivating
examples from [39]. By the nature of the Core programming language, all programs are
terminating. The example is challenging for automated resource analysis as it exhibits
complex interdependent data-flow between variables. The proposed growth-rate analysis
infers that the final valuation of all variables is bounded by a polynomial in the input
valuation. In particular, this holds for the variable x1 whose value increases in the first
loop and is the bound variable for the second loop. The central observation, which is
inferred by the growth-rate analysis, is that x1 is not doubled when iterating the body
of the first loop. We obtain a polynomial bound on the worst-case runtime via counter
instrumentation.

x5 = x1 ∗ x2
loop x5

choice
{ x3 = x1 + x2 ; x4 = x2 }
{ x3 = x2 ; x4 = x1 + x2 }

x1 = x3 + x4
loop x1

skip

Main Result. We recall the main result of Ben-Amram et al. [39]. Let ~x denote a tuple
of variables (or a program state) and ~x ~x′ denote the evaluation of input state ~x to
output state ~x′. The growth-rate of a variable xi is polynomially bounded if there exists
a polynomial in ~x, in notation p(~x), such that xi′ 6 p(~x) for all evaluations ~x ~x′.
Otherwise, the growth-rate is super-polynomial. The question whether the growth-rate
of a variable is polynomially bounded is decidable for Core programs, furthermore it is
decidable in P.

The analysis can be specialised to inspect linear growth-rates. The growth-rate analysis
does not provide a precise bound, but a certificate for the existence of a polynomial that
bounds the growth-rate.

59

3 Imperative Programs

Bound Analysis

We summarise the main ideas of the growth-rate analysis. Our goal is to provide some
intuition, for details we refer to [39]. The analysis is presented as an application of abstract
interpretation (Cousot and Cousot [59]). It is a bottom-up fixed-point construction that
makes use of the structural definition of the Core programming language. There are three
key concepts that govern the analysis, (i) flow-abstraction of assignments, (ii) composition
of flow-abstraction, and (iii) fixed-point computation and loop correction.

Central to the growth-rate analysis is the definition of unary and binary variable flow.
The unary flow represents growth-rate dependencies between program variables, whereas
the binary flow represents flow-dependencies between pairs of variables.

Assignments can be categorised into different classes of unary flows.

– x = y implies an identity flow from y to x

– x = y + z implies an additive flow from y and z to x

– x = y + y implies a multiplicative flow from y to x

– x = y ∗ z implies a multiplicative flow from y and z to x

– other assignments are categorised as exponential flow

Unary flows can be composed the intended way, that is, the flow abstraction of the
composition of statements equals to the composition of the flow abstraction of statements.

During the construction each loop is replaced with its loop summary (or invariant).
Briefly, one may infer a fixed-point of the flow abstraction by repeated composition.
When analysing loops, we pay special attention to cyclic (or self-referential) flow. A
cyclic flow is a unary flow from a variable to itself. Under iteration, cyclic flows imply
growth of the valuation of the variables. This observation is incorporated in the loop
correction phase which provides a closed-form abstraction which depends on the loop
bound variable. Precise handling of the unary flow is crucial for programs with nested
loops and non-deterministic choice.

Example 3.41 (Loop Correction). We illustrate the effect of loops on cyclic flow with
the following example. Under iteration, cyclic additive flows turn into multiplicative
flows and cyclic multiplicative flows turn into exponential flows.

loop z // Cyclic Flow − Loop Correction
x1 = x1 // identity − no flow from z → x1
x2 = x2 + y // additive − multiplicative flow z → x2
x3 = x3 + x3 // multiplicative − exponential flow z → x3
x4 = x4 ∗ y // multiplicative − exponential flow z → x4

The binary flow keeps track of duplication. For some variable x we are interested
whether there exists a sequence of statements that duplicates it, i.e. a sequence of
statements that corresponds to an update satisfying x′ 6 2x.

60

3.7 Automated Resource Analysis with Paicc

Example 3.42 (Duplicating Flow). Consider the following example. The illustrated
binary relation keeps track of combination of variables and correctly identifies duplicating
flow. Repeated duplication is super-polynomial. Crucially this inference is complete, a
duplicating flow is detected if and only if there exists one.

loop w
y = x
z = x
x = y + z // duplicating

x→y
x→z ·

y→x
z→x

3.7.2 Ben-Amram - Jones - Kristiansen Constraints Programs

Ben-Amram and Pineles [36, 37] provide an extension of the growth-rate analysis of
Core programs to flowchart programs with loop structures. We refer to them as FC-Core
programs. This is a strict extension in the sense that all Core programs can be represented
as FC-Core programs, but not the other way around. Most relevant, FC-Core programs
are unstructured (albeit bounded) in the sense that the control flow is given by goto
statements instead of loop statements. This allows for a more direct comparison to other
representations used.

Program Representation

The domain and expressions in FC-Core are equal to Core. Here we present the flowchart
programs of [36, 37] as CTSs with Ben-Amram - Jones - Kristiansen order constraints
over the natural numbers. We define BJK order constraints as weak assignments of
composed Core expressions. To simplify the upcoming abstraction we treat constants
as symbolic variable k. More formally, a BJK order constraint is an inequality of the
form x′i 6 p(x1, . . . , xn, k), that is, x′i is not greater than a polynomial (with natural
coefficients).

We restrict to fan-in free programs, that is, for each transition and variable x′ ∈ Var′

there is at most one constraint x′ 6 p(x1, . . . , xn, k). The restriction to fan-in free
programs is natural if we think of constraints as (parallel) weak assignments.

Order constraints do not determine control flow and without further restrictions such
programs are non-terminating. To remedy this fact, loop structures are introduced in [37].
Loop structures are akin to call-graphs and form a rooted tree that represents a nesting
hierarchy of (locally) bounded subprograms, so called loops. Loops are associated with a
polynomial expression, its loop bound, which indicates how often edges within a loop can
be traversed. Alternatively we can construe loop structures as an explicit representation
of program decomposition. For Core programs the loop structure is implied by the scope of
the loops. Assume L is a loop and Li its descendants in the loop structure. The semantics
of a loop L is interpreted as follows. Suppose the loop L is entered with configuration
(l, σ). Then the bound expression associated to L evaluated under the current store σ
is a bound on the maximum number of occurrences of edges (or transitions) in L \ Li
before leaving the loop (or subprogram) L.

61

3 Imperative Programs

In the rest of this work we assume that BJK programs are associated with a loop
structure. Moreover, we assume that the CFG of BJK program has at least one (possible
more) initial and final locations. This requirement is due to the nature of the growth-rate
analysis in [37] which expresses the grow-rate as an invariant between all initial and final
locations.

Example 3.43 (Motivating Example). The following BJK program is obtained from
Example 3.11 on page 20 by the upcoming abstraction. It illustrates how the original
conditional control flow of the program is replaced by a notion of local repetition, and
constraints only reflect the growth of the variables.

By convention the root consists of all transitions, its bound is constant. The outer
loop consists of the transitions τ2 and, τ3, and its bound is x. The inner loop consists of
the transition τ3, and its bound is z. In any trace τ1 and τ4 can occur only once, τ2 up
to x times, and τ3 can occur up to z times before leaving the inner loop. The inner loop
can be re-entered again, in total up to x times. The iteration count for τ3 depends on
the valuation of z when entering the inner loop.

l0

|x| |z |
l1

l2

τ1

τ3τ2

τ4

τ1 : 〈l0, l1, x′ 6 x ∧ y′ 6 y ∧ z′ 6 z〉
τ2 : 〈l1, l1, x′ 6 x ∧ y′ 6 x+ y ∧ z′ 6 x+ y〉
τ3 : 〈l1, l1, x′ 6 x ∧ y′ 6 y ∧ z′ 6 z〉
τ4 : 〈l1, l2, x′ 6 x ∧ y′ 6 y ∧ z′ 6 z〉

Program Abstraction

Next, we present an abstraction from integer-valued CTS programs to BJK programs.
This abstraction together with the BJK growth-rate analysis is implemented in the
prototype paicc [139], which is developed and maintained by the author of this thesis.
The abstraction was initially inspired by the synthesis of lexicographic ranking functions
in Rank [9] and the local size bound approximation in KoAT [51].

The abstraction is an overapproximation of the reachable set-of-states with respect to
the application of a chosen norm. We fix the set of norms to be the absolute value of
variables. We write, |x| instead of abs(σ(x)), if the store σ is not important. Additionally,
we abstract constants via a symbolic variable k, which represents an arbitrary natural
number. The approach is motivated by the idea that BJK is a suitable program
representation to reason about the growth-rate of norms, here, the absolute value of each
variable.

In the following let T be a integer-valued CTS. The abstraction of T to BJK consists of
two steps: (i) the inference of the loop structure, and (ii) the transformation of transitions
to BJK constraints.

62

3.7 Automated Resource Analysis with Paicc

Inferring loop structures

BJK programs use an explicit notion of decomposition in form of loop structures. The
loop structure of a program T is not unique and a semantic rather than syntactic property.

We have discussed before a strategy for deomposing programs based on lexicographic
combinations of ranking functions (Section 3.3.5 on page 24). For the construction, we
synthesise non-trivial linear quasi-ranking functions (see Section 3.3.5 on page 21). That
is, given a set of transitions we encode the following properties: (i) all transitions are
non-increasing, (ii) some transitions are decreasing and bounded. In notation, (>,>)

The following algorithm synthesises a lexicographic combination of linear RFs and
constructs a loop structure for the given program T . The algorithm fails if no ranking
function for the considered (sub)program can be established.

(i) The root node L of the loop structure consists of all transitions of T .

(ii) For the considered (sub)program T , add all transitions of each SCCi in the CFG
of T as child node Li to the current node.

(iii) For each leaf Li synthesise a RF (>i,>i) of Li such that >i is non-empty. Let Ti
denote the transitions of Li. The RF is a linear polynomial, c1x1 + · · ·+ cnxn + ckk.
This is a local bound on the maximum number of occurrences of transitions in >i
w.r.t. Ti. The associated loop bound of Li is |c1|x1 + · · ·+ |cn|xn + |ck|k.

(iv) For Ti \>i apply recursively (ii).

Inferring Local Size Bounds

Next, we describe the approximation of local size bounds (or growth-rates). The main
objective is to capture the change in norms for a single evaluation step, by transforming
transitions conforming to iCTS constraints to transitions conforming to BJK constraints
taking the application of the norm into account. This is a specialisation of the inference
of transition invariants (see Section 3.3.7 on page 26). Let τ : 〈l, l′, φ〉 be a transition in
T . A local size bound for variable x ∈ Var is a complexity bound sbτ (x) such that

sbτ (x) < λσ. sup{|σ′(x)| | σ, σ′ |= φ} .

For programs in which constraints correspond to standard assignments x = y + z and
x = y ∗ z, one can make use of the following observations to analyse programs over the
integer domain: |x∗y| 6 |x| ∗ |y| and |x+y| 6 |x|+ |y|. However, paicc supports a more
flexible transformation via the synthesis of polynomials. Let τ : 〈l, l′, φ〉 be a transition in
T . For each variable xi ∈ Var two polynomials are synthesised that represent the lower
and upper bound, respectively.

(i) φ |= x′i > c1x1 + · · ·+ cnxn + ckk, and

(ii) φ |= x′i 6 d1x1 + · · ·+ dnxn + dkk,

63

3 Imperative Programs

Then, the local size bound of xi is a BJK constraint x′i 6 max(|c1|, |d1|)x1 + · · · +
max(|cn|, |dn|)xn + max(|ck|, |dk|)k. The implementation restricts to affine linear updates
and uses the synthesis approach described in Section 3.3.5 on page 22. The algorithm
may fail to provide a bound.

Example 3.44 (Inference of the Loop Structure of Example 3.43). The loop structure
illustrated in Example 3.43 is obtained from Example 3.11 using the approach presented
above. Let T = {τ1, τ2, τ3, τ4} in which τ4 : 〈l1, l2, x′ 6 x ∧ y′ 6 y ∧ z′ 6 z〉 is added to
the original program.

Step 1 By construction, the root node L of the loop structure consists of all transitions
of T . L = {τ1, τ2, τ3, τ4}. The associated loop bound of L is constant.

Step 2 The single SCC consisting of the transitions T1 = {τ2, τ3} forms the loop L1.

Step 3 The linear RF η(l1;σ) = σ(x) is synthesised, which is decreasing and bounded
for τ2, i.e. τ2 ∈ >1. The loop bound associated to L1 is |x|.

Step 4 We recursively apply the inference for T ′ = {τ3}.

Step 5 The single SCC {τ3} forms the loop L11 .

Step 6 The ranking function η(l1; z) = σ(z) is decreasing and bounded for τ3. The loop
bound associated for L11 is |z | .

The algorithm terminates since no (non-trivial) subprograms are left.

Bound Analysis

The growth-rate analysis of FC-Core programs presented in [37] is conceptually similar
to the original growth-rate analysis of Core programs presented in [39]. We provide
some additional insights how loop structures are processed. The approach is inspired by
the ripping algorithm for the conversion of non-deterministic finite automata to regular
expressions (cf. Sipser [147]), suitably adapting the loop correction of [39] for the loops
within the loop structure.

Let T be a BJK program. At first, each constraint in T is mapped to its flow-
abstraction. Akin to the analysis of Core programs the loop structure is processed
bottom-up. A loop in the loop structure can have multiple entry and exit nodes that
are connected with the outer loop within the loop structure. The algorithm repeatedly
transforms each loop that forms a leaf of the loop structure to its loop summary, which is
a set of transitions that represents the unary and binary flow abstraction between entry
and exit nodes. Loop summaries are obtained by ripping (or eliminating) non-entry and
non-exit nodes.

We illustrate the interesting case of a self-loop. Suppose that the loop bound associated
to the enclosing loop structure is N . We rip location l1. In doing so, we replace l1
with the loop correction of the fixed-point that is obtained by repeatedly composing

64

3.7 Automated Resource Analysis with Paicc

the flow-abstraction b of the self-loop. This operation is indicated below by LCNb∗.
Afterwards, the abstraction is composed with the incoming and outgoing flow.

l0 l1 l2
a

b

c
l0 l2

a · LCNb∗ · c

Example 3.45 (Cont’d from Example 3.43). The tool paicc performs the bound analysis
bottom-up, in doing so, the program is instrumented with a dedicated counter variable.
The inner loop l1

τ3−→ l1 is processed first. It has an additive dependency from z to the
counter variable. All program variables are not modified and have a reflexive identity
flow. The outer loop is processed next. It implies a multiplicative flow from x and y to
the counter variable. Therefore, the worst-case runtime is polynomially bounded.

Tight Bounds for Core Programs

At the time of writing Ben-Amram and Hamilton [33] present the inference of tight
polynomial bounds on the growth-rate of variables for Core programs. The proposed
analysis is conceptually similar to the original one. However, it crucially differs in the
underlying abstract domain used.

The abstract domain is defined over sets of (abstract) multi-polynomials (see also
Section 3.4.2 on page 27). Consider a program with n program variables. A multi-
polynomial is a n-tuple of polynomial expressions that represents a polynomial bound on
each variable. On the other hand, a set of multi-polynomials is interpreted as disjunctive
simultaneous bounds, i.e. the output value of all variables is bounded by (at least) one
multi-polynomial. For instance, consider a program with variables x, y and z. The
set {〈x, y, z〉, 〈x, x2 + y, x2 + z〉} indicates that for each run the growth-rate of x, y, z is
bounded by 〈x, y, z〉 or 〈x, x2 + y, x2 + z〉.

The abstract domain is precise for programs without loops. Straight line code translates
into composition of polynomials and non-deterministic choice translates into union of
sets. During the closure algorithm of loops, coefficients in polynomials are abstracted. In
doing so (under scrutiny) loop summaries in form of sets of (abstract) multi-polynomials
are obtained.

Example 3.46 (Tight Bounds). Consider the following example of Ben-Amram and
Hamilton [33]. The set of multi-polynomials {〈x1, x2, x3, x1〉, 〈x1, x

2
1 + x2, x

2
1 + x2, x1〉}

is returned by the proposed analysis. The first multi-polynomial represents the case in
which the loop is never executed. The second multi-polynomial represents the case in
which the loop is executed (up to) x4 times.

x4 = x1
loop x4
x2 = x1 + x2
x3 = x2

65

3 Imperative Programs

We have yet to investigate the application of this result in paicc. We are confident
that the abstract domain and fixed-point computation could also be applied for flowchart
programs instead of core programs. One argument to support this claim is that the
proposed analysis reduces the problem of analysing programs without loops to disjunctive
paths. However, in doing so it is not obvious if the bounds that are obtained are still
tight for flowchart programs.

66

3.8 Overview of Tools

3.8 Overview of Tools
Based on Sections 3.5 to 3.7 we provide an overview of a selected few key concepts. We
conclude this section with Table 3.2.

KoAT
The tool KoAT processes programs with polynomial order constraints POL and relies
on known approaches to solve constraints over (linear) inequalities. At its core is the
synthesis of (polynomial) ranking functions. The tool focuses on the inference of transition
bounds and size bounds. The approach uses a fixed set of norms, namely the absolute
value of all program variables. Modularity is obtained by an interdependent alternating
runtime and size bound analysis. To make constraint solving more viable supporting
invariants are inferred by standard numeric invariant generation. The decomposition in
KoAT is not explicit but the constructed complexity proof is analogous to lexicographic
combinations of ranking functions. We say that the application of LexRFs is implicit.

Loopus
The tool Loopus uses different abstract program representations. As preprocessing step it
identifies norms via heuristics and abstracts the target program such that it is conform
with the abstract program representation. Norms are usually combinations of (but not
restricted to) max and linear expressions.

The (MC,Z) domain is used as disjunctive domain for program abstraction. The
runtime for monotonicity constraints programs is expressed in form of reachability bounds.
Upper bounds are inferred via lexicographic decomposition incorporating size bounds on
expressions, which are obtained from standard numeric invariant generation.

The (MDC,N) domain expresses incremental growth on subprograms. The runtime
for monotone difference constraints programs is expressed in form of path bounds. Upper
bounds are obtained from lexicographic ranking functions taking the incremental growth
for subcomponents into account. Standard numeric invariant generation is used to obtain
size bounds on expressions for program abstraction.

The (DC,N) domain is used to express the domain space of local bounds via increments
and resets. The runtime problem for difference constraints programs is expressed in form
of interdependent constraints on transition and variable (or size) bounds. The existence
of a lexicographic ranking function ensures that the bound analysis terminates.

paicc
The tool paicc is based on (BJK,N) constraints which provide a compositional growth-rate
analysis to certify polynomial growth-rate. The runtime bound is expressed via counter
instrumentation. Lexicographic ranking functions are used to generate an explicit notion
of decomposition in form of loop structures. The set of norms is fixed to the absolute
value of variables. Standard numeric invariant generation is used to infer supporting
invariants.

67

3
Im

perative
Program

s

KoAT Loopus paicc

Domain (POL,Z) (MC,Z) (MDC,N) (DC,N) (BJK,N)

Motivation synthesis of
polynomial RF

predicate
abstraction

bound analysis
via increments

bound analysis
via increments

and resets

growth-rate

Runtime transition bound
& size bound

reachability
bound

path bound transition bound
& size bound

counter
instrumentation

Norm absolute value max & linear max & linear max & linear absolute value

Invariant support size bounds size bounds - support

LexRF implicit explicit explicit termination loop structure

Modularity alternating
runtime and size

analysis

LexRF & size
bounds

LexRF &
incremental

growth

recursive
constraints on
transition and

size bounds

loop structure &
compositional
growth-rate

Table 3.2: Overview of Key Concepts in Complexity Tools.

68

3.9 Comparing Tools and Abstract Program Representations

3.9 Comparing Tools and Abstract Program Representations
In this section we provide additional insights between different tools and abstract program
representations.

KoAT & paicc
The development of paicc was motivated by the ongoing work of KoAT and the develop-
ments of decidable growth-rates for FC-Core programs. We compare both approaches.

Representation of Complexity Bounds

The tool KoAT uses a more representative notion of complexity bounds in form of expres-
sions that are constructed from the absolute value of variables, addition, multiplication
and exponentiation. This is of practical relevance if one is interested in tight upper (e.g.
quadratic, cubic, . . .) complexity bounds. In contrast, FC-Core and paicc provide only a
certificate for polynomial (or linear) growth-rate.

Norms and Local Sizebounds

The tool KoAT processes POL programs. The proposed analysis computes local size
bounds that represent the growth of a norm with respect to a single reduction step. The
representation of local size bounds (e.g. |x′| 6 |y|+1) in KoAT resembles BJK constraints.
Both tools fix the set of norms to the set of absolute value of variables. There is a small
but significant difference, which we are going to discuss below, in the support of numeric
constants. Constants in BJK are abstracted to constant expressions that represent any
natural number. Keeping in mind that we can represent the worst-case runtime by the
size (or growth-rate) of a dedicated counter variable, we focus on comparing the inference
of size bounds and the modularity thereof.

Global Sizebounds

Based on the previous observation we investigate the inference of size bounds. We focus
on the difference in finding closed-form expressions of variable growth under repetition.

It is known that the analysis of KoAT is not complete w.r.t. polynomial growth-rate.
The following motivating example is taken from the growth-rate analysis of FC-Core
programs [36, 37].

loop m
choice
{ x = z ; y = n }
{ x = n; y = z }
{ z = x + y }

The difference in the analysis is in the detection of duplicating flow (see Section 3.5.1
on page 41 and Section 3.7.1 on page 60), which implies super polynomial growth. The
analysis of KoAT is based on inspecting cyclic flow dependencies, here z → x, z → y

69

3 Imperative Programs

and y → z, x→ z, which is interpreted as duplicating flow. The binary flow analysis of
FC-Core correctly detects the correlation between sums of variables, here x+ y = z + w
and infers polynomial growth-rate.

On the other hand, the FC-Core analysis does not support constants. It is an open
problem whether Core extended with constants, or more specifically increments, has
decidable growth-rate [28, 34].

loop x
z = z + 1

In this example the value 1 is treated as a (constant) variable expression and a multiplica-
tive growth-rate for z that depends on x and 1 is obtained. In paicc numeric constants
are replaced with a fresh variable k, which represents some arbitrarily chosen but fixed
natural number. The multiplicative growth-rate is optimal for the abstraction used,
consider the instantiation of k with a constant greater than one. The tool KoAT on the
other hand, infers the precise linear bound z′ 6 z + x (under optimistic assumption for
the local size and transition bounds inferred).

Decomposition

In paicc an explicit notion of program decomposition is used in form of loop structures.
The loop structure for the program under consideration is obtained via the inference
of a lexicographic combination of polynomial ranking functions. The runtime bound
analysis in KoAT, on the other hand, makes use of a dedicated strategy to select candidate
subprograms for the modular bound inference. Albeit its construction is hidden in the
complexity proof, the proposed approach is also based on lexicographic combinations of
ranking functions.

We remark that the algorithm for the inference of loop structures that is implemented
in paicc (see Section 3.7.2 on page 63) is a natural candidate for the strategy used in KoAT.
The precise theoretical and practical connections, however, are unclear. In particular, it is
an open question whether the proposed algorithm for constructing the loop structure is a
complete strategy in the sense that all possible program decompositions that are amenable
to the bound analysis in KoAT are also conform to the loop structure construction.

Norms and Complexity Bounds

KoAT and paicc define norms as the absolute value of a variable. This fixes the domain
space for the size analysis of norms and allows providing dedicated strategies to infer
upper bounds.

Furthermore, fixing the domain space provides modularity in a bigger scope by analysing
methods of a larger program individually. Within the CAGE7 (Complexity Analysis-
Based Guaranteed Execution) project, safety properties based on resource analysis have
been investigated. The tools AProVe and KoAT use method summaries as an abstraction

7https://www.draper.com/news-releases/drapers-cage-could-spot-code-vulnerable-denial-
service-attacks

70

https://www.draper.com/news-releases/drapers-cage-could-spot-code-vulnerable-denial-service-attacks
https://www.draper.com/news-releases/drapers-cage-could-spot-code-vulnerable-denial-service-attacks

3.9 Comparing Tools and Abstract Program Representations

of method calls (see Frohn and Giesl [76]). Method summaries collect several data-facts
such as heap-shape information and numeric invariants. Moreover, method summaries
incorporate resource bounds. By fixing the domain space of method summaries on
call-sites, resource bounds can be integrated in a modular analysis.

On the other hand, it can be a source of imprecision. Consider the following program.
while(x > 0)

x = x − 1; y = y + z ; z = z + z
while(y > z)

y = y − 1
For the sake of the argument we assume that the runtime of both loops are analysed
separately. The expressions max(0, x) and max(0, y − z) bound the number of iterations
of the first and second loop, respectively, and the program variables y and z grow
exponentially within the first loop. The tools KoAT and paicc inspect bounds on the
absolute values |y| and |z| of the variables. The iteration bound for the second loop
is approximated by |y| + |z|, and therefore, the runtime for the second loop is super-
polynomial.

However, the expression max(0, y − z) is constant during the iteration of the first
loop, and thus, the runtime of the program is linear. This imprecision is due to the
choice of abstraction in KoAT and paicc. While extending the approaches to incorporate
more sophisticated norms is non-trivial, it would be interesting to instrument programs
beforehand with an additional transformation step.

Loopus & KoAT

In the following we remark on some observations for the runtime analysis of MDC
programs in Loopus and KoAT.

Amortised Resource Analysis

Amortised resource analysis [148, 151] aims to inspect the worst-case cost of sequences of
operations. In doing so it averages the cost (or runtime) of a sequence of operations over
the whole program execution. The approach has been established by Tarjan and Sleator
in the context of self-balancing data structures.

In what follows we address the discussion about amortisation for MDC programs
in Sinn et al. [145]. Below, we recall the program of Example 3.29 on page 49. The
program models Tarjan’s stack example [151]. In each iteration of the outer loop, one
of the following sequence of operations is performed. Push one element onto the stack
or pop many elements from the stack. We associate to a single push or pop operation
the cost (or runtime) one. Since the operations mimic a stack, it is easy to see that pop
many cannot pop more elements than are available on the stack. In total, m elements
are pushed onto the stack and therefore at most m elements are popped. We obtain the
runtime bound 2m.

Additionally, we illustrate an approximation using Core syntax. The approximation
abstracts the conditional control flow induced by while with bounded control flow induced

71

3 Imperative Programs

by loop. The analysis of Core programs conceptually aligns with our initial discussion
about modular resource analysis in Section 3.3.4 on page 19. We inspect the iteration
bound of the outer loop, the iteration bound of the inner loop, and the size bound of the
loop bound variables. We obtain the runtime bound m2.

main(m)
i = m; n = 0

l1 : while(i > 0)
i = i − 1

l2 : if(∗)
n = n + 1

else
l3 : while(n > 0 ∧ ∗)

n = n − 1
l4 : skip

l1

l2

l4 l3

l0
τ1

τ2

τ 3
τ4

τ5τ6

τ 7

main(m)
i = m; n = 0
loop i

skip
choice
{ n = n + 1 }
{
loop n

skip }
skip

As discussed in Section 3.6.1, the worst-case runtime bound that is obtained by the
path bound analysis of MDC programs is 2m. The bound is derived from the LexRF
〈i : π1, i : π2, n : π3〉 (after some additional simplifications). The discussion in Sinn
et al. [145] provides an informal argument for the support of amortised bound analysis.
In particular, the lexicographic ranking function is interpreted as a multidimensionial
potential function. Consider the LexRF 〈i : π1, i : π2, n : π3〉. Then, one can imagine that
the potential of π3 can be increased by the operations of π2 and π1.

The authors provide ample experimental evidence to show that their approach supports
amortisation, in the sense that the obtained bounds are often asymptotic smaller than
one would expect from the loop-nesting depth, and claim that all other considered tools
in the experiment, which includes KoAT, fail to infer precise bounds on these examples.
However, we obtain a linear runtime bound with KoAT on the running example, given
that we augment the program with a supporting invariant i > 0 for transition τ5. We
were also able to infer a linear bound using paicc, given that we restrict the domain of the
valuation to the natural numbers. In the following we provide some additional insights.

Based on the application of LexRFs, one may expect a non-linear bound. We recall
that pb(π) denotes the bound on the maximal number of occurrences of the path π
and sb(x) denotes the bound on the maximal valuation of the variable x. Take the
co-domain of the ranking function (pb(π1), pb(π2), pb(π3)). Since each loop path πi is
associated to a variable, we may consider (sb(i), sb(i), sb(n)) instead. Let >lex denote the
lexicographic order over Nd, i.e. (x1, . . . , xd) >lex (x′1, . . . , x′d) if xi > x′i for any 1 6 i 6 d
and xj > x′j for all 1 6 j < i. Then, the height of the order relation, i.e. the maximum
length of a strictly descending chain n0 >lex n1 >lex · · · >lex nn, is sb(i) · sb(i) · sb(n).
However, it is actually enough to consider a disjunctive relation for MDC programs, i.e.
(x1, . . . , xd) >dis (x′1, . . . , x′d) if xi > x′i for all 1 6 i 6 n and xi > x′i for any 1 6 i 6 n.
Alternatively, consider the sum

∑d
i=1 xi with the standard order on natural numbers.

This construction is analogues to non-trivial quasi-ranking functions. Indeed, the linear
runtime bound returned by KoAT is obtained via the synthesis of linear quasi-RFs, which
bound the maximal number of occurrences of the individual transitions. What is left,
is to consider when the synthesis of RFs succeeds. Consider a MDC program where

72

3.9 Comparing Tools and Abstract Program Representations

constraints are restricted to x′ 6 x+ k with k ∈ Z, in particular, k does not represent
a symbolic constant. Suppose that 〈x1 : π1, . . . , xn : πn〉 is a LexRF. Then, the path
bounds on πi are all linear and amenable to the synthesis approach of RFs discussed in
the preliminaries.

We emphasise that the modular approach to bound inference in KoAT, which is based
on inspecting subprograms separately, is not used for the running example. This is also
the case for paicc, which infers a loop structure with a single non-root loop. In particular,
instead of nested loops, like above, the abstraction is a program with a single loop and
therefore effectively limiting the multiplicative composition in the growth-rate analysis.

Most relevant, the runtime bounds that are inferred by KoAT and paicc are obtained
solely via the inference of polynomial RFs that inspect the whole program. The precise
connection between amortised resource analysis and polynomial interpretations (and
polynomial ranking functions) is discussed in Hofmann and Moser [98].

Above, we restrict the discussion to constraints x′ 6 x + k with k ∈ Z. However,
Loopus processes the more general case with k being symbolic constant expressions
that evaluate to Z. This does not complicate the bound inference algorithm in Loopus,
however, it allows for the construction of non-linear bounds. In contrast, in KoAT and
paicc non-linear bounds are primarily inferred via a modular analysis. These approaches
inspect and combine worst-case runtime and size bounds of subprograms rather than
averaging the cost of evaluating the subprogram.

Case Study: Quadratic VASS

MDC programs are closely related to VASS programs. Consider the following example
conforming to standard VASS (see Section 3.4.5 on page 31).

l0

l1

τ1

τ2

τ3

τ4

τ1 : 〈l0, l0, x′ = x− 1 ∧ y′ = y + 1〉
τ2 : 〈l0, l1, x′ = x ∧ y′ = y〉
τ3 : 〈l1, l1, x′ = x+ 1 ∧ y′ = y − 1〉
τ4 : 〈l1, l0, x′ = x− 1 ∧ y′ = y

The program has a LexRF 〈x+y : τ2, τ4, x : τ1, y : τ2〉. A decidable procedure for precise
asymptotic bounds for VASS is presented by Brázdil et al. [45]. The proposed algorithm
bears resemblance with the lexicographic decomposition discussed in Section 3.3.5. The
asymptotic bound is obtained by 1 plus the maximal nesting depth of the decomposition.
For the given example, a quadratic runtime bound is inferred. As informal argument
consider that the maximal valuation of x and y is x + y. This provides a bound on
τ2 · τ4. Therefore, both loops can be entered at most x+ y times. The loops can then be
inspected individually.

Next, we inspect the analysis in Loopus based on MDC constraints (see Section 3.6.2
on page 48). The proposed control flow abstraction collects all loop paths. We obtain

73

3 Imperative Programs

the following system.

τ1 = π1 : 〈•, •, x′ 6 x− 1 ∧ y′ 6 y + 1〉
τ3 = π2 : 〈•, •, x′ 6 x+ 1 ∧ y′ 6 y − 1〉

τ2 · τ4 = π3 : 〈•, •, x′ 6 x− 1 ∧ y′ 6 y〉

The system is non-terminating. Consider the run obtained by applying π1·π2 consecutively.
It is easy to see that no can be obtained. The control flow abstraction is the choice of
abstraction in Loopus. This example shows that it is a lossy abstraction.

We also have not been able to infer a polynomial bound on the runtime complexity
with KoAT and paicc. With the given lexicographic decomposition both tools fail to
control the size bound on the variables.

3.10 Concluding Remarks
In this chapter we have been concerned with practical and theoretical aspects of automated
resource analysis of integer-valued imperative programs. We have studied three tools
that have been developed in recent years, namely KoAT, Loopus and paicc, and outlined
the key concepts of the individual approaches to resource analysis. Our discussion covers
practical aspects as well as theoretical properties of the abstract program representations
that are used within the tools. Furthermore, we have given an overview of known relevant
theoretical results on different related abstract program representations that are known
from the literature.

74

Chapter 4

Imperative Programs with Heap

In this chapter we are concerned with automated resource analysis of imperative programs
with heap allocated data. We consider a Goto programming language with primitives for
allocating and manipulating (typed) records. Adding support for heap allocated data raises
new challenges for the resource analysis, among them, composed data structures, data
sharing and side effects. To automate the analysis we focus on a transformational approach
that makes use of existing abstract program representations. Here, a transformation from
program P to P ′ is called complexity reflecting if the (worst-case runtime) complexity of
P is bounded by the (worst-case runtime) complexity of P ′. Consequently, we can assess
the complexity of the target P via its abstraction P ′. In the course of this chapter we
present two complexity reflecting transformations for our programming language that
are known from the literature:

(i) A size abstraction to constraint transition systems (CTSs for short), and

(ii) a term abstraction to constraint term rewrite systems (cTRSs for short).

Moser and Schaper [119] present the technical details for the term abstraction of
object-oriented bytecode programs. In this chapter, however, we focus on the central ideas
of both transformations. We provide a uniform presentation and give additional insights
about conceptual challenges that arise from the resource analysis of programs with heap
allocated data.

Section 4.1 illustrates a motivating example and provides an informal discussion about
its worst-case runtime behaviour. In Section 4.2 we recall constraint term rewrite systems.
The programming language under consideration is presented in Section 4.3, while the
size and term abstraction are presented in Section 4.4. Section 4.5 provides additional
insights on the term abstraction presented in Moser and Schaper [119]. In Section 4.6 we
present related work. Finally, we conclude this chapter in Section 4.7.

4.1 Introduction
In this section we provide some initial insights for the automated resource analysis of
programs with heap allocated data structures. When considering programs with heap, it
is not immediate how to define resource analysis at first. We recall three alternatives.

First, consider whole-program analysis. In whole-program analysis we assume that
the heap of the initial configuration is empty. This is a very natural definition and

75

4 Imperative Programs with Heap

enables a straightforward extension of the notion of complexity from programs without
heap. However, by its nature this approach is not modular and thus excludes common
interesting use cases. Consider for instance, a library that exposes a data structure List
together with several methods, e.g. insert, member, sort etc. A motivating use case for
static resource analysis is to infer and guarantee the resource behaviour of all individual
methods of the library. However, in whole-program analysis it is not obvious how to
represent all possible instances of a data structure.

Second, consider the case where the procedure of interest is separated into an initiali-
sation and computation phase. For example, main(){init ;comp} (cf. Hainry and Péchoux
[90]). Here, we are interested in analysing the subprogram comp with respect to all
output states that are generated by the subprogram init . By construction, this approach
guarantees that all input states for the computation phase are well-formed program
states. This approach is not restricted to a single program execution. Imagine that data
is generated during the initialisation phase using built-in non-determinism. Then, it is
essential to stratify the input states of the computation phase. Typically, this depends on
the exact nature of the analysis. Since the heap of the input states may contain data, we
require a finite representation of the heap, viz its input size. As an illustrating example,
consider that input states are specified in terms of the valuation of integer variables
together with the number of allocated data cells in the heap.

Third, consider a variation of the second case using data-flow information (cf. Albert
et al. [4]). Instead of an initialisation phase, we use data-flow information as assumptions
to restrict the set of input states. In the context of data-flow analysis these assumptions
can often be made precise. For example, consider the iteration over a singly-linked list
iterate(l:List). An analysis may distinct the cases where the argument l references
an acyclic list and where l references a cyclic list. For the latter case the number of
iterations is unbounded.

In Section 4.4 we discuss two abstractions of programs with heap allocated data, which
make use of additional data-flow information that are obtained by external analyser.
Thus, we are going to present the abstractions in terms of the last alternative. As
motivating example, we consider the traversal over a binary tree.

Example 4.1 (Binary Tree Traversal). Figure 4.1 depicts a program in Java syntax
that declares a tree and stack data structure together with a few standard methods. We
investigate the worst-case runtime of the method void traverse(Tree t). The method
takes as argument a variable with type Tree which references an instance of the class
Tree allocated on the heap. We are going to see that the runtime does not only depend
on the input size but also on the input shape.

For the sake of the discussion, we omit any formal definitions for now. We inspect the
worst-case runtime in terms of the maximal derivation height of all input configurations.
The heap of the input is possible non-empty. A finite representation of the heap is
obtained by mapping the data to its size. Imagine that the heap can be represented as a
labelled directed graph in which nodes represent locations in the memory. We fix the
input size of the argument by the number of reachable locations.

76

4.1 Introduction

class Tree{ int val ; Tree l e f t ; Tree right ; }

class Stack{
Tree elem ; Stack next ; public class Main {

Tree pop(){ void traverse(Tree t){
Tree t = this . next .elem ; Stack st = new Stack() ;
this . next = this . next . next ; st .push(t) ;
return t ; while(! st .isEmpty()){
} t = st .pop()

//vis i t (t)
void push(Tree t){ if(t != null){

Stack st = new Stack() ; st .push(t . right) ;
st . next = this . next ; st .push(t . l e f t)
st .elem = t ; }
this . next = st ; }
} }

boolean isEmpty(){ }
return this . next == null ;
}

}

Figure 4.1: Binary Tree Traversal in Java.

Next, we discuss the expected result. The intention of the method traverse is to visit
each node once. However, the algorithm actually depends on the number of paths to
each node. We obtain three interesting cases.

(i) If the argument is cyclic, that is, there is a cycle in the graph representation of the
heap, then the number of visits to its nodes is unbounded. In fact, the program is
non-terminating.

(ii) If the argument is acyclic, that is, the graph representation of the heap is a directed
acyclic graph, then the program is terminating. Consider a fully-shared binary tree
in which the left and right child of a parent node always reference the same node.
Then the number of paths starting from the root is exponential in the number of
nodes (or height) of the tree. The expected runtime is exponential.

(iii) If the argument is tree-shaped, that is, the graph representation of the heap conforms
to a binary tree, then the program is terminating. Consider a full binary tree in
which the left and right child never reference the same node. Then we obtain a
linear bound on the maximal derivation height in terms of the input size.

The last case is what one would expect when formally reasoning about binary trees.
However, in an object-oriented language like Java there is no guarantee that the referenced
structure Tree is actually a binary tree.

77

4 Imperative Programs with Heap

4.2 Preliminaries

In this section we recall constraint term rewrite systems, see Moser and Schaper [119] for
details. For an overview for (standard) term rewrite systems see Baader and Nipkow [22].

We denote by V a countably infinite set of variables and by F a signature. The set of
terms over F and V is written as T (F ,V). A rewrite relation → is a binary relation on
terms closed under contexts and stable under substitution.

Let C be a (not necessarily finite) sorted signature, and let V ′ denote a countably
infinite set of sorted variables. Furthermore, let T denote a theory over C. Quantifier-free
formulas over C are called constraints. Suppose F is a sorted signature that extends C
and let V ⊇ V ′ denote an extension of the variables in V ′. Let T (F ,V) denote the set of
(sorted) terms over the signature F and V. Note that the sorted signature is necessary
to distinguish between theory variables that are to be interpreted over the theory T
and term variables whose interpretation is free. A constraint rewrite rule, denoted as
l→ r JCK, is a triple consisting of terms l and r, together with a constraint C. We assert
that l 6∈ V, but do not require that Var(l) ⊇ Var(r) ∪ Var(C), where Var(t) (Var(C))
denotes the variables occurring in the term t (constraint C). A constraint term rewrite
system (cTRS for short) is a finite set of constraint rewrite rules.

Let R denote a cTRS. A context D is a term with exactly one occurrence of a hole
�, and D[t] denotes the term obtained by replacing the hole � in D by the term t. A
substitution σ is a function that maps variables to terms, and tσ denotes the homomorphic
extension of this function to terms. We define the rewrite relation −→R as follows. For
terms s and t, s −→R t holds, if there exists a context D, a substitution σ and a constraint
rule l→ r JCK∈ R such that s =T D[lσ] and t = D[rσ] with T ` Cσ. Here =T denotes
unification modulo T . For extra variables x, possibly occurring in t, we demand that
σ(x) is in normal-form.

We often drop the reference to the cTRS R, if no confusion can arise from this.
A function symbol in F is called defined if f occurs as the root symbol of l, where
l→ r JCK∈ R. Function symbols in F \ C that are not defined are called constructor
symbols, and the symbols in C are called theory symbols. A term t = f(t1, . . . , tk) is
a basic term if f is a defined symbol and the terms ti are only built over constructor,
theory symbols, and variables.

In the course of this chapter we introduce integer cTRSs, i.e. rewrite systems in which
the theory T is fixed to support standard arithmetic operations over the integers. Most
relevant, integer cTRSs generalise integer CTSs which have been formally introduced in
Chapter 3 on page 16.

4.3 Goto Programs with Records

In the following we present the imperative programming language GotoR with support
for arithmetic expressions over the integers and custom data types in form of records.

Each program is associated with a finite set of variable declarations and record
declarations. In the following Var denotes a finite set of variable identifiers, RName

78

4.3 Goto Programs with Records

denotes a finite set of record identifiers and Field denotes a finite set of field identifiers.
The set of types (Type) of a program is given by the integer type Int together with RName.
In the following let x ∈ Var, fld ∈ Field and T ∈ Type. A variable declaration is of the
form x : T . A record declaration is of the form T{fld1 : T1, . . . , f ldk : Tk}, where all field
identifiers are distinct.

A program value v ∈ Val is either an integer, an address or the null value null. We
do not support pointer arithmetic and therefore keep the concrete type of addresses
p ∈ Addr abstract. A store (or environment) σ ∈ Σ is a mapping from variables to values.
A heap µ ∈ Heap is a partial mapping from addresses to records. We decorate records
with its type. A record provides a mapping from its defined fields (or selectors) to values.
Let Loc , N define the set of program locations. A configuration (l, σ, µ) ∈ Conf is a
triple consisting of program location l, store σ and heap µ.

Type , RName] {Int} Σ , Var→ Val

Val , Addr] Z] {null} Heap , Addr→ RecordT

RecordT , Field→ Val Conf , Loc× Σ× Heap

In the following let n ∈ Z, x, y ∈ Var, fld ∈ Field, l ∈ Loc, and T ∈ Type. The state-
ments of a program are given in normal form that simplify the subsequent presentation.
The syntax of GotoR is given by the following grammar:

a ∈ AExp ::= n | x | a1 + a2 | a1 ∗ a2

Stmt ::= x = y variable assignment
| x = a assignment of expression
| x = null assignment of null
| x = new T (y1, . . . , yk) record allocation
| x = y.fld field selection
| x.fld = y field update
| if a1 > a2 goto l conditional jump
| ifnull x goto l conditional jump.

A GotoR program has a unique method declaration of the form
method(x1 : T1, . . . , xj : Tj) with xj+1 : Tj+1 · · ·xk : Tk .

We assert that GotoR programs are well-typed, in doing so null is implicitly decorated
with a type. For the sake of simplicity we assume that the language is garbage-collected.
However, since we focus on runtime complexity and the upcoming transformations
formally restricts to reachable addresses within the heap, the transformations are also
sound for a language that is not garbage-collected. We note that integer values can either
be directly manipulated via the store or indirectly via records. Consequently, programs
without heap can be directly represented as constraint transition systems.

79

4 Imperative Programs with Heap

Example 4.2 (Binary Tree Traversal in GotoR). The following program is a variation
of tree traversal of Example 4.1 written in GotoR.

data Tree {val : Int, l e f t : Tree, right : Tree}
data Stack {elem : Tree, next : Stack}

traverse(t : Tree) with st : Stack, tmp : Tree
0 st = null
1 st = new Stack(t , st)
2 ifnull st goto B
3 t = st .elem
4 st = st . next
5 ifnull t goto 2
6 tmp = t . right
7 st = new Stack(tmp, st)
8 tmp = t . l e f t
9 st = new Stack(tmp, st)
A if 1 > 0 goto 2

The one-step reduction relation of GotoR is illustrated in Figure 4.2. With J·K : AExp→
Σ→ Z we denote the evaluation function of arithmetic expressions, i.e. JaK(σ) gives the
result of evaluating a with store σ. Most rules are standard.

case: x = y (l, σ, µ)→ (l + 1, σ[x 7→ σ(y)], µ)
case: x = a (l, σ, µ)→ (l + 1, σ[x 7→ JaK(σ)], µ)
case: x = null (l, σ, µ)→ (l + 1, σ[x 7→ null], µ)
case: x = new T (y1, . . . , yk) (l, σ, µ)→ (l + 1, σ, µ] [q.fldi 7→ σ(yi)]16i6k)
case: x = y.fld

σ(y) ∈ dom(µ) (l, σ, µ)→ (l + 1, σ[x 7→ µ(σ(y)).f ld], µ)
case: x.fld = y

σ(x) ∈ dom(µ) (l, σ, µ)→ (l + 1, σ, µ[σ(x).f ld 7→ σ(x)])
case: ifnull x goto l′

σ(x) = null (l, σ, µ)→ (l′, σ, µ)
otherwise (l, σ, µ)→ (l + 1, σ, µ)

case: if a1 > a2 goto l′

Ja1K(σ) > Ja2K(σ) (l, σ, µ)→ (l′, σ, µ)
otherwise (l, σ, µ)→ (l + 1, σ, µ)

Figure 4.2: One-Step Reduction Relation of GotoR.

In the case x = a we update the store σ with x being equal to the result of evaluating
the arithmetic expression a. In the case x = new T (y1, . . . , yk) we expect the arguments
to conform to the record declaration of T ∈ RName. The address q is fresh. For clarity,

80

4.4 Complexity Reflecting Program Abstraction

we write q.fld instead of q(fld) when referencing or updating record fields. In the case
of field selection x = y.fld and field update x. fld = y we test for null. Dereferencing
null halts the computation in the current configuration. The conditional cases are
straightforward.

Next, we fix the notion of worst-case runtime complexity of GotoR programs. The
runtime of an initial configuration is the maximal derivation height of all possible program
traces starting from it (see Definition 2.6 on page 10). As discussed above, the runtime
may depends on properties on the shape of the data allocated on the heap. Therefore,
we define the runtime complexity in terms of a set of initial configurations I ⊆ Conf
and maximal input size m ∈ N. We use a univariate notion of the complexity function
to simplify the subsequent presentation and remark that resource analysis tools often
provide a more refined notion of bounds. The notion of input size used here, is similar to
the one used by Hainry and Péchoux [90], which provide a type based characterisation of
polynomial time computable functions of an object-oriented programming language.

The input size of a configuration is defined by collecting all its values. In doing so, we
associate the size of null with zero, the size of an address with one, and the size of an
integer value with its absolute value.

Definition 4.3 (Input Size). Let v ∈ Val. The value size of v is

size(v) ,
{
abs(v) if v ∈ Z ,
0 otherwise .

The input size of a configuration c = (l, σ, µ) is defined as

size(c) ,
∑
x∈Var size(x) +

∑
p∈dom(µ)

(
1 +

∑
v∈rng(µ(p)) size(v)

)
.

Definition 4.4 (Runtime Complexity). Let P be a GotoR program and I ⊆ Conf denote
a set of initial configurations. Furthermore, let m ∈ N denote the maximal input size.
The worst-case runtime complexity rc : N→ N∞ of P on I is defined by

rcIP(m) , {dhP(c) | c ∈ I and size(c) 6 m} .

4.4 Complexity Reflecting Program Abstraction
In this section we present a size abstraction to CTSs and a term abstraction to cTRSs of
the GotoR programming language. Both abstractions are complexity reflecting, i.e. an
upper bound on the worst-case runtime complexity of the abstract program implies an
upper bound on the worst-case runtime complexity of the target program.

To make the subsequent program abstractions more viable in practice, we make use
of different heap shape properties. In particular, we employ the acyclicity domain by
Rossignoli and Spoto [138] and the pair sharing domain by Secci and Spoto [142], which
have been developed for the static program analyser Julia [149]. The referenced abstract
domains have been defined within the abstract interpretation framework (Cousot and
Cousot [59]). While we provide the definition for the individual domains, we skip the
details of the abstract semantics.

81

4 Imperative Programs with Heap

Definition 4.5 (Reachable Addresses). Let (l, σ, µ) ∈ Conf be a configuration. The set
of reachable addresses of value v ∈ Val is defined by:

addresses0(v) , {v} ∩ Addr

addressesi+1(v) ,
⋃
{rng(µ(p)) ∩ Addr | p ∈ addressesi(v)}

addresses+(v) ,
⋃
i>1 addresses

i(v)
addresses∗(v) , addresses0(v) ∪ addresses+(v)

Let x ∈ Var, then addresses(x) , addresses∗(σ(x)).

We motivate the acyclicity domain. The main application of the domain is to approxi-
mate data on the heap that is acyclic. This enables to define different behaviour for data
access, in particular field selection. Consider for example, iterating over a singly-linked list
while(x != null){ x = x.next }. If the list is cyclic, then the referenced heap address of
x may change in each iteration but the data accessible from x not. Alternatively, consider
that we are interested in establishing a ranking argument for termination based on the
length of the list from x to null. The length of the list is not defined (or unbounded) if
the list cyclic.

Definition 4.6 (Acyclic). Let (l, σ, µ) ∈ Conf be a configuration. A value v ∈ Val is called
cyclic at program location l if there exists v′ ∈ addresses(v) such that v′ ∈ addresses+(v′),
otherwise v is acyclic. Similarly, a variable x ∈ Var is called cyclic at program location l
if σ(x) is cyclic, otherwise x is acyclic.

Following the presentation in Rossignoli and Spoto [138] we define the abstract domain
in terms of an abstraction and concretisation function (cf. Nielson et al. [125]).

Definition 4.7 (Acyclicity Domain). We define the acyclicity domain as AC , P(Var)
together with the abstraction function αAC

l : AC → P(Conf) and the concretisation
function γACl : P(Conf)→ AC:

αAC
l (CS) , {x ∈ Var | for all (l, σ, µ) ∈ CS, x is acyclic at l }
γACl (AC) , {(l, σ, µ) ∈ Conf | for all x ∈ AC, x is acyclic at l}

In the subsequent program transformations we employ different abstractions for heap
allocated data. These abstractions cannot represent operations that manipulate data
precisely. To accommodate for possible side effects we employ the pair sharing domain.
Consider a field update x.fld = y associated with program location l. The pair sharing
domain overapproximates the set of variables that share data with x at program location
l and which would be indirectly affected by the field update.

Definition 4.8 (Variable Sharing). Let (l, σ, µ) ∈ Conf be a configuration and x, y ∈ Var.
We say that x and y share at program location l if addresses(x) ∩ addresses(y) 6= ∅.

82

4.4 Complexity Reflecting Program Abstraction

Definition 4.9 (Pair Sharing Domain). We define the pair sharing domain by SH ,
P(Var × Var) together with the abstraction function αSH

l : P(Conf) → SH and the con-
cretisation function γSHl : SH→ P(Conf):

αSH
l (CS) , {(x, y) ∈ Var × Var | there exists (l, σ, µ) ∈ CS st. x and y share at l}

γSHl (SH) , {(l, σ, µ) ∈ Conf | for all x, y ∈ Var, if x and y share at l then (v, w) ∈ SH}

In the remainder of this chapter we make use of the following observation. Let P be
a program, and I ⊆ Conf denote a set of initial configurations with program location
l = 0. Within the abstract interpretation framework we obtain an abstraction of P with
respect to I from I] , α0(I). Crucially, this abstraction overapproximates the one-step
reduction relation of P . Suppose that c] and d] are the abstractions obtained for the two
program locations l and l′, and (l0, σ0, µ0) ∈ γ0(I]). Then, (l0, σ0, µ0) −→∗P (l, σ, µ) −→P
(l′, σ′, µ′) ⊆ γ0(I]) −→∗P γl(c]) −→P γl′(d]). In other words, the evaluation does not get
stuck with respect to the abstract domains.

Alternatively, we fix an initial abstract element I]. Then we obtain an abstraction of
P with respect to the set of initial configurations γ0(I]). The latter variant is relevant
for implementing the analysis. For instance, consider a method iterate(l:List). If
we are interested in restricting the analysis to acyclic lists, then we infer the data-flow
information of the abstract domain from I] = ({l}, {(l, l)}) ∈ AC× SH.

In the following we assume that programs are decorated with the acyclicity domain and
the pair sharing domain. Let ACl ∈ P(Var) denote the acyclicity abstraction associated
with program location l. Then x is acyclic at program location l if x ∈ ACl, otherwise x
is maybe-cyclic. Let SHl ∈ P(Var × Var) denote the pair sharing abstraction associated
with program location l, and let SHxl = {z | z ∈ Var and (x, z) ∈ SHl}. Then x and y
may-share at program location l if y ∈ SHxl , otherwise x and y do not share.

The next definition guarantees that the acyclicity and pair sharing domain which is
associated with the program do not contradict with the program traces that start from
the considered set of initial configurations.

Definition 4.10 (Compatibility). Let P be a program and I ⊆ Conf denote a set
of initial configurations. The set of initial configurations I is compatible with P, if
I ⊆ γAC0 (AC0) ∩ γSH0 (SH0).

4.4.1 Size Abstraction
Next, we discuss numeric abstractions of programs with heap allocated data. The main
idea is to associate programs with a size function (or norm) sz that maps configura-
tions to a numeric value (or a combination of values), and to relate the size of the
input and output of the program relation by arithmetic constraints. This constitutes of
finding constraints φl,l′ |= sz(σ, µ)∧sz(σ′, µ′) that model the one-step reduction relation
(l, σ, µ) −→P (l′, σ′, µ′) induced by the semantics of program P (see also transition invari-
ants of Section 3.3.7 on page 26). Typically, constraints relate individual components
of the configuration such as the variables of the store. The assignment of an expression
x = w + 1, for instance, can then be expressed by the constraint φ |= sz(x′) = sz(w+ 1).

83

4 Imperative Programs with Heap

In the following we fix the notion of size to path-length, which is the choice of abstraction
in the termination analyser Julia [150] and the termination and cost analyser COSTA [4].

Definition 4.11 (Path-Length). Let (l, σ, µ) ∈ Conf be a configuration and p ∈ Addr.
The path-length of p is defined by:

plength0(p) , 0
plengthi+1(p) , 1 + max{plengthi(p′) | p′ ∈ addresses1(p)}

plength(p) , limi→∞ plengthi(p)

Let x ∈ Var, then

plength(x) ,

plength(p) if σ(x) = p and p ∈ Addr ,
0 if σ(x) = null ,
n if σ(x) = n and n ∈ Z .

Informally, the path-length of an address corresponds to the maximal path that can
be constructed by following the fields of the record instances allocated on the heap. The
path-length of cyclic data is infinite. We extend the definition to variables of the store.
The path-length abstraction of a configuration is given by the path-length of all variables
in the store. We note that the path-length abstraction ignores record fields of type
integer, however the integer-valued variables of the store are taking into account.

Definition 4.12 (Path-Length Domain). We denote the path-length domain with
PLength , Loc× Σ. The representation function (·)◦ : Conf → PLength and the concreti-
sation function γ

◦ : PLength→ P(Conf) are defined by:

(c)◦ , (l, [x 7→ plength(x)]x∈Var)
γ
◦(d) , {c ∈ Conf | (c)◦ = d)}

In Figure 4.3 we present the path-length abstraction of GotoR programs to CTSs. We
recall that a transition is a triple 〈l, l′, φ〉 with source location l ∈ Loc, target location
l′ ∈ Loc and constraint φ ∈ BExp over variables Var∪Var′. Primed variables Var′ indicate
the valuation at the target location. A set of transitions is called a CTS. For further
details, see Section 3.3.2 on page 16.

We make use of the restricted syntax of GotoR and provide the transformation rules
by case distinction on the statement at program location l. Typically, most variables are
not modified. Thus, in the following let ψS =

∧
x∈Var\S x

′ = x. We write ψx instead of
ψ{x}. We comment on the transformation rules.

The individual cases for the assignment of variables y = x, arithmetic expressions
y = a and the null value y = null are straightforward.

In the case of y = new T (x1, . . . , xk) we use V to collect all non-integer arguments.
We approximate the path-length of the new record instance by one plus the sum of all
variables in V . It would be correct to take the maximum instead of the sum, however we
restrict to max free constraints.

84

4.4 Complexity Reflecting Program Abstraction

case: x = y 〈l, l + 1, ψx ∧ x′ = y〉
case: x = a 〈l, l + 1, ψx ∧ x′ = a〉
case: x = null 〈l, l + 1, ψx ∧ x′ = 0〉
case: x = new T (y1, . . . , yk)
Let V = {yi | yi : Ti and Ti ∈ RName for 1 6 i 6 k}.

〈l, l + 1, ψx ∧ x′ > 0 ∧ x′ 6 1 +
∑
z∈V z〉

case: x = y.fld

y.fld : Int 〈l, l + 1, ψx〉
y ∈ ACl 〈l, l + 1, ψx ∧ x′ > 0 ∧ x′ < y〉
y 6∈ ACl 〈l, l + 1, ψx ∧ x′ > 0 ∧ x′ 6 y〉

case: x.fld = y

x.fld : Int 〈l, l + 1, ψ〉
y 6∈ SHxl 〈l, l + 1, ψSHx

l
∧
∧
z′∈SHx

l
z′ > 0 ∧ z′ 6 z + y〉

y ∈ SHxl 〈l, l + 1, ψSHx
l
∧
∧
z′∈SHx

l
z′ > 0〉

case: ifnull v goto l′ 〈l, l′, ψ ∧ w = 0〉
〈l, l + 1, ψ ∧ w > 0〉

case: if a1 > a2 goto l′ 〈l, l′, ψ ∧ a1 > a2〉
〈l, l + 1, ψ ∧ ¬(a1 > a2)〉

Figure 4.3: Path-Length Abstraction of GotoR Programs.

In the case of field selection x = y.fld we consider three subcases. First, the path-length
of integer fields is undefined. Second, if y is acyclic at program location l, i.e. y ∈ ACl,
then the path-length of y.fld is at least one less than the path-length of y. Third, if y is
maybe-cyclic at program location l, i.e. y /∈ ACl then the path-length of y.fld is at most
the path-length of y.

The most interesting case is field assignment x.fld = y. The path-length of x is
unchanged if an integer field is updated. Otherwise, we collect the set of variables that
may-share with x at program location l in SHxl . The path-length of those variables is
potentially affected by the update. By definition, if x is not always null at program
location l, then x ∈ SHxl . There are two subcases to consider. First, we consider the
case that x and y do not share before the assignment, i.e. y 6∈ SHxl . Then we add the
path-length of y to the path-length of x and all variables that share with x. Second, we
consider the case that x and y may-share before the assignment, i.e. y ∈ SHxl . Then we
assume the worst-case, that is, that x and all variables that share with x are potentially
cyclic after the update. Therefore, the path-length of all variables in SHxl is unbounded
after the assignment. The conditional cases are straightforward.

85

4 Imperative Programs with Heap

Example 4.13 (Path-Length Abstraction of Binary Tree Traversal). The following CTS
is obtained from Example 4.2 via the rules of Figure 4.3. For the abstraction we assume
that the input argument is acyclic.

〈l0, l1, ψ〉
〈l1, l2, ψst ∧ st′ > 0 ∧ st′ 6 1 + st+ t〉
〈l2, lB,ψ ∧ t = 0〉
〈l2, l3, ψ ∧ t > 0〉
〈l3, l4, ψt ∧ t′ > 0 ∧ t′ < st〉
〈l4, l5, ψst ∧ st′ > 0 ∧ st′ < st〉
〈l5, l2, ψ ∧ t = 0〉
〈l5, l6, ψ ∧ t > 0〉
〈l6, l7, ψtmp ∧ tmp′ > 0 ∧ tmp′ < t〉
〈l7, l8, ψst ∧ st′ > 0 ∧ st′ < 1 + st+ tmp〉
〈l8, l9, ψtmp ∧ tmp′ > 0 ∧ tmp′ < t〉
〈l9, lA,ψst ∧ st′ > 0 ∧ st′ < 1 + st+ tmp〉
〈lA, l2,ψ〉

We obtain the following soundness result (compare with Albert et al. [4] for details).

Theorem 4.14 (Soundness of PLength). Let P be a program and I ⊆ Conf be a compatible
set of initial configurations. Moreover, let P◦ be the path-length abstraction of P. Suppose
that there exists a trace c −→n

P d in P starting from c ∈ I. Then, there exists a trace
(c)◦ −→n

P◦ (d)◦ in P◦.

To relate the abstraction to the runtime complexity of Definition 4.4 we provide a
suitable notion of input size based on the path-length.

Definition 4.15 (Input Size of PLength). The input size of c ∈ PLength is defined by

size◦(c) ,
∑
x∈Var abs(plength(x)) .

We define the runtime in terms of the maximal derivation height of possible input
configurations.

Definition 4.16 (Runtime Complexity of PLength). Let P◦ be a CTS and I◦ ⊆ PLength
be a set of initial configurations. The worst-case runtime complexity rcI

◦
P◦(m) : N→ N∞

of P◦ on I◦ is defined by

rcI
◦
P◦(m) , {dhP◦(c) | c ∈ I◦ and size◦(c) 6 m} .

Let P be a program and I ⊆ Conf be a compatible set of initial configurations. Assume
that P◦ is obtained from P by the rules of Figure 4.3. As an immediate consequence

86

4.4 Complexity Reflecting Program Abstraction

of Theorem 4.14 we obtain that dhP(c) 6 dhP◦((c)◦) for all initial configurations c ∈ I.
To relate the runtime complexity of P and P◦ we have to inspect the set of input elements
induced by the set of input configurations I and the maximal input size m ∈ N.

We fix the initial elements of the path-length domain with I◦ = {(c)◦ | c ∈ I}. Let c ∈ I
be an initial configuration and x ∈ Var. Then, it is easy to see that plength(x) 6 size(c)
whenever x is acyclic. However, if the heap allocated data in c overlaps, the abstraction
may duplicate the path-length up to a constant factor. The constant only depends on
the number of variables of the store k. Suppose that all variables in the configuration c
are acyclic. Then, size(c) 6 m implies size◦((c)◦) 6 k ·m.

Theorem 4.17 (Complexity Reflection of PLength). Let P be a program and I ⊆ Conf
denote a compatible set of initial configurations. Furthermore, assume that I is re-
stricted to acyclic data. Suppose P◦ is obtained from P by path-length abstraction and
I◦ = {(c)◦ | c ∈ I}. Then,

rcIP(m) 4 rcI
◦
P◦(k ·m) .

Example 4.18 (Cont’d from Example 4.13). The worst-case runtime complexity of the
program obtained by the path-length abstraction is exponential in the input size. The
bound becomes easy to see after simplifying the body of the loop. Consider the following
snippet that is obtained by composing transitions.

〈l1, l2,st′ = st ∧ t′ > 0 ∧ t′ < st〉
〈l2, l1,t′ = t ∧ 0 6 l′ < t ∧ 0 6 r′ < t ∧ 0 6 st′ < 1 + 1 + l′ + r′〉

Here, t denotes the path-length of the tree that is obtained from top of the stack in each
iteration, and l and r denote the children of t that are pushed on top of the stack again.
However, the maximal path-length of l and r is one less than t, thus (almost) duplicating
the size of the stack.

The obtained result conforms to our expected result from the initial discussion of Ex-
ample 4.1. In particular, the path-length abstraction is not able to distinguish between
acyclic and tree-shaped input.

We remark that the path-length abstraction is not the only possible size abstraction,
rather the choice of abstraction in Julia and COSTA. There is a trade-off between precision
and efficiency, and more refined size abstractions rely on more refined heap shape analysis.
We discuss some further options in Section 4.6.

4.4.2 Term Abstraction
In this section we present a term abstraction from GotoR programs to constraint term
rewrite systems (cTRSs for short). Term rewriting forms a Turing complete abstract
model of computation, which underlies much of declarative programming (cf. Baader and
Nipkow [22]). Complexity analysis of (standard) TRSs has received significant attention
in the last decade, for details we refer to Moser [118]. In our setup we consider TRSs as
an abstract program representation that is amenable to automated complexity analysis.

87

4 Imperative Programs with Heap

The main motivation for a term based abstraction is the representation of composed
data structures. Terms allow to construct and deconstruct data easily. Further, record
instances T (t1, . . . , tk) can be conceived as terms. However, in GotoR data is modified
via operations on the heap, which are conceptually close to manipulating a labelled graph
with pointers, while term rewriting is close to first-order functional programming. In
particular, term abstractions have to take sharing of data and side effects into account.
Moser and Schaper [119] provide the details of a term abstraction for an object-oriented
bytecode language. In what follows, we present a conceptually similar but simplified
approach. We provide additional insights on [119] in Section 4.5.

In the following we are only interested in cTRSs over a specific theory T , namely
(first-order) integer arithmetic. To represent instructions on arithmetic expressions we
collect the following connectives in C: ∧, ∨, ¬ together with the following relations and
operations: =, 6=, >, +, −, ∗. Furthermore, we add infinitely many constants to represent
integers. We often write l → r instead of l→ r JtK, if t holds trivially. As expected, T
makes use of the sort int.

Let P be a GotoR program. We suppose that all variables x ∈ Var and fld ∈ Field are
present in the set of variables V . Program variables and field identifiers with type Int are
assigned sort int and all other elements are assigned sort univ. Alternatively, we could
have introduced additional sorts for types in RName. However, this complicates matters
without gaining additional benefits. The remaining elements of the signature F will be
defined in the course of this section. As the signature of these function symbols is easily
read off from the translation given below, the sort information is left implicit for the rest
of this chapter.

The main idea of the term domain is to represent configurations (l, σ, µ) as (ground)
terms fl(t1, . . . , tn) over T (F ,∅). Here f is an arbitrary chosen function symbol that
serves as compound symbol for the term representation of the store and the heap. The
subterms t1, . . . , tn indicate the data that is referenced by the variables of the store.
In doing so, we assume a fixed order on the sequence of program variables, that is,
Var = x1, . . . , xn.

To represent custom data we require constructor symbols for null ∈ F and RName ⊆ F .
The set of function symbols F typically includes fl for all program locations l. Thus,
ti is either an integer, null or data that is allocated on the heap. Terms for custom
data structures are obtained by unfolding the mapping of the heap to terms. A record
instance of type T is represented by T (t1, . . . , tk), where T is a constructor symbol and
t1, . . . , tk indicate the data that is referenced by the field selectors. To obtain a finite
representation of cyclic data we introduce a dedicated constructor symbol > ∈ F . We
indicate an erroneous program state with ⊥ ∈ F .

We present cTRSs with rules fl(s1, . . . , sn) → fl′(t1, . . . , tn) and fl(s1, . . . , sn) → ⊥,
in which instances of the left-hand side represent configurations at program location l
and instances of the right-hand side represent configurations at the succeeding program
location l′ or an erroneous state.

In what follows next, we provide the definition of unfolding and present the term
domain Term.

88

4.4 Complexity Reflecting Program Abstraction

Definition 4.19 (Unfolding). Let (l, σ, µ) ∈ Conf be a configuration. The unfolding of
a value v ∈ Val is defined as

unfold(v) ,
{
T (unfold(µ(v).f ld1), . . . , unfold(µ(v).f ldk)) if v ∈ Addr and v : T ,
v, otherwise .

Let x ∈ Var, then

unfold(x) ,
{
> if x is cyclic ,
unfold(σ(x)) otherwise .

To represent a set of configurations we use terms fl(t1, . . . , tn) over T (F ,V).

Definition 4.20 (Term Domain). We denote the term domain with Term , T (F ,V).
The representation function (·)• : Conf → Term along with the concretisation function
γ
• : Term→ P(Conf) are defined by:

(c)• , fl(unfold(x1), . . . , unfold(xn))
γ
•(t) , {c ∈ Conf | there exists a substitution δ st. tδ = (c)•}

Next, we present the transformation from programs to cTRSs. We remark that the
cTRSs that are obtained from GotoR do not have nested defined symbols, moreover,
for programs in which all variables of the store are of type integer we obtain CTSs in
rule based notation. In contrast to standard term rewriting, fresh variables, which are
indicated below with prime, are allowed on the right-hand side. However, the instantiation
of fresh variables is restricted to ground normal forms (see Section 4.2). Fresh variables
indicate unbounded non-determinism and are used when the exact term representation
in the succeeding configuration is not known.

Figure 4.4 illustrates the term abstraction of GotoR programs to constraint term
rewrite systems. The transformation follows by case distinction on program instructions
at program location l and maps a single instruction to one or multiple rewrite rules. If
necessary, we provide subcases that depend on the properties of acyclicity and sharing
domain. For brevity, we represent rewrite rules by (l, F)→ (l′, F ′) possible equipped with
a constraint JφK. We write (l, F) to indicate the term fl(x1, . . . , xn) with Var = x1, . . . , xn,
and (l, F [t]x) to indicate the term that is obtained by replacing x with t in F .

In the case of the assignment x = y the variable x is substituted by y for the
succeeding program location. This rule is independent of x being of type integer or
some record type. Let a denote an arithmetic expression. In the case of the assignment
y = a we substitute y with a fresh variable y′ which is constraint to be equal to the
expression a. Next, we consider the allocation of a new record instance. The case
x = new T (y1, . . . , yk) substitutes x with the term representation T (y1, . . . , yk) of a
record instance. By construction the variables y1, . . . , yk occur on the left-hand side of
the rule.

Whenever a variable x with type T ∈ RName is referenced, a case distinction on the
possible content of x is performed. More specifically, we inspect the term representation
of configurations at some program location l. The term obtained for some variable

89

4 Imperative Programs with Heap

case: x = y (l, F) → (l + 1, F [y]x)
case: x = a (l, F) → (l + 1, F [x′]x) Jx′ = aK
case: x = null (l, F) → (l + 1, F [null]x)
case: x = new T (y1, . . . , yk) (l, F) → (l + 1, F [T (y1, . . . , yk)]x)
case: x = y.fldi

y ∈ ACl (l, F [T (fld1, . . . , f ldk)]y)→ (l + 1, F [fldi]x)
(l, F [null]y) → ⊥

y 6∈ ACl (l, F) → (l + 1, F [x′]x)
case: x.fldi = y

x, y ∈ ACl and y 6∈ SHxl (l, F [T (fld1, . . . , f ldk)]v)→ (l + 1, F SHx
l \{x}[T [y]fldi

]x)
(l, F [null]v) → ⊥

otherwise (l, F) → (l + 1, F SHx
l)

case: if a1 > a2 goto l′ (l, F) → (l′, F) Ja1 > a2K
(l, F) → (l + 1, F) J¬(a1 > a2)K

case: ifnull v goto l′

x ∈ ACl (l, F [null]v) → (l′, F)
(l, F [T (fld1, . . . , f ldk)]v)→ (l + 1, F)

x 6∈ ACl (l, F) → (l′, F)
(l, F) → (l + 1, F)

Figure 4.4: Term Abstraction of GotoR Programs.

x with type T ∈ RName is defined by unfold(x), which is either (i) null, (ii) a term
T (fld1, . . . , f ldk) (for some subterms fldi with 1 6 i 6 k), or (iii) > if x is cyclic at
program location l. Thus, we perform pattern matching on the individual cases at
program location l.

Consider the case x = y.fldi. If y is acyclic, i.e. y ∈ ACl, then we match on null and
T (fld1, . . . , f ldk). The subterms fldi are distinct variables in V not occurring in Var. In
the case that y equals null we rewrite to an erroneous state, which is indicated with
⊥. Otherwise, we substitute x with fldi. If we cannot infer that y is definitely acyclic,
i.e. y /∈ ACl, we match on all terms including >. For the latter case the information on
y.fldi is imprecise, and we substitute x with a fresh variable x′. In fact, we could ignore
the rule in which we match null. Then the reduction would get stuck, like in GotoR.
However, we have chosen to match on all possible data representations.

Next, we consider the statement x.fldi = y. When updating the content of a record
instance we have to accommodate for possible side effects that we cannot capture precisely
in the abstraction. With SHxl we indicate all variables that share with x at program
location l. We write FSH , for the term that is obtained from F by substituting all

90

4.4 Complexity Reflecting Program Abstraction

variables z ∈ SH with a distinct fresh variable z′. There are two subcases to consider.
First, we consider the case in which the variables x and y are acyclic and do not share
before the assignment. Then, we match the term representation of the record instance
referenced by x. Most relevant, in this case x is also acyclic after the assignment. We
reflect the field update via substituting fldi with y. For all variables distinct from x that
may-share with it fresh variables are introduced. Second, we consider the case in which
x or y are maybe-cyclic or x and y share before the assignment. Then, we assume the
worst-case, that is, that the data referenced by all variables that share with x including
x are modified. However, the abstraction cannot express the succeeding configurations
precisely, thus, fresh variables are introduced for all variables that share with x.

The case if a1 > a2 goto l′ is straightforward. Consider the case that the instruction
at program location l is ifnull v goto l′. If x is acyclic we match on x. After unrolling,
we can evaluate the condition. If x is maybe-cyclic, the representation does not have
enough information to evaluate the condition. We non-deterministically select the
succeeding program location.

Example 4.21 (Term Abstraction of Binary Tree Traversal). The following cTRS is
obtained from Example 4.2 via the rules of Figure 4.4. For the abstraction we assume
that the input is acyclic.

(VAR t t1 st tmp l r)
(RULES
f0 (t , st ,tmp) → f1 (t , null ,tmp)
f1 (t , st ,tmp) → f2 (t ,Stack(t , st) ,tmp)
f2 (t , null ,tmp) → fD(t , null ,tmp)
f2 (t ,Stack(t , st) ,tmp) → f3 (t ,Stack(t , st) ,tmp)
f3 (t , null ,tmp) → ⊥
f3 (t ,Stack(t1 , st) ,tmp) → f4 (t1 ,Stack(t1 , st) ,tmp)
f4 (t , null ,tmp) → ⊥
f4 (t ,Stack(t1 , st) ,tmp) → f5 (t , st ,tmp)
f5 (null , st ,tmp) → f2 (null , st ,tmp)
f5 (Tree(v , l , r) , st ,tmp) → f6 (Tree(v , l , r) , st ,tmp)
f5 (Tree(v , l , r) , st ,tmp) → f6 (Tree(v , l , r) , st ,tmp)
f6 (null , st ,tmp) → ⊥
f6 (Tree(v , l , r) , st ,tmp) → f7 (Tree(v , l , r) , st , r)
f7 (t , st ,tmp) → f8 (t ,Stack(tmp, st) ,tmp)
f8 (null , st ,tmp) → ⊥
f8 (Tree(v , l , r) , st ,tmp) → f9 (Tree(v , l , r) , st , l)
f9 (t , st ,tmp) → fA (t ,Stack(tmp, st) ,tmp)
fA (t , st ,tmp) → f2 (t , st ,tmp)

)

We have the following soundness result (compare with Moser and Schaper [119]).

Theorem 4.22 (Soundness of Term Abstraction). Let P be a program and I ⊆ Conf be
a compatible set of initial configurations. Moreover, let P• be the term abstraction of P.
Suppose that there exists a trace c −→n

P d in P starting from c ∈ I. Then, there exists a
trace (c)• −→n

P• (d)• in P•.

91

4 Imperative Programs with Heap

We adapt the runtime complexity with respect to standard TRSs suitable for cTRSs
(see Hirokawa and Moser [92] for the standard definition).

Definition 4.23 (Input Size of Term). The input size of t ∈ Term is defined by

size• (t) ,

1 if t is a variable ,
abs(t) if t is an integer ,
1 +

∑n
i=1 size

• (ti) if t = f(t1, . . . , tn) and f is not an integer .

Definition 4.24 (Runtime Complexity of Term). Let P• be a cTRS and I• ⊆ Term
denote a set of initial terms. Furthermore, let m ∈ N denote the maximal input size.
The worst-case runtime complexity rcI

•
P• : N→ N∞ of P• on I• is defined by

rcI
•
P•(m) , {dhP•(c) | c ∈ I• and size•(c) 6 m} .

Let P be a program and I ⊆ Conf be a compatible set of initial configurations. Suppose
that P• is obtained from P by the rules of Figure 4.3. Like before, to relate the runtime
of P and P• we inspect the input elements with respect to the initial elements and
maximal input size m ∈ N. We fix the set of initial terms with I• = {(c)• | c ∈ I}. It is
easy to see that the unfold operation may cause an exponential blow-up in size. Consider
for instance a fully-shared binary tree with height (or input size) m. The input size of the
term representation is exponential in m. Therefore, we restrict the input to tree-shaped
data.

Definition 4.25 (Tree-Shaped). Let (l, σ, µ) ∈ Conf be a configuration. A value v ∈ Val
is called tree-shaped at program location l, if for all v1, v2 ∈ addresses1(v) with v1 6= v2,
addresses(v1) ∩ addresses(v2) = ∅. Similarly, a variable x ∈ Var is called tree-shaped if
σ(x) is tree-shaped.

Akin to the path-length abstraction, the proposed term abstraction may duplicate
data if it is shared in the input configuration. Suppose all variables in configuration c ∈ I
are tree-shaped. Then, size(c) 6 m implies size•((c)•) 6 k ·m.

Theorem 4.26 (Complexity Reflection of Term). Let P be a program and I ⊆ Conf be a
compatible set of initial configurations. Furthermore, assume that I is restricted to tree-
shaped data. Suppose P• is obtained from P by term abstraction and I• = {(c)• | c ∈ I}.
Then,

rcIP 4 rcI
•
P•(k ·m) .

Example 4.27 (Cont’d from Example 4.21). The complexity analysis tool TCT (Avanzini,
Moser, and Schaper [18]) infers a linear bound on the term abstraction of tree traversal.
Due to the complexity of the proof, it is omitted here. In Example 4.29 we depict a
simplified program that is obtained automatically from applying the abstraction in Moser
and Schaper [119] together with a proof for the linear runtime bound based on polynomial
interpretations.

92

4.5 Term Abstraction of Object-Oriented Bytecode Programs

We emphasize that the term abstraction does not require tree-shaped data for the
abstraction itself, but only to prevent a blow-up in the input size when relating the
runtime of the program representations. In contrast to the path-length abstraction,
the approximation of side effects of the term abstraction is more coarse. While the
path-length of all affected variables increases at most by the path-length of y for a field
update x.field = y, there is no bounded term representation for the affected variables.

4.5 Term Abstraction of Object-Oriented Bytecode Programs
In Moser and Schaper [119] we have worked out the details of the term abstraction for
the Jinja programming language. Jinja (Jinja Is Not JAva) is a Java like language that
exhibits its core features. The language has a formal semantics which is formalised and
machine checked in the theorem prover Isabelle/HOL [107].

The proposed transformation in [119] is analogues to the transformation presented
above. However, it does make use of a more detailed intermediate abstract representation
to generate shape invariants on heap allocated data. This often allows for a more precise
term representation than the type based pattern matching used above. Our work was
initially inspired by the non-termination preserving abstraction of Java bytecode programs
to (integer) term rewrite systems presented by Otto et al. [129] (and follow-up work).
Our approach differs in the intermediate abstraction used and provides the necessary
details for runtime analysis.

We comment on the intermediate abstraction. The abstract domain is based on key
concepts in (acyclic) term graph rewriting (cf. Avanzini and Moser [15]). We make use of
a graph based representation of states (or configurations) and abstract states, dubbed
stategraphs. The nodes for abstract stategraphs may be labelled with variables. We
generalise the matching definition for acyclic term graphs, which is based on (rooted) graph
morphsims, by a subtyping mechanism, and provide an abstraction and concretisation
function much like Definition 4.20. To make the approach more viable we make use of
existing heap shape properties, in particular we rely on acyclicity (Rossignoli and Spoto
[138]), sharing (Secci and Spoto [142]) and reachability (Genaim and Zanardini [78]).
Stategraphs can be unfolded to a term representation.

Example 4.28 (Graph Based Abstraction). Consider the illustrations in Figure 4.5.
Figures 4.5a and 4.5b depict stategraphs A and B with a single variable x that references
a tree structure allocated on the heap. Figure 4.5c shows an abstract state graph. It is
easy to see that A and B are concretisations of C. Consider the substitution of variable
tree to either null or an instance of Tree (recall that > represents all arbitrary well-formed
instances). Figure 4.5d provides the term representation obtained by unfolding the
abstract stategraph C.

The abstract representation of the program is obtained by symbolic evaluation. Infor-
mally this corresponds to the abstract semantics presented in Figure 4.4 but specialised
for stategraphs. To obtain a finite abstraction we equip the abstract domain with a
join operator that provides an upper bound on two stategraphs (at the same program

93

4 Imperative Programs with Heap

x

Tree

Tree

Tree

null null

null

(a) Stategraph A.

x

Tree

Tree

Tree

Tree null

Tree

null null

null

(b) Stategraph B.

x

Tree

Tree

Tree

tree null

>

(c) Abstraction C.

f (Tree
(Tree(tree , nul l)) ,
(Tree(Tree(tree , nul l)) ,>))

(d) Term Abstraction.

Figure 4.5: Stategraph Abstraction.

location). Via a standard fixed-point construction using symbolic evaluation and repeated
application of join we obtain finitely many abstract stategraphs that overapproximate
the reachable set of states. We have worked out the details of the abstraction within
the abstract interpretation framework (Cousot and Cousot [59]). From the abstraction
we construct a cTRS by unfolding the obtained abstract stategraphs and taking the
instructions at the corresponding program location into account.

The approach has been implemented in the tool jat (Jinja Analysation Tool), available
online at

http://cbr.uibk.ac.at/tools/jat/ ,

and integrated within the complexity analysis framework TCT. We present the framework
in Chapter 6. The implementation supports class inheritance and dynamic dispatch. Our
fixed-point computation of the abstraction is restricted to non-recursive method calls.
The integer type is considered to be unbounded. Floating point arithmetic and arrays
are not supported, as well as exceptional control flow. Further, we apply various program
simplifications such as inlining and slicing.

Example 4.29 (Term Abstraction of Binary Tree Traversal). The following (standard)
TRS is obtained by TCT from the Jinja bytecode of the motivating example after removing
some redundant arguments. From the given system, we obtain fully-automatically a
strongly linear polynomial interpretation I which implies a linear upper bound on the
worst-case runtime complexity (see Moser [118] for details).

94

http://cbr.uibk.ac.at/tools/jat/

4.6 Related Work

(VAR t l r st)
(RULES
f0 (t , n i l) → f1 (: : (t , n i l))
f1 (: : (null , st)) → f1 (st)
f1 (: : (Tree(l , r) , st)) → f1 (: : (l , : : (r , st)))
f1 (n i l) → f2 (n i l)

)

p(::) = x1 + x2
p(Tree) = 10 + x1 + x2

p(f0) = 15 + x1
p(f1) = 2 + x1
p(f2) = 10

p(nil) = 12
p(null) = 8

The most interesting rule is f1 (: : (Tree(l , r) , st)) → f1 (: : (l , : : (r , st))), which pops
the tree on top of the stack and pushes its children on top of the stack again. Applying
the polynomial interpretation I results in the following inequality, which is true for all
l, r, st ∈ N.

J f1 (: : (Tree(l , r) , st))KI = 2 + 10 + l + r + st > 2 + l + r + st = J f1 (: : (l , : : (r , st)))KI

In contrast to the path-length abstraction, the polynomial interpretation represents a
tree as a linear combination Tree(l , r) = 10 + l + r. In the above rule we decompose
the tree on the left-hand side and reuse the children on the right-hand side without
duplicating it. Thus, we obtain the expected linear bound.

4.6 Related Work

In this section we recall and comment on related work.

Term Abstractions

Panitz and Schmidt-Schauß [130] present a term abstraction for the termination analysis
of a non-strict higher-order functional language.

Giesl et al. investigate term abstractions for the termination analysis of object-oriented
bytecode programs [46–49, 129], higher-order functional programs [79], and logic pro-
grams [80]. For an overview we refer to [81, 82]. The approaches have been implemented
in the AProVe1 verifier.

Falke and Kapur [67], Falke et al. [68] present a complexity reflecting transformation
from LLVM intermediate representation to int-based term rewrite systems for termination
analysis. The transformation is conceptually similar to the abstraction presented here,
though pointer access is abstracted by unconstrained assignments. The approach has
been implemented in KITTeL2.

A complexity reflecting transformation for higher-order functional programs to term
rewrite systems is presented by Avanzini et al. [16]. The approach is implemented in the
tool HoCA3 and integrated in the TCT framework.

1http://aprove.informatik.rwth-aachen.de/
2https://github.com/s-falke/kittel-koat/
3http://cbr.uibk.ac.at/tools/hoca/

95

http://aprove.informatik.rwth-aachen.de/
https://github.com/s-falke/kittel-koat/
http://cbr.uibk.ac.at/tools/hoca/

4 Imperative Programs with Heap

Complexity Analysis of Java Programs with AProVe
Based on earlier work on termination analysis, Frohn and Giesl [76] present a numeric
abstraction to constraint transition systems for the complexity analysis of Java bytecode
programs in AProVe. Informally, the size of an object corresponds to the number of
references together with the sum of all absolute values of integer fields that are reachable
from the object.

The approach abstracts programs to weighted CTSs, which are CTSs where edges are
additionally labelled with weights that indicate the cost of executing the transition. This
provides a flexible analysis in terms of cost models, and a modular analysis in terms of
method summaries that indicate the cost of executing a method. The approach uses
complexity analysis tools such as CoFloCo4 [73, 74] and KoAT5 [51] as back-end.

In contrast to the approaches presented in the previous sections, constraints are formed
over symbolic heap locations rather than the variables of the store. Incorporating heap
invariants (cf. Brockschmidt et al. [46] and related work) allow more refined constraints,
which inspect the fields of the objects separately, at the cost of additional variables.

The used notion of size is close to our definition of input size. One may would expect
a linear bound for the tree traversal example. However, while the notion of size is
precise the abstract semantics for field access is not. In particular, it is analogues to the
path-length abstraction (cf. Frohn and Giesl [76]). Therefore, the runtime is exponential
for the tree traversal example.

Cost and Termination Analyser (COSTA)
The COSTA6 (COSt and Termination Analyser for Java bytecode) tool is developed by
Albert et al. and provides automatic cost and termination analysis of Java bytecode
programs [1, 4]. The tool provides a generic way to apply different cost models by
associating instructions with cost expressions and often returns precise bounds.

For the cost analysis of Java bytecode programs, objects are abstracted to their
maximal path-length, and programs are abstracted to cost relation systems, which provide
a language independent abstract representation for cost analysis (Albert et al. [2]). A
cost relation system consists of (multiple) cost relations of the following form

〈C(~x) = e+
∑m
i=1Di(~yi) +

∑n
j=1C(~zj), φ〉 .

Informally, the cost of the call C with input ~x corresponds to the cost e plus the cost of
non self-recursive calls Di(~yi) plus the cost of self-recursive calls C(zj). The constraint φ
relates input and output of the arguments ~x, ~yi, and ~zj . Closed-form representations of
upper bounds on cost relations can be obtained by dedicated solvers, such as PUBS7 [3, 5]
or CoFloCo [73, 74].

We were not able to infer a bound from the motivating example using the available tools.
However, an exponential bound for the recursive version of tree traversal is obtained.

4https://github.com/aeflores/CoFloCo/
5https://github.com/s-falke/kittel-koat/
6http://costa.ls.fi.upm.es/web/
7https://costa.fdi.ucm.es/pubs/

96

https://github.com/aeflores/CoFloCo/
https://github.com/s-falke/kittel-koat/
http://costa.ls.fi.upm.es/web/
https://costa.fdi.ucm.es/pubs/

4.6 Related Work

Symbolic Bound Analysis in Speed
Gulwani et al. [84, 87] present SPEED, which is a tool for the inference of symbolic com-
plexity bounds for C/C++ programs that support conditional loops as well as iterations
over user-defined data structures. The approach is based on counter instrumentation, that
is, the program code is instrumented with (multiple) counter variables that represent the
resource consumption. Upper bounds on the counter variables are obtained by numeric
invariant analysis. See Section 3.3.6 on page 25 for further details.

To support custom data structures the approach makes use of an abstract domain that
combines standard numeric domains and uninterpreted function symbols (Gulwani and
Tiwari [85]). Data structures are associated with quantitative functions that represent
numerical properties and abstract operations that are specified by constraints over the
combined abstract domain. For instance, consider the quantitative functions for a
singly-linked list

Len(L) , length of list L, andPos(e, L) , position of element e in list L ,

together with the abstract semantics for assigning the next list segment

e = L. next(f) , Pos(e, L) = Pos(f, L) + 1; Assume(0 6 Pos(f, L) < Len(L)) .

SPEED provides the bound Len(L)− Pos(f, L) for for(e = f ; e 6= null; e = L. next(e)).
The proposed approach often provides intuitive and precise bounds. However, the

method is not fully automatic and the constraints for the abstract semantics are complex
for more sophisticated data structures or when side effects have to be considered.

Gulwani et al. [87] exemplifies the approach on a recursive version of tree traversal
and provides a linear bound in terms of the number of nodes. The example, however,
requires non-trivial loop invariants that have to be provided by the user.

Resource Static Analysis (RESA)
Atkey [10] presents an approach for the amortised resource analysis of imperative lan-
guages by embedding resource information within separation logic (Reynolds [135]). The
approach relies on explicitly defined inductive predicates that represent the shape of the
objects. For instance, the following resource-aware inductive predicate represents a list
segment where resources R are associated to each element:

lseg(R, x, y) , (x = y ∧ emp) ∨ ∃z, z′.[x data7−−→ z] ∗ [x next7−−→ z′] ∗R ∗ lseg(R, z′, y) .

Fenacci and MacKenzie [69] provide an implementation of this approach for the resource
analysis of Java bytecode programs. The implementation is semi-automatic and requires
user annotated postconditions and loop invariants. Furthermore, the proof search is
customised for singly-linked lists and trees only. A linear bound in the number of calls is
obtained for the recursive version of binary tree traversal using the predicate:

tree(R, x) , (x = null ∧ emp) ∨ ∃y, z.[x left7−−→ y] ∗ [x right7−−−→ z] ∗R ∗ tree(y) ∗ tree(z) .

The motivating Frying Pan example in [10] is beyond the scope of our analysis, due to
the abstraction of cyclic data.

97

4 Imperative Programs with Heap

Shape Norms

Fiedor et al. [70] investigate numeric abstractions for heap allocated data structures
based on shape norms. A shape norm represents the maximal length of a path between
two symbolic heap locations of interest. For instance, x〈next∗〉y represents the length of
the path of a singly-linked list between the two heap locations referenced by x and y,
and x〈(left+ right)∗〉null represents the height of a binary tree. The approach makes
use of must-alias and may-alias properties on heap locations. It has been realised in the
tool Ranger8, which makes use of the shape analyser Forester9 [88] and the loop bound
analyser Loopus10 [145, 146, 158].

By inspecting the length of a path between two heap locations the approach also
supports cyclic data structures. Consider for example, a program where variables x and
y point to a cyclic single-linked list. Informally, for l :while(x != y){ x = x.next } and
norm n = x〈next∗〉y we obtain the numeric abstraction 〈l, l, n′ > 0 ∧ n′ < n〉.

Shape norms inspect the path-length between two symbolic heap locations. The
approach conceptually generalises the path-length abstraction presented in this chapter.
However, the number of nodes within a binary tree cannot be captured precisely with
this abstraction.

The experiments in Fiedor et al. [70] demonstrate the viability of this approach
for amortised complexity analysis providing precise upper bounds on some motivating
examples of Atkey [10] fully automatically.

Type-Based Approach

Hainry and Péchoux [89, 90] provide a type-based approach to the complexity analysis
of object-oriented programs. The type system is inspired by earlier works on implicit
computational complexity and makes use of safe recursion on notation (Bellantoni and
Cook [26]) and non-interference (Marion [114], Volpano et al. [152]) to control resource
usage. The main idea is that variables that point to addresses in the initial heap are
considered safe (have tier 1) and variables that point to fresh allocated addresses are
considered unsafe (have tier 0). The typing system prohibits that information flows from
tier 0 variables to tier 1 variables, and guarantees that arguments that control recursion
and loop iteration are of tier 1.

Further, the system is decidable in polynomial time and provides a sound and com-
plete characterisation of polynomial time computable functions on the object-oriented
programming paradigm. For terminating and safe programs (a safe program is well-typed
and conforms to a restricted notion of recursion) an upper bound of the form O(nk×d)
can be inferred. Here n captures the number of nodes in the heap together with the sum
of all numbers of the initial configuration, k is the number of tier 1 variables of the initial
configuration, and d depends on the maximal nesting depth on loops and recursive calls
(which are transformed into loops).

8http://www.fit.vutbr.cz/research/groups/verifit/tools/ranger/
9http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/

10https://forsyte.at/software/loopus/

98

http://www.fit.vutbr.cz/research/groups/verifit/tools/ranger/
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
https://forsyte.at/software/loopus/

4.7 Concluding Remarks

The authors provide additional prerequisites to restrict recursion. In particular, one
criterion is akin to the notion of tree-shaped data and restricts the number of recursive
calls invoked from distinct fields of an object to one. This allows to show a linear bound
on a recursive implementation of tree clone, which is conceptually similar to traverse.
The non-recursive version of tree traversal, as given above, cannot be typed. During the
evaluation the stack variable is modified, and the system asserts that it has to be typed
with tier 0. However, the loop iteration cannot be governed by a tier 0 variable.

4.7 Concluding Remarks
In this chapter we have discussed the automated resource analysis of imperative programs
with heap allocated data. We have presented two known program abstractions from
the literature in a uniform way, and paid special attention to the automated analysis of
binary tree traversal. Data structures are often associated with intricate properties which
are difficult to reconstruct within a general and automated setting. In the case of the
running example we have been interested in measuring the progress, i.e. the number of
visited nodes, in terms of the number of allocated nodes that are reachable from the store.
Moreover, additional assumptions on the precise shape of the input are necessary to
process the motivating example in the intended way. In the presence of sharing, capturing
the precise quantitative relationship gets even more challenging.

Related work shows that the example, albeit standard, is non-trivial in a fully automated
setting. The presented term abstraction handles the running example as intended, when
supplemented with additional heap shape invariants to control sharing. However, the
transformational approach, as depicted here is straight-lined, in the sense that the
transformation captures very specific properties and informally, a class of problems.
While the term abstraction captures construction and deconstruction of data, it suffers
from the coarse approximation of side effects. This makes the approach inherently
non-modular.

99

Chapter 5

Imperative Probabilistic Programs

In this chapter we are concerned with automated resource analysis of probabilistic programs.
Before, we have discussed the analysis of a standard, i.e. non-probabilistic, model of
computation. In non-probabilistic programs the runtime for a terminating run is given by
the length of the program trace. In case of probabilistic programs, we are interested in the
average runtime, i.e. the average length of the traces given by all probabilistic branches.
This seems to make the analysis of probabilistic programs non-modular at first. Taking
inspiration of known approaches to the modular resource analysis of non-probabilistic
programs, we investigate under which conditions modularity is obtained again in the
probabilistic setting. In what follows, we present a fully automated and modular analysis
of imperative probabilistic programs.

The presentation is based on Avanzini, Schaper, and Moser [20]. This chapter outlines
the central results. Additional (technical) details are given in the report [21]. Section 5.1
provides initial insights on the problem at hand. In Section 5.2 we present our probabilistic
model of computation, while in Section 5.3 we introduce the programming language of
interest. Then, in Section 5.4 we recall a compositional model for the computation of the
expected resource consumption. This model forms the foundation of our analysis. We
present the main result in Section 5.5, while Section 5.6 is concerned with its automation.
Finally, we conclude this chapter in Section 5.7.

5.1 Introduction

We are concerned with the average case runtime complexity analysis of a prototypical
imperative language pWhile in the spirit of Dijkstra’s guarded command language. This
language is endowed with primitives for sampling and probabilistic choice so that ran-
domised algorithms can be expressed. Complexity analysis in this setting is particularly
appealing as efficiency is one striking reason why randomised algorithms have been
introduced and studied. In many cases, the most efficient algorithm for the problem at
hand is randomised (cf. Motwani and Raghavan [120]).

Next, we give some initial insights for reasoning about probabilistic programs.

101

5 Imperative Probabilistic Programs

Example 5.1 (Random Walk). The following program illustrates a random walk over N.
In each iteration we flip a (biased) coin. With probability p ∈ Q, in which 0 6 p 6 1, x
is decremented by one and with probability 1− p, x is incremented by one. The resource
metric taken, via the command tick(1) in the loop body, gives the number of loop
iterations.

while (x > 0) { tick(1) ; {x := x − 1} [p] {x := x + 1} }
We illustrate below, the probability tree of the first few iterations of the random walk
with probability p = 2

3 starting from the initial assignment x = 1.

x = 1

x = 0

2
3

x = 2

x = 1

x = 0

2
3

x = 2

...

1
3

2
3

x = 3

x = 2

...

2
3

x = 4

...

1
3

1
3

1
3

The analysis of this program is intricate and the properties of interest depend on the
probability p. At first, we inspect termination of the running example.

In the standard (or non-probabilistic) setting the question whether a program terminates
on all inputs is a ’yes’ or ’no’ property. The existence of a non-terminating or infinite
run implies non-termination. We can conceive the probability tree above as a way to
represent all possible program traces that start from a given initial state. It is easy to see
that for any fixed probability 0 6 p < 1 we can construct a tree of infinite height. Thus,
for probabilistic programs a different notion is required which factors in the probability
of the existence of non-terminating runs.

The well accepted analogon for termination of probabilistic programs is almost sure
termination (AST for short), which states that the probability of eventually reaching a
normal form is one, or equivalently, the existence of an infinite trace is zero (cf. Fioriti and
Hermanns [71]). The random walk example is almost surely terminating for probability
p = 1

2 and p > 1
2 . AST guarantees that eventually a normal form is reached but does not

take the number of steps to reach the normal form into account.
Bournez and Garnier [43] introduce a stronger property, termed positive almost sure

termination (PAST for short). A program is PAST if it is AST and the expected time
(or average time) to reach a normal form is finite. The random walk example is PAST
for p > 1

2 . PAST states that the expected time to terminate is finite for each run. In
the presence of non-determinism, however, PAST does not guarantee that there exists a
bound on all possible runs.

102

5.1 Introduction

Avanzini et al. [19] present an even stronger property, termed strong almost sure
termination (SAST for short). A program is SAST if it is PAST and the expected time to
reach a normal form is strongly bounded, i.e. there exists a bound on the expected runtime
on all runs. A formal definition is given below in Definition 5.8 of the preliminaries. The
notion of PAST and SAST coincide for programs without non-determinism. Thus, the
random walk example is also SAST for probability p > 1

2 .
Next, we provide an intuition of expected runtime. In program analysis, we investigate

properties of program traces. In the non-probabilistic setting we conceive program states
as configurations, e.g. the valuation of the program variables. The runtime of an input
configuration is then given by the length of its trace. In the deterministic case the normal
form and the length of a terminating trace is unique for a given input, while in the
non-deterministic case we take the maximal length of all possible traces.

In the probabilistic setting we can conceive program states as distributions of configu-
rations, i.e. each configuration is associated with a probability that indicates how likely it
is to reach the configuration. Informally, this means that even in the deterministic case
multiple normal forms can be reached from a given input and the runtime of reaching the
normal forms may vary. The average, or expected runtime of an input configuration is
thus given by the expected value

∑
pb ·mb of the runtime mb reaching a normal form σb

with probability pb. Alternatively, we can consider that a probabilistic choice is modelled
with probabilistic branches as in the example above. The normal form and runtime of
each branch may vary.

Our prototype implementation pWhile infers the bound 3 ·max(0, x) on the expected
number of loop iterations of the random walk with probability p = 2

3 .
Our staring point towards an automated analysis is the ert-calculus of Kaminski et al.

[105], which constitutes a sound and complete method for deriving expected runtimes
of probabilistic programs. The ert-calculus has been recently automated by Ngo et al.
[124], showing encouraging results. Indeed, their prototype Absynth can derive accurate
bounds on the expected runtime of a wealth of non-trivial, albeit academic, imperative
programs with probabilistic choice.

Since the average case runtime of probabilistic programs seems to be non-modular (see
e.g. Kaminski et al. [105]), different program fragments cannot be analysed in general
independently within the ert-calculus. This work aims at overcoming this situation, by
enriching the calculus with a form of expected value analysis. Conceptually, our result
rests on the observation that if f and g measure the runtime of non-probabilistic programs
C and D as a function in the variable assignment σ before executing the command, then
f(σ) + g(σ′) for σ′ the store after the execution of C gives the runtime of the composed
command C; D. Estimating σ′ in terms of C and σ, and ensuring monotonicity on g, gives
rise to a modular analysis (see also the discussion in Section 3.3.4 on page 19). When
C exhibits probabilistic behaviour though, the command D may be executed after C on
several probabilistic branches b, each with probability pb with a variable assignment σb.
Assuming bounding functions f and g on the expected runtime of C and D, respectively,
yields a bound f(σ) +

∑
b pb · g(σb) on the expected runtime of the probabilistic program

C; D. As the number of probabilistic branches b is unbounded for all but the most trivial
programs C, estimating all assignments σb in terms of σ soon becomes infeasible. The

103

5 Imperative Probabilistic Programs

crux of our approach towards a modular analysis lies in the observation that if we can
give the runtime of D in terms of a concave function, i.e. a real-valued function g that
satisfies g(p ·x+ (1− p) · y) > p · g(x) + (1− p) · g(y) for all x, y, p ∈ R and 0 6 p 6 1, the
expected runtime

∑
b pb · g(σb) can be bounded in terms of g and the variable assignment∑

b pb ·σb expected after executing C. This way, a modular analysis for sequential programs
is recovered. This observation then also enables a modular analysis of nested loops.

To prove this machinery sound, we present a structural operational semantics in terms
of weighted probabilistic abstract reduction systems. These constitute a refinement to
probabilistic abstract reduction systems introduced by Bournez and Garnier [43] in which
operations do not necessarily have uniform cost. Notably, probabilistic abstract reduction
systems give rise to a reduction relation on (multi-)distributions that is equivalent to
the standard operational semantic via stochastic processes (Avanzini et al. [19]). We
then generalise the ert-calculus to one for reasoning about expected costs consumed by
a command tick(·), and expected values in final configurations. This machinery is
sound and complete with respect to the operational semantics. Finally, we conclude with
additional insights on the prototype implementation.

5.2 Preliminaries
In this section we present weighted probabilistic abstract reduction systems, which induce
a reduction relation on multi-distributions with non-uniform cost. These systems form
our probabilistic model of computation.

Definition 5.2 (Multiset). A multiset over a set A is a mapping M : A → N. The
union

⊎
i∈IMi of countably many multisets Mi is defined by

(⊎
i∈IMi

)
(a) ,

∑
i∈IMi(a)

which forms a multiset if and only if
∑
i∈IMi(a) is finite for every a ∈ A. The sum of a

multiset M with respect to f : A→ R>0 is defined by
∑
a∈M f(a) ,

∑
a∈AM(a) · f(a).

We use set-like notations for multisets: ∅ denotes the empty multiset ∅(a) , 0,
{{ai | i ∈ I}} is the multiset M with M(a) = |{i ∈ I | ai = a}|, and {{a1, . . . , an}} is its
special case where I = {1, . . . , n} is finite.

Definition 5.3 (Multidistribution). A multidistribution on a set A is a multiset µ of
pairs of a ∈ A and 0 < p 6 1, written p : a, satisfying |µ| ,

∑
p:a∈µ p 6 1. The set of

multidistributions on A is denoted by MDist(A). Multidistributions are closed under
convex multiset unions

⊎
i∈I pi ·µi ,

∑
i∈I pi · |µi| 6 1 for every finite or countable infinite

index set I and probabilities pi > 0 with
∑
i∈I pi 6 1. Here scalar multiplication is defined

by p · {{qi : ai | i ∈ I}} , {{p · qi : ai | i ∈ I}} for 0 < p 6 1. The restriction of a multidis-
tribution µ ∈ MDist(A) to a set P ⊆ A is defined by µ�P , {{p : a | p : a ∈ µ, a ∈ P}}.

Definition 5.4 (Expectation). For µ ∈ MDist(A), we define the expectation of a function
f : A→ R∞>0 as

Eµ(f) ,
∑
p:a∈µ

p · f(a) .

Notice that E⊎
i∈I

pi·µi
(f) =

∑
i∈I pi · Eµi(f).

104

5.2 Preliminaries

Definition 5.5 (Weighted Probabilistic Abstract Reduction System). A weighted proba-
bilistic abstract reduction system (wPARS for short) is a pair A = (A,−→) consisting of a
set A and a relation → ⊆ A×MDist(A)×R>0. We write a c−→ µ instead of (a, µ, c) ∈ →.
The weighted one-step reduction relation −→→ ⊆ MDist(A)×MDist(A)×R>0 of −→ is defined
by:

µ
0−→→ µ

a
c−→ µ

{{1 : a}} c−→→ µ

∀i ∈ I. µi
ci−→→ νi c =

∑
i∈I pi · ci⊎

i∈I pi · µi
c−→→
⊎
i∈I pi · νi

The weighted multi-step reduction relation −→→ ∗⊆ MDist(A) ×MDist(A) × R>0 of −→ is
defined by:

µ = µ0
w1−−→→ · · · wn−−→→ µn = ν . w =

∑n
i=1wi

µ
w−→→ ∗ ν

Example 5.6 (Cont’d from Example 5.1). Consider the random walk example with
probability p = 2

3 and initial input x = 1. Below, we depict the first few steps of the
weighted one-step reduction relation which is induced by the program. Here {{pi : ni}}
denotes the probability of x = ni. The first step has weight (or cost) one. When x = 0
then x is in normal form and cannot be reduced any more. Thus, in the second step we
rewrite

{{
1
1 : 0

}} 0−→→
{{

1
1 : 0

}}
with probability 2

3 and
{{

1
1 : 2

}} 1−→→
{{

2
3 : 1, 1

3 : 3
}}

with
probability 1

3 . The weight associated with the second reduction step is 2
3 · 0 + 1

3 · 1 = 1
3 .

{{
1
1 : 1

}} 1
1−→→
{{

2
3 : 0, 1

3 : 2
}} 1

3−→→
{{

2
3 : 0, 2

9 : 1, 1
9 : 3

}}
1
3−→→
{{

2
3 : 0, 4

27 : 0, 2
27 : 2, 2

27 : 2, 1
27 : 4

}} 5
27−−→→ · · ·

It is easy to see that each multidistribution of the reduction corresponds to a level in the
probability tree of Example 5.1 in which the probabilities have been accumulated along
the path.

Definition 5.7 (Canonical Expected Cost, Canonical Expected Value). Let A = (A,−→)
be a wPARS. The expected cost ecA : P(A)→ R∞>0 of A on S ⊆ A is defined by

ecA(S) , sup{w | a w−→→ ∗ µ and a ∈ S} .

Let f : A → R∞>0 be a function. The expected value evfA : P(A) → R∞>0 of A on S ⊆ A
with respect to f is defined by

evfA(S) , sup{Eµ(f) | ∃w. a w−→→ ∗ µ} .

Definition 5.8 (Strongly Bounded). A wPARS A = (A,−→) is called strongly bounded
on S ⊆ A if there exists p ∈ R>0 such that a w−→→ ∗ µ implies w 6 p. This is equivalent to
the statement ecA(S) <∞.

105

5 Imperative Probabilistic Programs

5.3 Probabilistic While Programs

We consider an imperative language pWhile in the spirit of Dijkstra’s guarded command
language [66], endowed with primitives for sampling from discrete distributions as well as
non-deterministic and probabilistic choice. Let Var denote a finite set of integer-valued
variables x, y, We denote by Σ , Var→ Z the set of stores, that associate variables
with their integer contents. The syntax of program commands Cmd over Var is given by
the following grammar:

C, D ∈ Cmd ::= skip effectless operation
| abort termination
| tick(r) resource consumption
| x := d probabilistic assignment
| if [ψ] (φ) {C} {D} conditional
| while [ψ] (φ) {C} while loop
| {C} <> {D} non-deterministic choice
| {C}[p]{D} probabilistic choice
| C; D sequential composition.

In this grammar, φ, ψ ∈ BExp denote Boolean expressions over Var and d ∈ DExp an
integer-valued distribution expression over Var. With J·K : DExp → Σ → D(Z) we de-
note the evaluation functions of distribution expressions, i.e. JdK(σ) returns an integer
distribution D(Z). We keep the precise notion of DExp and BExp abstract. Our proto-
type implementation supports, amongst others, uniform distribution expressions, e.g.
Juniform[x−1, x, x+ 1]K(σ) = {1

3 : σ(x)−1, 1
3 : σ(x), 1

3 : σ(x) + 1} and standard Boolean
and relational connectives. For Boolean expressions φ ∈ BExp and store σ ∈ Σ, we
indicate with σ � φ that φ holds when the variables in φ take values according to σ.

Program commands are fairly standard. The command skip is a no-op, and abort
terminates the execution. The command tick(r) consumes r ∈ Q>0 resource units.
The command x := d assigns a value sampled from JdK(σ) to x, for σ the current store.
The usual non-probabilistic assignment x := e for arithmetic expressions e ∈ AExp is
recovered by the probabilistic assignment x := de, where JdeK(σ) , {1 : JeK(σ)}.

The commands if [ψ] (φ) {C} {D} and while [ψ] (φ) {C} have the usual semantics,
with ψ ∈ BExp an assertion that has to hold when entering the command. We abbreviate
if [ψ] (φ) {C} {D} and while [ψ] (φ) {C} by if (φ) {C} {D} and while (φ) {C} when
φ is the trivial assertion > that is always true. Invariants can be inferred by dedicated
tools or incorporated as assumptions by the user. Alternatively, we could have introduced
an additional command to support assumptions, however, the chosen representation
simplifies the implementation.

The command {C} <> {D} executes either C or D, in a non-deterministic fashion. Our
analysis takes a demonic view on non-determinism, assuming that the branch with
worst-case resource consumption is taken. In contrast, the probabilistic choice {C}[p]{D}

106

5.3 Probabilistic While Programs

executes C with probability p and with probability 1−p the command D, in which p ∈ Q>0
and 0 6 p 6 1.

We give the small step operational semantics for our language via a weighted proba-
bilistic ARS −→ over configurations

Conf , (Cmd× Σ) ∪ Σ ∪ {⊥} .

Elements (C, σ) ∈ Conf are called active and denoted by 〈C〉(σ). Such an active configu-
ration signals that the command C is to be executed under the current store σ, whereas
σ ∈ Conf and ⊥ ∈ Conf indicate that the computation has halted. The former case gives
the final store, whereas the later signals that the command terminated abnormally. The
weighted probabilistic ARS (Conf,−→) is depicted in Figure 5.1.

〈skip〉(σ) 0−→ σ
[Skip]

〈abort〉(σ) 0−→ ⊥
[Halt]

〈tick(r)〉(σ) r−→ σ
[Tick]

〈x := d〉(σ) 0−→ {{pi : σ[x := i] | i ∈ Z, pi = JdK(σ)(i) > 0}}
[Assign]

σ � ψ ∧ φ

〈if [ψ] (φ) {C} {D}〉(σ) 0−→ 〈C〉(σ)
[IfT]

σ � ψ ∧ ¬φ

〈if [ψ] (φ) {C} {D}〉(σ) 0−→ 〈D〉(σ)
[IfF]

σ � ψ ∧ φ

〈while [ψ] (φ) {C}〉(σ) 0−→ 〈C; while [ψ] (φ) {C}〉(σ)
[WhT]

σ � ψ ∧ ¬φ

〈while [ψ] (φ) {C}〉(σ) 0−→ σ
[WhF]

σ � ¬ψ

〈if [ψ] (φ) {C} {D}〉(σ) 0−→ ⊥
[AbortIf]

σ � ¬ψ

〈while [ψ] (φ) {C}〉(σ) 0−→ ⊥
[AbortWhile]

〈{C} <> {D}〉(σ) 0−→ 〈C〉(σ)
[ChoiceL]

〈{C} <> {D}〉(σ) 0−→ 〈D〉(σ)
[ChoiceR]

〈{C}[p]{D}〉(σ) 0−→ {{p : 〈C〉(σ), 1− p : 〈D〉(σ)}}
[ProbChoice]

〈C〉(σ) r−→ {{pi : γi}}i∈I

〈C; D〉(σ) r−→ {{pi : stepD(γi)}}i∈I

[Compose] where stepD(γ) ,

〈C; D〉(σ) if γ = 〈C〉(σ)
〈D〉(σ) if γ = σ ∈ Σ
⊥ if γ = ⊥.

Figure 5.1: Weighted Probabilistic ARS of pWhile.

In this reduction system, rules have the form γ
w−→ µ for γ ∈ Conf and µ a multidistribu-

tion over Conf, i.e. countable multisets of the form {{pi : γi}}i∈I for probabilities 0 < pi 6 1
with

∑
i∈I pi 6 1 and γi ∈ Conf (i ∈ I). A rule γ w−→ {{pi : γi}}i∈I signals that γ reduces

with probability pi to γi, consuming cost w. By identifying dirac multidistributions
{{1 : γ′}} with γ′, we may write γ w−→ γ′ for a reduction step without probabilistic effect.

Only the rules Assign, ProbChoice and Compose have probabilistic effect, all
other rules are standard. The rule Skip indicates that any configuration 〈skip〉(σ)

107

5 Imperative Probabilistic Programs

reduces to σ (or more precisely {{1 : σ}}) consuming 0 resources. Halt reduces any active
configuration to the halting configuration ⊥. The inference rule Tick indicates resource
consumption and is the only rule with non-zero cost. With JdK(σ)(i) we denote in Assign
the probability that the distribution expression d evaluates to the integer i under the
current store σ.

For the conditional commands, we use multiple rules to perform a case distinction
on invariants and guards. If the invariant does not halt under the current store, any
active configuration reduces to ⊥. Iteration is induced in Wht by dynamically unrolling
the loop. The non-deterministic choice is given by two rules ChoiceL and ChoiceR.
On the other hand, the probabilistic choice ProbChoice returns a multidistribution
weighting the individual branches with respect to probability p. The rule Compose
incorporates the case distinction stepD(γ) on active configurations and normal forms. The
first case operates on active configurations which are returned for instance by WhT and
IfT, while the other cases consider inactive configurations and ⊥.

After defining the semantics of pWhile, we specialise the definition of expected cost
and expected value earlier presented in Definition 5.7.

Definition 5.9 (Expected Cost, Expected Value). Let A = (Conf,→) be the wPARS of
a pWhile program, and let −→→ be the weighted one-step reduction relation over MDist(Conf)
induced by the wPARS (Conf,−→) of Figure 5.1. The expected cost ec[·] : Cmd→ Σ→ R∞>0
of A is defined by

ec[C](σ) , sup{w | 〈C〉(σ) w−→→ ∗ µ} .

Let f : Σ→ R∞>0 be a function. The expected value ev[·] : Cmd→ (Σ→ R∞>0)→ Σ→ R∞>0
of A with respect to f is defined by

ev[C](f)(σ) , sup{f(µ�Σ) | 〈C〉(σ) w−→→ ∗ µ} .

5.4 Expectation Transformers
This work is concerned with mechanising the resource analysis of probabilistic programs.
In doing so, we make use of earlier work on expectation transformers, which provide an
equivalent notion of expected cost and expected value.

Kaminski et al. [105] express the expected runtime of probabilistic programs in con-
tinuation passing style, via the expected runtime transformer ert[·] : Cmd→ T→ T over
expectations T , Σ→ R∞>0. Let C ∈ Cmd, then ert[C] : T→ T. We suite this transformer
to two transformers, the expected cost transformer ect[C] : T → T and expected value
transformer evt[C] : T→ T, respectively. Their definition coincide up to the case where
C = tick(r), the former taking into account the cost r while the latter is ignoring it. We
thus generalise ect[C] and evt[C] to a function etc[C] : T→ T which is given in Figure 5.2.

Definition 5.10 (Expected Cost Transformer, Expected Value Transformer). Let C ∈
Cmd. The expected cost transformer ect[C] : T → T, and expected value transformer
evt[C] : T→ T are defined by

ect[C] , et>[C] and evt[C] , et⊥[C] .

108

5.4 Expectation Transformers

etc[skip](f) , f
etc[abort](f) , 0

etc[tick(r)](f) , [c] · r + f

etc[x := d](f) , λσ.EJdK(σ)(λi.f(σ[x := i]))
etc[if [ψ] (φ) {C} {D}](f) , [ψ ∧ φ] · etc[C](f) + [ψ ∧ ¬φ] · etc[D](f)
etc[while [ψ] (φ) {C}](f) , µF.[ψ ∧ φ] · etc[C](F) + [ψ ∧ ¬φ] · f

etc[{C} <> {D}](f) ,max(etc[C](f), etc[D](f))
etc[{C}[p]{D}](f) , p · etc[C](f) + (1− p) · etc[D](f)

etc[C; D](f) , etc[C](etc[D](f))

Figure 5.2: Expectation Transformer etc[C] : T→ T.

Here, functions f : (R∞>0)k → R∞>0 are extended pointwise on expectations and denoted
in bold face, e.g. 0 , λσ.0 denotes the constant zero function, for each r ∈ R∞>0 we have
a constant function r , λσ.r, f + g , λσ.f(σ) + g(σ) for f, g ∈ T etc. Furthermore, we
denote with 4 the pointwise ordering on expectations. The structure (T,4) forms an
ω-complete partial order (ω-CPO for short) with bottom element 0 and top element∞
(see Kaminski et al. [105]). For φ ∈ BExp we use [φ] to denote the expectation function
[φ](σ) , 1 if σ � φ, and [φ](σ) , 0 otherwise.

We comment on the definition of the expectation transformer given in Figure 5.2.
Informally, evt[C](f)(σ) represents the expectation of f applied to all normal forms that
are obtained from the command C and store σ. The transformer ect[C](f)(σ) additionally
collects all costs that are given by the tick(r) commands. In the process the collected
resource is weighted with respect to the probabilistic branches that are induced by
assignments and probabilistic choices.

The command skip consumes 0 resources and does not modify the store. Therefore,
etc[skip](f) returns f . The transformer applied on abort returns the constant zero
function 0, which is the bottom element of T. For the tick command the definition of
expected cost and expected value is different. In the case ect[tick(r)](f) we have [>] = 1
and return r + f , and in the case evt[tick(r)](f) we have [⊥] = 0 and return f . The
probabilistic assignment returns the expectation of f applied to the updated store.

The conditional flow is governed by the use of the bracket function [·]. In the case of the
commands if [ψ] (φ) {C} {D} and while [ψ] (φ) {C} exactly one branch evaluates to
1 and one branch evaluates to 0 for any store. The expectation transformer of the while
loop is given by a fixed point representation. With µF.e we denote the least fixed point
of the function λF.e : T→ T with respect to the pointwise ordering 4 on expectations.
The transformer etc[C] is ω-continuous, and therefore, etc[C] is well-defined.

We are interested in the worst-case behaviour of programs, i.e. the maximal resource
consumption and the maximal value with respect to some function f . Therefore, the
non-deterministic choice maximises over both branches. The probabilistic choice returns

109

5 Imperative Probabilistic Programs

the expectation with respect to the given probability p. Finally, sequential application of
commands is modelled by composition.

We note that evt[C] coincides with the weakest precondition transformer wp[C] of
Olmedo et al. [128] on fully probabilistic programs, i.e. those without non-deterministic
choice. While evt[C] takes a demonic view on non-deterministic choice, wp[C] takes an
angelic view and minimises over non-deterministic choice.

In what follows we make the connection between the expected cost (expected value)
of a program (see Definition 5.9) and the expected cost transformer (expected value
transformer) (see Definition 5.10) precise. Here, we outline the central results, for details
we refer to the technical report, Avanzini, Schaper, and Moser [21].

Recall that T , Σ → R∞>0. For expectations f : T, we lift etc[C](f) : Σ → R∞>0 from
stores Σ to configurations Conf.

Definition 5.11. Let etc(f) : Conf → R∞>0 be defined by

etc(f)(〈C〉(σ)) , etc[C](f)(σ) etc(f)(σ) , f(σ) etc(f)(⊥) , 0 .

The following constitutes our first technical result which shows that etc[·](f) decreases
in expectation along reductions, taking into account the cost in the case of ect[·](f).

Theorem 5.12 (Decreasing wPARS). Eµ(etc(f)) = sup{[c] · w + Eν(etc(f)) | µ w−→→ ∗ ν}.

To prove this theorem, we first show its variations based on the wPARS −→ and the
single-step reduction relation −→→ (see [21]). Both of these intermediate results follow by a
straightforward induction on the corresponding reduction relation. The following is then
immediate:

Corollary 5.13 (Soundness of the Expectation Transformers). Let C ∈ Cmd be a
command and σ ∈ Σ be a store. Then,

(i) ec[C](σ) 6 ect[C](0)(σ) and (ii) ev[C](f)(σ) 6 evt[C](f)(σ) .

By (i), the expected cost of running C is given by ect[C](0). When C does not contain
any loops, the latter is easily computable. To handle programs with loops, Kaminski
et al. [105] propose to search for upper invariants. If ∈ T is an upper invariant for
D = while [ψ] (φ) {C} with respect to f ∈ T if it is a pre-fixpoint of the cost through
which etc[D](f) is defined, i.e. it satisfies [ψ ∧ φ] · etc[D](If) + [ψ ∧ ¬φ] · f 4 If .

Proposition 5.14 (Upper Invariant). Let C ∈ Cmd be a command. Suppose If ∈ T is
an upper invariant for while [ψ] (φ) {C} with respect to f ∈ T. Then,

[ψ∧φ]·etc[while [ψ] (φ) {C}](If)+[ψ∧¬φ]·f 4 If =⇒ etc[while [ψ] (φ) {C}](f) 4 If .

This immediately suggests the following two stage approach towards an automated
expected runtime analysis of a program C via Corollary 5.13. In the first stage, one
evaluates ect[C](0) symbolically on a notion of cost expressions CExp, generating con-
straints according to Proposition 5.14 whenever a while loop is encountered. Based on

110

5.5 Towards A Modular Analysis

the collection of generated constraints, in the second phase concrete upper invariants
can be synthesised. From these, a symbolic upper bound on the expected cost ec[C]
can be constructed. Conceptually, this is the approach taken by Absynth [124], where
ert[C] is formulated in terms of a Hoare style calculus, and CExp is amenable to linear
programming.

5.5 Towards A Modular Analysis
With Proposition 5.14 alone it is in general not possible to modularise this procedure
so that individual components can be treated separately. In particular, nested loops
generate mutual constraints that cannot be solved independently. In the course of this
section we present Theorems 5.20 and 5.21, which provide conditions under which this
global analysis can be broken down into a local one.

Example 5.15 (Compositional Analysis of Nested Loops). The following example depicts
a simple pWhile program with nested loops. We use A and B to indicate program labels
for the loops.

A: while (x > 0)
tick 1; { x = x − 1 } [2

3] { x = x + 1 }
B: while (y > 0)

tick 1; { y = y − 2 } [1
2] { y = y + 1 }

The following constraint system illustrates the application of the ect transformer together
with Proposition 5.14. For the sake of readability we employ additional simplifications.
The function symbols fA and fB denote unknown functions in terms of the integer-valued
variables x and y. Due to the fixed point definition of the expectation transformer we
obtain cyclic dependencies for fA and fB.

x > 0 =⇒ fA(x, y) > 1 + 2
3 · fB(x− 1, y) + 1

3 · fB(x+ 1, y)
x 6 0 =⇒ fA(x, y) > 0
y > 0 =⇒ fB(x, y) > 1 + 1

2 · fB(x, y − 2) + 1
2 · fB(x, y + 1)

y 6 0 =⇒ fB(x, y) > fA(x, y)

In what follows, let ~g = g1, . . . , gk denote expectations with gi : Σ → R∞>0 and
f : (R∞>0)k → R∞>0, The composition λσ.f(g1(σ), . . . , gk(σ)) is denoted by f ◦ ~g.

Definition 5.16 (Concave, Weakly Monotone). Let p denote a probability with 0 6 p 6 1.
Call f : (R∞>0)k → R∞>0 concave, if

f(p · ~r + (1− p) · ~s) > p · f(~r) + (1− p) · f(~s) .

Call f : (R∞>0)k → R∞>0 (weakly) monotone, if

~r > ~s =⇒ f(~r) > f(~s) .

Here, addition and multiplication, as well as the order > are extended from R∞>0 to
(R∞>0)k componentwise.

111

5 Imperative Probabilistic Programs

Now, consider the expected cost transformer ect[C](f) of command C with respect to
expectation f . The first lemma states that it is enough to consider the expected cost
ec[C] = ect[C](0) plus the expected value transformer evt[C](f) of C with respect to f . A
similar lemma is given in Olmedo et al. [128] for a recursive probabilistic language. We
suitably adapt it to pWhile.

Lemma 5.17. Let C ∈ Cmd and f ∈ T. Then, ect[C](f) 4 ec[C] + evt[C](f).

If C is fully-probabilistic, i.e. the command does not contain non-deterministic choice,
then the stronger result ect[C](f) = ec[C] + evt[C](f) holds. The following is immediate.

Corollary 5.18. Let C; D ∈ Cmd be commands. Then ec[C; D] 4 ec[C] + evt[C](ec[D]).

In Section 3.3.4 on page 19 we provide an informal discussion for the modular resource
analysis of sequential and nested imperative programs. In the case of sequential programs
C; D we investigate the runtime complexity of C and D separately. In doing so, we make
use of size bounds, which assess the output of C, on the runtime of D.

Corollary 5.18 makes this discussion precise for the pWhile programming language. In
non-probabilistic programs modularity is achieved by investigating size bounds on norms
of the runtime function of D rather than on the runtime itself. For instance, consider that
the runtime of D is max(0, x) ·max(0, y). Then it is enough to obtain upper bounds on
the output values of max(0, x) and max(0, y) with respect to C. The only prerequisite
is that the runtime function of D is weakly monotone in its arguments. We recover this
observation for pWhile. However, for probabilistic programs we additionally require that
the runtime (or expected cost) of D is concave. The next lemma presents our central
observation.

Lemma 5.19. Let C ∈ Cmd be a command. Suppose g : (R∞>0)k → R∞>0 is a weakly
monotone and concave function. Then,

ect[C](g ◦ (g1, . . . , gk)) 4 ec[C] + g ◦ (evt[C](g1), . . . , evt[C](gk)) .

The intuition behind this lemma is as follows. The functions gi : Σ→ R∞>0, also referred
to as norms, represent an abstract view on program stores σ. In the most simple case, gi
could denote the absolute value of the i-th variable. Now consider a program C; D. Let g
measure the expected resource consumption of D. The expected cost of C; D is thus the
expected cost of C, plus the expected cost of D measured in the values evt[C](gi) of the
norms gi expected after executing C.

Next, we present two applications of the previous lemma for the modular analysis of
sequential and nested programs.

Theorem 5.20 (Decomposition of Sequential Programs). Let C, D ∈ Cmd be commands.
Suppose g : (R∞>0)k → R∞>0 is a weakly monotone and concave function. Then,

ec[D] 4 g ◦ (g1, . . . , gk) =⇒ ec[C; D] 4 ec[C] + g ◦ (evt[C](g1), . . . , evt[C](gk)) .

We emphasize that concavity can be dropped when C admits no probabilistic behaviour.
In combination with upper invariants (see Proposition 5.14) we obtain a modular method
for loops.

112

5.6 Automation

Theorem 5.21 (Decomposition of Nested Programs). Let C, D ∈ Cmd be commands.
Suppose g : (R∞>0)k → R∞>0 is a weakly monotone and concave function. Then,

[ψ ∧ φ] ·
(
ec[C] + g ◦ (evt[C](g1), . . . , evt[C](gk))

)
4 g ◦ (g1, . . . , gk)

∧ [ψ ∧ ¬φ] · f 4 g ◦ (g1, . . . , gk) =⇒ ect[while [ψ] (φ) {C}](f) 4 g ◦ (g1, . . . , gk) .

Consider a program while [ψ] (φ) {C}. With ec[C] we assess the cost of one iteration
of the loop body, while evt[C](gi) assesses the change in the norm gi. Concavity and
upper invariants are exploited to achieve modularity. We notice that if the program has
multiple nested while loops, then each loop can be processed separately bottom-up.

5.6 Automation
In this section we provide additional insights about the implementation of the discussed
techniques within the prototype pWhile, which is available online at

http://cbr.uibk.ac.at/tools/pwhile/ .

At the time of writing the prototype implementation accepts pWhile programs with finite
distributions over integer expressions in probabilistic assignments.

To provide an intuitive notion of cost functions and facilitate automation we introduce
cost expressions. Arithmetic expressions a, b ∈ AExp and cost expressions c, d ∈ CExp
over variables x ∈ Var, integers z ∈ Z and constants q ∈ Q>0 are given as follows:

a, b ∈ AExp ::= x | z | a+ b | a ∗ b | . . .
c, d ∈ CExp ::= q | nat(a) | [φ] · c | c+ d | c · d | max(c, d)

Norms nat(a) lift expressions that depend on the store to cost expressions. We fix
the interpretation of norms to nat(a) , max(0, a). All other operations are inter-
preted in the expected way. The evaluation function of cost expressions is denoted by
J·K : CExp→ Σ→ Q>0. Notice that JcK ∈ T for all c ∈ CExp.

To automate the cost inference of programs we provide a variation of the expecta-
tion transformer etc[C] : T → T given in Figure 5.2. The expectation transformer over
cost expressions et]c[C] : CExp→ CExp, is defined in Figure 5.3. Furthermore, we define
ect][C] , et]>[C] and evt][C] , et]⊥[C]. We intentionally omit the case for while loops, which
we discuss below in more detail. The expectation transformer over cost expressions et]c[C]
mimics etc[C] closely. In the case of probabilistic assignments we restrict to finite distribu-
tions over integer expressions, i.e. et]c[x := {p1 : a1, . . . , pk : ak}](f) ,

∑
16i6k pi · f [ai/x],

in which f [a/x] denotes the substitution of variable x with expression a.
The expectation transformer over cost expressions is sound in the following sense.

Theorem 5.22 (Soundness of Expectation Transformer over Cost Expressions). Let
C ∈ Cmd be a command and f ∈ CExp be a cost expression. Then,

etc[C](JfK) 4 Jet]c[C](f)K .

113

http://cbr.uibk.ac.at/tools/pwhile/

5 Imperative Probabilistic Programs

et]c[skip](f) , f
et]c[tick(r)](f) , [c] · r + f

et]c[abort](f) , 0
et]c[x := {p1 : a1, . . . , pn : an}](f) ,

∑n
i pi · f [ai/x]

et]c[if [ψ] (φ) {C} {D}](f) , [ψ ∧ φ] · et]c[C](f) + [ψ ∧ ¬φ] · et]c[D](f)
et]c[{C} <> {D}](f) , max(et]c[C](f), et]c[D](f))
et]c[{C}[p]{D}](f) , p · et]c[C](f) + (1− p) · et]c[D](f)

et]c[C; D](f) , et]c[C](et]c[D](f))

Figure 5.3: Expectation Transformer over Cost Expressions et]c[C] : CExp→ CExp.

We make use of Theorems 5.20 and 5.21 to decompose programs. Notably, using both
theorems we can define a recursive strategy that infers bounds on while loops separately.
We comment on the application of the theorems in the implementation.

Assume that we are interested to infer ect][while [ψ] (φ) {C}](f). First, we recursively
compute g0 = ect][C](0), which indicates the cost of one loop iteration. We heuristically
select norms g1, . . . , gk based on the invariants and conditions of the program (e.g.
nat(x − y) for some guard x > y). Second, we recursively compute hi = evt][C](gi) for
all gi. We have ect[C](0) 4 Jg0K and evt[C](JgiK) 4 JhiK. Third, we express the necessary
conditions as constraints over cost expressions:

ψ ∧ φ � g0 + h ◦ (h1, . . . , hk) 6 h ◦ (g1, . . . , gk)
ψ ∧ ¬φ � f 6 h ◦ (g1, . . . , gk) .

Here h is a template cost expression with undetermined coefficients qi. A constraint
φ � c 6 d holds if JφK � JcK 4 JdK holds for all stores σ ∈ Σ. When generating constraints
only h is unknown.

To obtain a concrete cost expression for h we follow the method presented in Fuhs
et al. [77]. Take for instance, the template cost expression λhi.

∑
qi · hi for h. Then, we

are interested in finding an assignment of qi such that all constraints hold and qi > 0. In
the implementation we restrict the template cost expression for h such that JhK is weakly
monotone and concave. We apply case-elimination and case-distinction to reduce the
problem φ � c 6 d to inequality constraints over polynomials. For example, given a norm
nat(a) = max(0, a), we eliminate max if we can show that JaK > 0 for all assignments
that satisfy φ. The obtained inequality constraints of polynomials have undetermined
coefficient variables. We reduce the problem to certification of non-negativity, which can
then be solved using SMT solvers.

Consequently, we have ect[while [ψ] (φ) {C}](JfK) 4 Ject][while [ψ] (φ) {C}](f)K
for all cost expression f ∈ CExp. This statement follows immediately by Theorem 5.21
and the construction above.

114

5.6 Automation

Example 5.23 (Modular Analysis of Nested Loops). We recall the motivating program
of Example 5.15 and illustrate the modular approach to the expected runtime analysis
of nested loops. Here, we abbreviate the body of the outer loop with command C.

while (x > 0)
C : tick 1; { x = x − 1 } [2

3] { x = x + 1 }
while (y > 0)

tick 1; { y = y − 2 } [1
2] { y = y + 1 }

We are interested in inferring an upper bound on the expected cost ec[while (x > 0) {C}].
By Corollary 5.13 and Theorem 5.22 we have

ec[while (x > 0) {C}] 4 ect[while (x > 0) {C}](0) 4 Ject][while (x > 0) {C}](0)K .

Thus, we inspect ect][while (x > 0) {C}](0). With respect to the previous discussion
it is enough to consider constraints of the following form. For now, we keep h and the
chosen norms g1, . . . , gk abstract.

x > 0 � ect][C](0) + h ◦ (evt][C](g1), . . . , evt][C](gk)) 6 h ◦ (g1, . . . , gk)
x 6 0 � 0 6 h ◦ (g1, . . . , gk)

Since cost expressions evaluate to Q>0 for all configurations, we restrict to the interesting
first case.

x > 0 � ect][C](0) + h ◦ (evt][C](g1), . . . , evt][C](gk)) 6 h ◦ (g1, . . . , gk)
x > 0 � 1 + 2 ∗ nat(y + 2) + h ◦ (evt][C](g1), . . . , evt][C](gk)) 6 h ◦ (g1, . . . , gk)
x > 0 � 1 + 2 ∗ nat(y + 2) +

∑
qi
[
evt][C](1), evt[C](nat(x)), evt][C](nat(y + 2))

]
6
∑

qi
[
1, nat(x), nat(y + 2)

]
x > 0 � 1 + 2 ∗ nat(y + 2) +

∑
qi
[
1, 2

3 nat(x− 1) + 1
3 nat(x+ 1), 1

]
6
∑

qi
[
1, nat(x), nat(y + 2)

]
In the first step, we recursively compute ect][C](0). Then, the unknown cost expression h
is replaced by the template cost expression

∑
qi, in which qi denote unknown coefficients.

Moreover, the prototype implementation infers the norms g1 = nat(x), g2 = nat(y + 2)
and the numeric constant g3 = 1 from the program code. After the norms have been fixed,
the expected value functions over cost expressions evt][C](gi) are computed recursively.
In the last step we solve the resulting constraint system. In doing so, we perform case
distinctions on the norms and require qi > 0. We display only the relevant cases.

x > 0 ∧ y + 2 > 0
� 1 + 2(y + 2) + q1 + q2

2
3(x− 1) + q2

1
3(x+ 1) + q3 6 q1 + q2x+ q3(y + 2)

x > 0 ∧ 0 > y + 2
� 1 + q1 + q2

2
3(x− 1) + q2

1
3(x+ 1) 6 q1 + q2x

A valid assignment is q1 = 0, q2 = 9 and q3 = 2, which implies the upper bound
ec[while (x > 0) {C}] 4 J9 · nat(x) + 2 · nat(y + 2)K.

115

5 Imperative Probabilistic Programs

5.7 Concluding Remarks
In this chapter we have discussed the automated resource analysis of an imperative
probabilistic language pWhile. Our goal is the development of a modular analysis that
can be automated. Taking inspiration of the resource analysis of non-probabilistic
programs we have carefully investigated under which conditions modularity can be
obtained again for probabilistic programs. The central observation states that we can
improve upon a compositional analysis by restricting the shape of bound expressions to
weakly monotone and concave functions. This allows to state proof rules for the modular
analysis of sequential and nested programs. We have implemented a prototype that makes
use of this observation. In the near future we are going to focus on the improvement of this
prototype. In particular, we are interested in generalising assignments x := d to infinite
distributions. This allows to inspect the resource behaviour of challenging programs such
as the Coupon Collector, in which rand(N) indicates a uniform distribution that depends
on the input argument N .

assume (N> 0)
while(x > 0){

tick(1)
i := rand(N)
if(i > x) { x := x − 1 } { skip }
}

116

Chapter 6

Framework for Automation

In this chapter we are concerned with automating resource analysis. Instead of inspecting
the complexity problem of a concrete programming language or the implementation of a
specific approach, we present a framework for automation. The framework brings together
the principles that have been discussed in previous chapters, namely abstract program
representations, complexity reflecting transformations and modular bound analysis, and is
enriched with tactic-like combinators to facilitate proof search. It has been implemented
and constitutes the core of the latest instalment of the Tyrolean Complexity Tool TCT.
At the time of writing, the latest release is TCT-3.3, which supports the resource analysis
of higher-order functional programs, term rewrite systems, object-oriented bytecode
programs and constraint transition systems.

The presentation in this chapter is based on Avanzini, Moser, and Schaper [18].
Section 6.1 motivates the framework and provides a high-level overview. Then, we
illustrate the software architecture of TCT in Section 6.2. In Section 6.3 we present the
combination framework that forms the theoretical foundation of the tool. Section 6.4
provides details about the implementation of the complexity framework, and Section 6.5
demonstrates several case studies. Finally, we conclude this chapter in Section 6.6.

6.1 Introduction
In this section we motivate the complexity framework and provide a high-level overview.
TCT is implemented in Haskell and available online at

http://cl-informatik.uibk.ac.at/software/tct/ .

It features a command line, an interactive, and a web interface. In the setup of complexity
analyser, TCT embodies a transformational approach, which is depicted in Figure 6.1.

First, the input program in relation to the resource of interest is transformed to
an abstract representation. We refer to the result of applying such a transformation
as abstract program. It has to be guaranteed that the employed transformations are
complexity reflecting, that is, the resource bound on the obtained abstract program
reflects upon the resource usage of the input program. More precisely, the complexity
analysis deals with a general complexity problem that consists of a program together with
the resource metric of interest as input. Second, we employ problem specific techniques
to derive bounds on the given problem, and finally, the result of the analysis, i.e. a
complexity bound or a notice of failure, is relayed back to the user.

117

http://cl-informatik.uibk.ac.at/software/tct/

6 Framework for Automation

. . .

tct-trs

tct-hoca

paicc

tct-jbc

libraries tct-core

C, Java, . . .
Haskell, OCaml, . . .

program

time, WCET,. . .
heap, size, . . .

resource

Bound
/ Failure

Figure 6.1: The Complexity Analyser TCT.

We emphasise that TCT does not make use of a unique abstract representation, but is de-
signed to employ a variety of different representations. Moreover, different representations
may interact with each other. This improves modularity of the approach and provides
scalability and precision of the overall analysis. For now, we make use of constraint
transition systems (CTSs for short) and various forms of term rewrite systems (TRSs
for short). Concretising this abstract setup, TCT currently provides a fully automated
runtime complexity analysis of pure OCaml programs as well as a runtime analysis of
object-oriented bytecode programs. Furthermore, the tool provides runtime and size
analysis of CTSs as well as runtime analysis of first-order rewrite systems. The latest
instalment is a complete reimplementation of the tool that takes full advantage of the
abstract complexity framework introduced by Avanzini and Moser [14]. TCT is open with
respect to the complexity problem under investigation and problem specific techniques for
the resource analysis. Moreover, it provides an expressive problem independent strategy
language that facilitates proof search. In the rest of this chapter, we give insights about
design choices, the implementation of the framework and report different case studies
where we have applied TCT successfully.

6.2 Architectural Overview

In this section we give an overview of the architecture of the complexity analyser.
All components of TCT are written in the strongly typed, lazy functional programming

language Haskell and released open source under BSD3. The core has approximately 2.200
lines of code, excluding external libraries. As depicted in Figure 6.1, the implementation of
TCT is divided into separate components for the different program kinds and abstractions
thereof supported. These separate components are no islands however. Rather, they
instantiate the abstract complexity framework [14] for complexity analysis, from which
TCT derives its power and modularity. In short, in this framework complexity techniques
are modelled as complexity processors that give rise to a set of inferences over complexity
proofs. From a completed complexity proof, a complexity bound can be inferred. The
theoretical foundations of this framework are given in Section 6.3.

118

6.2 Architectural Overview

The abstract complexity framework is implemented in TCT’s core library, termed
tct-core, which is depicted in Figure 6.2 at the bottom layer. Central, it provides a
common notion of a proof state, viz proof trees, and an interface for specifying processors.
Furthermore, tct-core complements the framework with a simple but powerful strategy
language. Strategies play the role of tactics in interactive theorem provers like Isabelle or
Coq. They allow us to turn a set of processors into a sophisticated complexity analyser.
The implementation details of the core library are provided in Section 6.4.

configuration
in

te
rfa

ce
interactivecommand-line

processorstrategy

fra
m

ew
or

k

proof tree

miniSmt

CeTA

. . . lib
ra

rie
s

JBC strategies

JBC processors

JBC problem types

tc
t-

jb
c

TRS strategies

TRS processors

TRS problem types

tc
t-

tr
s

ML strategies

ML processors

ML problem types

tc
t-

ho
ca

co
re

la
ye

r
in

st
an

ce
la

ye
r

Figure 6.2: Software Architecture of TCT.

The complexity framework implemented in the core library leaves the type of complexity
problem, consisting of the analysed program together with the resource metric of interest,
abstract. Rather, concrete complexity problems are provided by concrete instances, such
as the three instances tct-jbc, tct-trs and tct-hoca depicted in Figure 6.2. We will discuss
some instances in detail in Section 6.5. Instances implement complexity techniques on
defined problem types in the form of complexity processors, possibly relying on external
libraries and tools such as SMT solvers. Optionally, instances may also specify strategies
that compose the provided processors. Bridges between instances are easily specified
as processors that implement conversions between problem types defined in different
instances. For instance, in Chapter 4 we discuss the term abstraction of imperative
programs with heap allocated data structures to (constraint) term rewrite systems. The
module tct-jbc integrates the term abstraction as complexity processor and makes use
of the module tct-trs as back-end to analyse the obtained complexity problem. We
emphasise that the system is open to the seamless integration of alternative problem
types through the specification of new instances.

Development Cycle. TCT was originally envisioned as a dedicated tool for the automated
complexity analysis of first-order term rewrite systems. The first version was made
available in 2008. Transformations of complexity problems have been implemented in
version 1.7 and polished in version 2.0 (Avanzini and Moser [13]). Version 3.0 of the tool
is a complete rewrite of the framework (Avanzini, Moser, and Schaper [18]). The main
conceptual difference being, that the transformation framework, which is implemented in
tct-core, is open to the type of the complexity problem. At the time of writing, the latest
release is TCT-3.3, which provides minor incremental improvements.

119

6 Framework for Automation

6.3 A Formal Framework for Complexity Analysis
In this section we outline the theoretical framework upon which the complexity analyser
TCT is based. This framework was originally introduced by Avanzini and Moser [14] for
the derivational and runtime complexity analysis of first-order term rewrite systems.

As mentioned before, both the input language (e.g. Java, OCaml, . . .) and the resource
under consideration (e.g. execution time, heap usage, . . .) is kept abstract in the
framework. That is, we assume that we are dealing with an abstract class of complexity
problems. Each complexity problem P from this class is associated with a complexity
function cpP : D → D, for a complexity domain D. Usually, the complexity domain D
will be the set of natural numbers N, however, more sophisticated choices of complexity
functions such as those proposed by Albert et al. [6] and Danner et al. [63] fall into the
realm of this framework.

Example 6.1 (Complexity Problem). In Chapter 4 we discuss the worst-case runtime
analysis of imperative programs with heap. Let P be a GotoR program and I denote
a set of initial configurations. The worst-case runtime complexity of P on I is given
by the maximal derivation height in terms of the input size m ∈ N (see Definition 4.4
on page 81). We suitably adapt this definition to complexity functions. The class of
complexity problems is fixed to P = (P, I) and the complexity domain is fixed to D = N.
Furthermore, let cp(P,I)(m) , rcIP(m).

As indicated in the introduction, any transformational solver converts concrete programs
into abstract ones, if not already interfaced with an abstract program. Based on the
possible abstracted complexity problem P the analysis continues using a set of complexity
techniques. In particular, a reasonable solver will also integrate some form of decomposition
techniques, transforming an intermediate problem into various smaller subproblems, and
analysing these subproblems separately, either again by some form of decomposition
method, or eventually by some base technique which infers a suitable resource bound.
At any stage in this transformation chain, a solver needs to keep track of computed
complexity bounds, and relay these back to the initial problem.

To support this kind of reasoning, it is convenient to formalise the internals of a
complexity analyser as an inference system over complexity judgements. In this framework,
a complexity judgement has the shape ` P : B, where P is a complexity problem and B
is a set of bounding functions f : D → D for a complexity domain D. Such a judgement
is valid if the complexity function of P lies in B, that is, cpP ∈ B. Complexity techniques
are modelled as processors within the framework. A processor defines a transformation
of the input problem P into a list of subproblems Q1, . . . ,Qn (if any), and it relates
the complexity of the obtained subproblems to the complexity of the input problem.
Processors are given as inferences

Pre(P) ` Q1 : B1 · · · ` Qn : Bn
` P : B

,

where Pre(P) indicates a collection of preconditions on P.

120

6.4 Implementing the Complexity Framework

The processor is sound if under Pre(P) the validity of judgements is preserved, that is,

Pre(P) ∧ cpQ1 ∈ B1 ∧ · · · ∧ cpQn
∈ Bn =⇒ cpP ∈ B .

Dual, it is called complete if under the assumptions Pre(P), validity of the judgement
` P : B implies validity of the judgements ` Qi : Bi.

A proof of a judgement ` P : B from the assumptions ` Q1 : B1, . . . , ` Qn : Bn is a
deduction using sound processors only. The proof is closed if its set of assumptions is
empty. Soundness of processors guarantees that the formal system is correct. Application
of complete processors on a valid judgement ensures that no invalid assumptions are
derived. In this sense, the application of a complete processor is always safe.

Proposition 6.2. If there exists a closed complexity proof ` P : B, then the judgement
` P : B is valid.

Example 6.3 (Complexity Processor). We express the complexity reflecting transforma-
tions based on the path-length abstraction and the term abstraction of GotoR programs
(see Theorem 4.17 on page 87 and Theorem 4.26 on page 92) as complexity processors:

acyclic(I) ` (P◦, I◦) : f
` (P, I) : λm.f(k ·m)

path
treeshaped(I) ` (P•, I•) : f
` (P, I) : λm.f(k ·m)

term

Here, (P◦, I◦) and (P•, I•) denote the abstractions that are obtained by the transforma-
tions presented in Chapter 4. We express the necessary restrictions on the shape of the
input as preconditions.

6.4 Implementing the Complexity Framework
The formal complexity framework described in the last section is implemented in the
core library, termed tct-core. In the following we outline the two central components of
this library:

(i) the generation of complexity proofs, and

(ii) common facilities for instantiating the framework to concrete tools.

6.4.1 Proof Trees, Processors, and Strategies
The library tct-core provides the verification of a valid complexity judgement ` P : B
from a given input problem P. More precisely, the library provides the environment to
construct a complexity proof witnessing the validity of ` P : B.

Since the class B of bounding functions is a result of the analysis, and not an input,
the complexity proof can only be constructed once the analysis finished successfully. For
this reason, proofs are not directly represented as trees over complexity judgements.
Rather, the library features proof trees. Conceptually, a proof tree is a tree whose leaves
are labelled by open complexity problems, that is, problems which remain to be analysed,

121

6 Framework for Automation

and whose internal nodes represent successful applications of processors. The complexity
analysis of a problem P then amounts to the expansion of the proof tree whose single
node is labelled by the open problem P. Processors implement a single expansion step.
To facilitate the expansion of proof trees, tct-core features a rich strategy language, similar
to tactics in interactive theorem provers like Isabelle or Coq. Once a proof tree has
been completely expanded, a complexity judgement for P together with the witnessing
complexity proof can be computed from the proof tree.

In the following, we detail the central notions of proof tree, processor and strategy.

Proof Trees

Crucial to our representation of proof trees is that we abstract over the problem
type. This allows concrete instantiations to precisely specify which problems are sup-
ported. Consequently, proof trees are parametrised in the type of complexity prob-
lems. The corresponding (generalised) algebraic data type ProofTree α (from module
Tct.Core.Data.ProofTree) is depicted in Figure 6.3.

data ProofTree α where
Open :: α → ProofTree α -- open proof node
Success :: Processor β ⇒ -- successful application

ProofNode β → CertFn → [ProofTree α] → ProofTree α
Failure :: Reason → ProofTree α -- failed application

Figure 6.3: Data Type Declaration of Proof Trees in tct-core.

A constructor Open represents a leaf labelled by an open problem of type α. The ternary
constructor Success represents the successful application of a processor of type β. Its
first argument, a value of type ProofNode β, carries the applied processor, the current
complexity problem under investigation as well as a proof object of type ProofObject β.
This information is useful for proof analysis, and allows a detailed textual representation
of proof trees. Note that ProofObject is a type-level function, the concrete representation
of a proof object thus depends on the type of the applied processor. The second argument
to Success is a certificate-function

type CertFn = [Certificate] → Certificate ,

which is used to relate the estimated complexity of generated subproblems to the
analysed complexity problem. Thus currently, the set of bounding functions B occurring
in the final complexity proof is fixed to those expressed by the data type Certificate
(module Tct.Core.Data.Certificate). Certificate includes various representations
of complexity classes, such as the class of polynomials, exponentials, primitive and
multiple recursive functions, but also the more fine-grained classes of bounding functions
O(nk) for all k ∈ N. The remaining argument to the constructor Success is a forest of
proof trees, each individual proof tree represents the continuation of the analysis of a
corresponding subproblem, which is generated by the applied processor. Finally, the
constructor Failure indicates that the analysis failed. It results for example from the

122

6.4 Implementing the Complexity Framework

application of a processor to an open problem which does not satisfy the preconditions
of the processor. The argument of type Reason allows a textual representation of the
failure-condition. The analysis will abort on proof trees containing such a failure node.

Processors

The interface for processors is specified by the type class Processor, which is defined in
module Tct.Core.Data.Processor and depicted in Figure 6.4.

data Return α
= NoProgress Reason
| Progress (ProofObject α) CertFn [ProofTree (Out α)]

class (ProofData (ProofObject α)) ⇒ Processor α where
type In α -- type of input problem
type Out α -- type of output problems
type ProofObject α -- meta information
execute :: α → In α → TctM (Return α) -- implementation

-- application of processor to a problem, resulting in a proof tree
apply :: Processor α ⇒ α → In α → TctM (ProofTree (Out α))
apply p i = (toProofTree <$> execute p i) ‘catchError‘ handler where

toProofTree (NoProgress r) = Failure r
toProofTree (Progress ob cf ts) = Success (ProofNode p i ob) cf ts
handler err = return (NoProgress (IOError err))

Figure 6.4: Data Type and Class Declaration of Processors in tct-core.

The type of input problem and generated subproblems are defined for processors on
an individual basis, through the type-level functions In and Out, respectively. This
eliminates the need for a global problem type, and facilitates the seamless combination of
different instantiations of the core library. Each processor instance specifies additionally
the type of proof objects ProofObject α, i.e. the meta information provided in case of a
successful application. The proof object is constrained to instances of ProofData, which
besides others, ensures that a textual representation can be obtained. Each instance of
Processor has to implement a method execute, which given an input problem of type
In α, evaluates to a TctM action that produces a value of type Return α. The monad
TctM (defined in module Tct.Core.Data.TctM) extends the IO monad with access to
runtime information, such as command line parameters and execution time. The data
type Return α specifies the result of the application of a processor to its given input
problem. In case of a successful application, the return value carries the proof object,
a value of type CertFn, which relates complexity-bounds on subproblems to bounds on
the input problem, and the list of generated subproblems. In fact, the type is slightly
more liberal and allows for each generated subproblem a possibly open proof tree. This
generalisation is useful in certain contexts, for instance, when the processor makes use of
a second processor.

123

6 Framework for Automation

Strategies

To facilitate the expansion of a proof tree, tct-core features a simple but expressive
strategy language. The strategy language is deeply embedded, via the generalised algebraic
data type Strategy α β, which is depicted in Figure 6.5.

data Strategy α β where
-- primitives for sequential processor application
Id :: Strategy α α
Apply :: (Processor γ) ⇒ γ → Strategy (In γ) (Out γ)
Abort :: Strategy α β
Cond :: (ProofTree β → Bool) → Strategy α β → Strategy β γ

→ Strategy α γ → Strategy α γ
-- primitives for parallel processor application
Par :: Strategy α β → Strategy α β
Race :: Strategy α β → Strategy α β → Strategy α β
Better :: (ProofTree β → ProofTree β → Ordering)

→ Strategy α β → Strategy α β → Strategy α β
-- control operators
Timeout :: Time → Strategy α β → Strategy α β
Wait :: Time → Strategy α β → Strategy α β
WithStatus :: (TcTStatus α → Strategy α β) → Strategy α β
WithState :: (TcTROState α → Strategy α β) → Strategy α β

Figure 6.5: Deep Embedding of the Strategy Language in tct-core.

Semantics over strategies are given by the function
evaluate :: Strategy α β → ProofTree α → TctM (ProofTree β) ,

defined in module Tct.Core.Data.Strategy. A strategy of type Strategy α β translates
a proof tree with open problems of type α to one with open problems of type β.

The first four primitives defined in Figure 6.5 constitute our tool box for modelling
sequential application of processors. The strategy Id is implemented by the identity
function on proof trees. The remaining three primitives traverse the given proof tree
in-order, acting on all open proof nodes. The strategy Apply p replaces the given open
proof node with the proof tree resulting from an application of processor p. The strategy
Abort signals that the computation should be aborted, replacing the given proof node by
a failure node. Finally, the strategy Cond predicate s1 s2 s3 implements a very specific
conditional. It sequences the application of strategies s1 and s2, provided the proof tree
computed by s1 satisfies the predicate predicate. For the case where the predicate is
not satisfied, the conditional acts like the third strategy s3.

In Figure 6.6 we showcase the definition of derived strategy combinators. Sequencing
s1 ≫ s2 of strategies s1 and s2 as well as a (left-biased) choice operator s1 <|> s2
are derived from the conditional primitive Cond. When s fails then try s behaves as
an identity. The combinator force complements the combinator try: the strategy
force s enforces that strategy s produces a new proof node. The combinator try brings
backtracking to our strategy language, i.e. the strategy try s1 ≫ s2 first applies strategy

124

6.4 Implementing the Complexity Framework

-- auxiliary predicates on proof trees
nonFailing,progress :: ProofTree α → Bool
nonFailing t = null [Failure {} ← subTrees t]
progress Open{} = False
progress = True
-- choice
(<|>) :: Strategy α β → Strategy α β → Strategy α β
s1 <|> s2 = Cond nonFailing s1 Id s2
-- composition
(≫) :: Strategy α β → Strategy β γ → Strategy α γ
s1 ≫ s2 = Cond nonFailing s1 s2 Abort
-- backtracking
try :: Strategy α α → Strategy α α
try s = s <|> Id
force :: Strategy α β → Strategy α β
force s = Cond progress s Id Abort
-- iteration
exhaustive,exhaustive+ :: Strategy α α → Strategy α α
exhaustive s = try (exhaustive+ s)
exhaustive+ s = force s ≫ exhaustive s

Figure 6.6: Derived Strategy Combinators.

s1, backtracks in case of failure, and applies s2 afterwards. In fact, in version 3.3 we use
dedicated constructors for s1 ≫ s2, s1 <|> s2 and force s1 , which provide better
feedback when s1 is failing. For the sake of brevity we follow the original presentation
in [18]. Finally, the strategies exhaustive s applies s zero or more times, until strategy s
fails. The combinator exhaustive+ behaves similarly, but applies the given strategy at
least once. The obtained combinators satisfy the expected laws, compare Figure 6.7 for
an excerpt.

s1 ≫ (s2 ≫ s3) ≡ (s1 ≫ s2) ≫ s3 -- ≫ is associative
s1<|>(s2<|>s3) ≡ (s1<|>s2)<|>s3 -- <|> is associative
s ≫ Id ≡ s ≡ Id ≫ s -- identity element of ≫
s <|> Abort ≡ s ≡ Abort <|> s -- identity element of <|>
s1 ≫ (s2<|>s3) ≡ (s1 ≫ s2)<|>(s1 ≫ s3) -- ≫ distributes over <|>
(s1<|>s2) ≫ s3 ≡ (s1 ≫ s3)<|>(s2 ≫ s3)

Figure 6.7: Laws of Derived Combinators (Excerpt).

Our language features also three dedicated constructors for parallel proof search. The
strategy Par s implements a form of data level parallelism, applying strategy s to all
open problems in the given proof tree in parallel. In contrast, the strategies Race s1 s2
and Better comp s1 s2 apply to each open problem the strategies s1 and s2 concurrently,
and can be seen as parallel version of our choice operator. Whereas Race s1 s2 simply
returns the (non-failing) proof tree of whichever strategy returns first, Better comp s1 s2
uses the provided comparison function comp to decide which proof tree to return.

125

6 Framework for Automation

We comment on the final four strategies depicted in Figure 6.5. The constructors Wait
and Timeout are used to implement wait and timeout. The final two strategies provide
means to construct strategies dynamically during execution. TctStatus includes global
state, such as command line flags and the execution time, but also proof relevant state
such as the current problem under investigation. TctROState is used to store runtime
options for external tools such as SAT/SMT solvers.

6.4.2 From the Core to Executables
The framework is instantiated by providing a set of sound processors, together with their
corresponding input and output types. At the end of the day the complexity framework
has to give rise to an executable tool, which, given an initial problem, possibly provides
a complexity certificate.

To ease the generation of such an executable, tct-core provides a default implementation
of the main function, controlled by a TctConfig record (see module Tct.Core.Main). A
minimal definition of TctConfig just requires the specification of a default strategy, and
a parser for the initial complexity problem. Optionally, one can for example specify
additional command line parameters, or a list of declarations for custom strategies, which
allow the user to control the proof search. Strategy declarations wrap strategies with ad-
ditional meta information, such as a name, a description, and a list of parameters. Firstly,
this information is used for documentary purposes. If we call the default implementation
with the command line flag --list-strategies it will present a documentation of the
available processors and strategies to the user. Secondly, declarations facilitate the parser
generation for custom strategies. Declarations, together with usage information, are
defined in module Tct.Core.Data.Declaration. Given a path pointing to the file hold-
ing the initial complexity problem, the generated executable will perform the following
actions in order:

1. Parse the command line options given to the executable, and reflect these in the
aforementioned TctStatus.

2. Parse the given file according to the parser specified in the TctConfig.

3. Select a strategy based on the command line flags, and apply the selected strategy
on the parsed input problem.

4. Should the analysis succeed, a textual representation of the obtained complexity
judgement and corresponding proof tree is printed to the console. Otherwise, the
uncompleted proof tree, including the Reason for failure is printed to the console.

Interactive. The library provides an interactive mode via the GHCi interpreter, similar
to the one provided in TCT-2.0 (cf. Avanzini and Moser [13]). The implementation keeps
track of a proof state, a list of proof trees that represents the history of the interactive
session. We provide an interface to inspect and manipulate the proof state. Most
noteworthy, the user can select individual sub-problems and apply strategies on them.
The proof state is updated accordingly.

126

6.5 Case Studies

6.5 Case Studies
In this section we discuss several instantiations of this framework which have been
established up to now. We keep the descriptions of the complexity problems informal
and focus on the big picture. In the discussion we group abstract programs in contrast
to real world programs.

6.5.1 Abstract Program Representations
Currently TCT employs constraint transition systems and term rewrite systems as abstract
program representations. As mentioned before, the system is open to the seamless
integration of alternative abstractions.

Constraint Transition Systems

In Chapter 3 we study the worst-case runtime analysis of integer-valued constraint
transition systems (CTSs for short). CTSs naturally arise from imperative programs
where loops, conditionals and assignments are formed over integer expressions, but can
also be obtained from programs with user-defined data structures using suitable size
abstractions, as illustrated for instance in Chapter 4. In Section 3.7 we discuss the
tool paicc which provides an automated runtime analysis of integer programs based on
the growth-rate analysis of loop programs (see also Schaper [139]). In what follows,
we exemplify a typical configuration which can be compiled to an executable using the
tct-core library. We depict the configuration file of paicc in Figure 6.8, and show the
output of running paicc on the upcoming example in Figure 6.9. In the discussion of the
example, we assume familiarity with the details of paicc given in Section 3.7.

The main method of the configuration file makes the program executable. The function
parseProblem parses CTSs in a rule based format. The implementation in paicc uses
several transformation steps. Each individual transformation step is implemented as a
processor and lifted to a strategy using apply (see Figure 6.4). In doing so, we obtain a
proof node for each transformation step in the output. The configuration file illustrates
the combination of the individual transformation steps, thus forming a pipeline between
different program representations. The final representation is then applicable to the
implemented runtime analysis. We comment on the individual transformation steps
below.

Example 6.4 (Motivating Example). The following CTS depicts one of the running
examples of Chapter 3 (page 62) in a rule based format that can be processed with paicc.

(VAR x y z)
(RULES
l0(x,y,z) -> l1(x’,y’,z’) :|: x’ = x && y’ = y && z’ = z
l1(x,y,z) -> l1(x’,y’,z’) :|: x > 0 && x’ = x-1 && y’ = x+y && z’ = x+y
l1(x,y,z) -> l1(x’,y’,z’) :|: z > 0 && x’ = x && y’ = y && z’ = z-1
l1(x,y,z) -> l2(x’,y’,z’) :|: x <= 0 && x’ = x && y’ = y && z’ = z

)

127

6 Framework for Automation

main :: IO ()
main = runTct paiccConfig where

paiccConfig = defaultTctConfig
{ parser = parseProblem, defaultStrategy = simple }

-- simplify (integer) constraint transition systems
simplify :: Strategy Its Its
simplify = try slicing ≫ try deadCodeElimination

data Greedy = Greedy | NoGreedy
data Minimize = Minimize | NoMinimize

-- abstract to BJK program
toLare :: Greedy → Minimize → Strategy Its Lare
toLare g m = decompose g ≫ abstractSize m ≫ abstractFlow

-- combine transformations and run the analysis
paicc :: Greedy → Minimize → Strategy Its lare
paicc g m = try simplify ≫ toLare g m ≫ analyseGrowthRate

simple,pervasive :: Strategy Its Lare
simple = paicc NoGreedy NoMinimize
pervarsive = best

[paicc g m | g ← [Greedy, NoGreedy] , m ← [Minimize, NoMinimize]]

Figure 6.8: Example Configuration of paicc (Simplified).

Simplification. We provide some standard program simplifications on CTSs which
include variable slicing and dead code elimination. The growth-rate algorithm runs
in polynomial time, however, the degree of the polynomial depends on the number of
variables. Variable slicing removes individual variables based on a simple heuristic. Dead
code elimination implements a syntax based reachability test and a feasibility check on
constraints to eliminate transitions that cannot occur in any program run. Here, the
modifier try indicates that we do not expect that the application is successful in the
sense that the problem is actually simplified.

Decomposition. Control-flow in BJK programs is bounded via its loop structure. We
recall that the loop structure is a nesting hierarchy of subprograms in which each
subprogram is associated with a bound that limits the length of a trace when running it.
The strategy decompose greedy signals the application of a processor which implements
the algorithm presented in Section 3.7.2 on page 63 to infer a loop structure of the
problem under consideration. The argument determines the policy of the algorithm. The
flag Greedy indicates a policy that tries to infer a loop structure with minimal nesting
depth, keeping in mind that the nesting depth implies a multiplicative interaction of the
loop bounds. The result of this transformation step is a CTS that is decorated with a
loop structure.

128

6.5 Case Studies

WORST_CASE(?,POLY)
* Step 1: Decompose WORST_CASE(?,POLY)

+ Considered Problem:
Rules:

0. l0(x,y,z) -> l1(x’,y’,z’) [x’ = x && y’ = y && z’ = z]
1. l1(x,y,z) -> l1(x’,y’,z’) [-1 + x >= 0 && x’ = -1 + x && y’ = x + y && z’ = x + y]
2. l1(x,y,z) -> l1(x’,y’,z’) [-1 + z >= 0 && x’ = x && y’ = y && z’ = -1 + z]
3. l1(x,y,z) -> l2(x’,y’,z’) [0 >= x && x’ = x && y’ = y && z’ = z]

+ Applied Processor:
Decompose Greedy

+ Details:
We construct a loop structure:

P: [0,1,2,3]
\- p:[1,2] c: [1]

\- p:[2] c: [2]
* Step 3: AbstractSize WORST_CASE(?,POLY)

+ Considered Problem:
Rules:

0. l0(x,y,z) -> l1(x’,y’,z’) [x’ = x && y’ = y && z’ = z]
1. l1(x,y,z) -> l1(x’,y’,z’) [-1 + x >= 0 && x’ = -1 + x && y’ = x + y && z’ = x + y]
2. l1(x,y,z) -> l1(x’,y’,z’) [-1 + z >= 0 && x’ = x && y’ = y && z’ = -1 + z]
3. l1(x,y,z) -> l2(x’,y’,z’) [0 >= x && x’ = x && y’ = y && z’ = z]

Loop Structure:
P: [0,1,2,3]
\- p:[1,2] c: [1]

\- p:[2] c: [2]
+ Applied Processor:

AbstractSize Minimize
* Step 4: AbstractFlow WORST_CASE(?,POLY)

+ Considered Problem:
Program:

Domain: [x,y,z] Bounds: [M,N]
l0 -> l1 [x <= x, y <= y, z <= z]

+ Loop [M <= K + x]
l1 -> l1 [x <= x, y <= x + y, z <= x + y]
l1 -> l1 [x <= x, y <= y, z <= z]

+ Loop [N <= K + z]
l1 -> l1 [x <= x, y <= y, z <= z]

+ Applied Processor:
AbstractFlow

* Step 5: Lare WORST_CASE(?,POLY)
+ Considered Problem:

Program:
Domain: [tick,huge,K,x,y,z] Bounds: [M,N]
l0 -> l1 []

+ Loop: [x -+> M,K -+> M]
l1 -> l1 [x -+> y,x -+> z,y -+> y,y -+> z]
l1 -> l1 []

+ Loop: [z -+> N,K -+> N]
l1 -> l1 []

+ Applied Processor:
Lare

+ Details:
l0 -> l2 [y -+> y, y -+> z, x -*> y, x -*> z, x -*> tick, y -*> tick,...]

+ <l1 -> l1> [y -+> y, y -+> z, x -*> y, x -*> z, x -*> tick, y -*> tick, ...]
+ <l1 -> l1> [z -+> N, z -+> tick, tick -+> tick, ...]

Figure 6.9: Proof Output of paicc for the Running Example (Simplified).

129

6 Framework for Automation

Size Abstraction. The strategy abstractSize m infers transition invariants that conform
to BJK constraints. The argument indicates whether optimisations, i.e. minimising
coefficients, should be applied. We obtain a CTS with BJK constraints.

Flow Abstraction. The strategy abstractFlow abstracts BJK constraints into unary
and binary flow information. In the proof output we use x -=> y to indicate an identity
flow, x -+> y to indicate an additive flow, x -*> y to indicate a multiplicative flow,
and x -ˆ> y to indicate a super-polynomial flow from program variable x to variable y.
Moreover, the program is augmented with a counter variable tick to represent the running
time, a symbolic constant K to represent constant numbers and a symbolic constant huge
which indicates unconstrained (or unbounded) growth.

Growth-Rate Analysis. Finally, analyseGrowthRate is a strategy that implements the
growth-rate algorithm of Ben-Amram and Pineles [37]. Applying this processor results in
a new proof node that has no subproblems. For the running program a polynomial growth-
rate on the counter variable tick can be established, viz there exists a multiplicative flow
x -*> tick and y -*> tick but there is no super-polynomial flow from any input variable
to tick. The tool returns the complexity bound Worst_CASE(?,POLY) on the worst-case
runtime.

The strategies simple and pervasive combine all transformation steps and the growth-
rate analysis and can be directly applied on the complexity problem. The combinator
best is the list version of Better and applies the strategies with all possible arguments
in parallel, in doing so, it returns the proof tree witnessing the best bound. The proof
tree that is depicted in Figure 6.9 is obtained by applying the defaultStrategy on the
running example. It illustrates the result of each successfully applied transformation
step.

Term Rewrite Systems

In Chapter 4 we use (constraint) term rewrite systems as target abstraction for programs
with heap allocated data structures. The tct-trs instance provides automated resource
analysis of (first-order) term rewrite systems (TRSs for short). Term rewriting forms
an abstract Turing complete model of computation, which underlies much of declarative
programming (cf. Baader and Nipkow [22]). Complexity analysis of TRSs has received
significant attention in the last decade, see Moser [118] for details. For an overview of
the techniques that are implemented in tct-trs, we refer to Avanzini [11].

We recall, a TRS consists of a set of rewrite rules, i.e. directed equations that can be
applied from left to right. Computation is performed by normalisation, i.e. by successively
applying rewrite rules until no more rules apply. As an example, consider the following
TRS Rsq, which computes the squaring function on natural numbers given in unary
notation.

130

6.5 Case Studies

Example 6.5 (Term Rewrite System Rsq). The TRS Rsq computes the square of a
natural number in unary representation. We use infix notation for readability.

sq(x)→ x ∗ x x ∗ 0→ 0 x+ 0→ x

s(x) ∗ y → y + (x ∗ y) s(x) + y → s(x+ y) .

The runtime complexity of a TRS is naturally expressed as a function that measures the
length of the longest reduction, in the sizes of (normalised) starting terms. Figure 6.10
depicts the proof output of tct-trs when applying a polynomial interpretation [109]
processor with maximal degree 2 on Rsq. The resulting proof tree consists of a single
progress node and returns the (optimal) quadratic asymptotic upper bound on the
runtime complexity of Rsq.

WORST_CASE(?,O(nˆ2)) Orientation:
*** 1 Progress [(?,O(nˆ2))] *** mult(0(),y) = 3 + 4*y
Considered Problem: > 1

Strict TRS Rules = 0()
mult(0(),y) -> 0()
mult(s(x),y) -> plus(y,mult(x,y)) mult(s(x),y) = 3 + 3*x + 2*x*y + 4*y
plus(x,0()) -> x > 2 + 3*x + 2*x*y + 4*y
plus(s(x),y) -> s(plus(x,y)) = plus(y,mult(x,y))
square(x) -> mult(x,x)

Signature: plus(x,0()) = 3 + 2*x
{mult/2,plus/2,square/1} / {0/0,s/1} > x

Obligation: runtime innermost = x

Applied Processor: plus(s(x),y) = 4 + 2*x + y
NaturalPI {shape = Mixed 2} > 3 + 2*x + y

= s(plus(x,y))
Proof:

Polynomial Interpretation: square(x) = 6 + 7*x + 2*xˆ2
p(0) = 1 > 5*x + 2*xˆ2

p(mult) = 3*x1 + 2*x1*x2 + 2*x2 = mult(x,x)
p(plus) = 2 + 2*x1 + x2

p(s) = 1 + x1
p(square) = 6 + 7*x1 + 2*x1ˆ2

Figure 6.10: Polynomial Interpretation Proof of Rsq.

While the configuration for paicc, see above, models a simple transformation pipeline
the tct-trs instance makes full use of the strategy combinator framework mixing more
than 20 base techniques (not considering several variations of them) to a powerful strategy
(see module Tct.Trs.Strategy.Runtime).

The tct-trs module also supports certified complexity proofs via the tool CeTA1 (Certi-
fied Tool Assertions). The tool is written in the Isabelle/HOL theorem prover and provides

1http://cl-informatik.uibk.ac.at/software/ceta/

131

http://cl-informatik.uibk.ac.at/software/ceta/

6 Framework for Automation

certification of several program properties such as (non-)termination, (non-)confluence,
completion and complexity for term rewriting (see Avanzini et al. [17] for certification
of complexity proofs). This is achieved, by providing an alternative proof output that
conforms to the certification problem format which is processed by CeTA.

6.5.2 Real World Programs
One motivation for the complexity analysis of abstract programs is that these models are
well-equipped to abstract over real-world programs whilst remaining conceptually simple.

Object-Oriented Bytecode Programs

In Chapter 4 we discuss the abstraction of programs with heap allocated data structures.
The tct-jbc instance provides automated worst-case runtime analysis of object-oriented
bytecode programs, more specifically, Jinja bytecode [107] (JBC for short) programs. We
recall, given a JBC program, we measure the maximal number of bytecode instructions
executed in any evaluation of the program. We employ techniques from data-flow analysis
and abstract interpretation to obtain a term abstraction of JBC programs in terms
of constraint term rewrite systems (cTRSs for short) (see Moser and Schaper [119] for
details). CTRSs generalise TRSs and CTSs. Moreover, from the cTRSs, which are
obtained from the term abstraction of JBC programs, we can extract a standard TRS or
CTS fragment.

We have implemented the term abstraction in a dedicated tool termed jat2 (Jinja
Analysation Tool) and have integrated its functionality in the instance tct-jbc. The corre-
sponding strategy, termed jbc, is depicted in Figure 6.11. We can use the instances tct-trs
and paicc to analyse the problems which are obtained by the proposed transformation.
We remark that in the current version tct-jbc uses the module tct-its, which provides
a prototype implementation of the runtime and size analysis of integer programs by
Brockschmidt et al. [51], instead of paicc. The framework is expressive enough to analyse
both problems in parallel.

jbc :: Strategy ITS () → Strategy TRS () → Strategy JBC ()
jbc its trs = toCTRS ≫ Race (toIts ≫ its) (toTrs ≫ trs)

Figure 6.11: JBC Transformation Pipeline modelled in tct-jbc.

Note that Race s1 s2 requires that s1 and s2 have the same output problem type. We
can model this with transformations to a dummy problem (). Nevertheless, as intended
any witness that is obtained by a successful application of its or trs will be relayed back.

Example 6.6 (Binary Tree Traversal). In Chapter 4 we discuss the runtime analysis of
binary tree traversals. Example 4.29 on page 94 illustrates the TRS that is obtained by
a successful application of toTRS together with a polynomial interpretation proof that
induces a linear runtime bound.

2http://cbr.uibk.ac.at/jat/

132

http://cbr.uibk.ac.at/jat/

6.5 Case Studies

Pure OCaml

In the case of higher-order functional programs, a successful application of the trans-
formational approach has been demonstrated by Avanzini et al. [16], which study the
runtime complexity of pure OCaml programs.

Example 6.7 (List Reversal). The following OCaml program, which is taken from Bird’s
textbook on functional programming [40], illustrates reversal of a list.

let rec fold_left f acc = function
[] → acc
| x::xs → fold_left f (f acc x) xs ;;

let rev l = fold_left (fun xs x → x::xs) [] l ;;

A suitable adaption of Reynold’s defunctionalisation [134] technique translates the
given program into a slight generalisation of TRSs, so-called applicative term rewrite
systems (ATRSs for short). In ATRSs closures are explicitly represented as first-order
structures. Evaluation of these closures is defined via a global apply function (denoted by
@). The structure of the defunctionalised program is necessarily intricate, even for simple
programs. However, in conjunction with a sequence of sophisticated and in particular
complexity reflecting transformations, one can bring the defunctionalised program in a
form which can be effectively analysed by first-order complexity provers such as tct-trs
(see Avanzini et al. [16] for the details).

The transformation from pure OCaml to term rewrite systems has been implemented
in a prototype termed HoCA3 (Higher-Order Complexity Analysis). Figure 6.12 depicts
an example run of HoCA on the motivating example.

main(x0)→ m1(x0) @ f r(x0) @ x1 → x0 @ r1 @ [] @ x1

m1(x0) @ x1 → m2(x0) @ r(x1) r1 @ x0 → r2(x0)
m2(x0) @ x1 → x1 @ x0 r2(x0) @ x1 → x1 :: x0

f @ x0 → f1 @ x0 f3(x0, x1) @ x2 → f4(x2, x0, x1)
f1 @ x1 → f2(x1) f4([], x0, x1)→ x1

f2(x1) @ x2 → f3(x1, x2) f4(x0 :: x1, x2, x3)→ f @ x1 @ (x2 @ x3 @ x0) @ x2

(a) Defunctionalised Applicative Term Rewrite System.

main(x0)→ f([], x0) f(x0, [])→ x0 f(x0, x1 :: x2)→ f(x1 :: x0, x2)
(b) Simplified First-Order Term Rewrite System.

Figure 6.12: Example Run of HoCA on List Reversal.

We have integrated the functionality of HoCA in the instance tct-hoca. The individual
transformations underlying this tool are seamlessly modelled as processors, and its

3http://cbr.uibk.ac.at/tools/hoca/

133

http://cbr.uibk.ac.at/tools/hoca/

6 Framework for Automation

transformation pipeline is naturally expressed in the strategy language. The corresponding
strategy, termed hoca, is depicted in Figure 6.13. It takes an OCaml source fragment, of
type ML, and turns it into a term rewrite system.

hoca :: Maybe String → Strategy ML TrsProblem
hoca name = mlToAtrs name ≫ atrsToTrs ≫ toTctProblem

mlToAtrs :: Maybe String → Strategy ML ATRS
mlToAtrs name = mlToPcf name ≫ defunctionalise ≫ try simplifyAtrs

atrsToTrs :: Strategy ATRS TRS
atrsToTrs = try cfa ≫ uncurryAtrs ≫ try simplifyTrs

Figure 6.13: HoCA Transformation Pipeline modelled in tct-hoca.

First, via mlToAtrs the source code is parsed and desugared, the resulting abstract
syntax tree is turned into an expression of a typed λ-calculus with constants and
fixpoints, akin to Plotkin’s PCF [131]. All these steps are implemented via the strat-
egy mlToPcf :: Maybe String → Strategy ML TypedPCF. The given parameter, an op-
tional function name, can be used to select the analysed function. The function
defunctionalise :: Strategy TypedPCF ATRS turns the program into an ATRS, which is
simplified via the strategy simplifyAtrs :: Strategy ATRS ATRS modelling the heuristics
implemented in HoCA.

Second, the strategy atrsToTrs uses the control flow analysis provided by HoCA to
instantiate occurrences of higher-order variables [16]. The instantiated ATRS is then
translated into a first-order rewrite system by uncurrying all function calls. Further
simplifications, as foreseen by the HoCA prototype at this stage of the pipeline, are
performed via the strategy simplifyTrs :: Strategy TRS TRS.

Currently, all involved processors are implemented via calls to the library shipped
with the HoCA prototype, and operate on exported data types. The final strategy in the
pipeline, toTctProblem :: Strategy TRS TrsProblem, converts HoCA’s representation of
a TRS to a complexity problem understood by tct-trs.

6.6 Concluding Remarks
In this chapter we have presented a framework for automating resource analysis. The
framework is built upon a solid theoretical foundation in form of complexity processors,
and has been realised in the complexity tool TCT. We have illustrated several use cases
which demonstrates the viability of the framework in practice, among them, the complexity
analysis of higher-order functional programs, object-oriented bytecode programs, term
rewrite systems and constraint transition systems.

134

Chapter 7

Conclusion

This thesis is devoted to resource analysis of imperative programs. In this work, we have
addressed several aspects on recent developments.

Chapter 3 is concerned with resource analysis of imperative programs, in which the
programs of interest conform to intermediate representations with a finite set of integer-
valued variables and unstructured control flow. Central to our discussion are the resource
analysis tools Loopus, KoAT and paicc, which have been developed in recent years. The
latter one is maintained by the author. Due to the nature of the problem, the tools are
complex and rely on heuristics. This makes a comparison between the tools, besides
experimental evaluation, difficult. In this work, we have mitigated this problem in
identifying the abstract program representations that are used internally as driving factor
of the different approaches to the analysis. We have recalled and categorised the central
concepts of the methods applied, and compared practical aspects between the tools using
case studies. In addition, we have summarised known theoretical properties of related
program representations from the literature. The properties of interest are termination,
bounded termination and polynomial complexity.

Chapter 4 is concerned with resource analysis of imperative programs with heap
allocated data structures. We have introduced a simple imperative language with
statements for allocating and manipulating records. The presence of aliasing and sharing
of data induces additional challenges in establishing quantitative properties of the program
state. In this work, we have given a uniform presentation of two different program
abstractions. We have recalled the path-length abstraction in which data is abstracted
to the maximal number of pointers that is needed to traverse from a variable to the null
value. In addition, we have presented a term abstraction in which data allocated on the
heap is unfolded to terms. The latter abstraction is motivated by recent developments in
automated runtime analysis of term rewrite systems. We have studied both abstractions
with a challenging, albeit academic, example.

Chapter 5 is concerned with resource analysis of imperative probabilistic programs.
We consider a guarded command language with support for probabilistic sampling and
probabilistic choice. In the probabilistic setting, we are interested in averaging the
resource usage over all probabilistic branches. This induces additional challenges and
limitations in resource analysis. In this work, we have presented a fully automated
analysis on the expected runtime and on the expected valuation of a function. The main
contribution is a novel approach to modularity. We exploit concave bounding functions to
transform a compositional analysis into a modular one. Here, modular indicates that in

135

7 Conclusion

our approach all loops of a program can be treated separately as obligations of constraints
over expectations. At the time of writing we have developed the first prototype. In
the near future, we are concerned with extending the probabilistic primitives that are
supported by the prototype.

Finally, Chapter 6 is concerned with a framework for automating resource analysis.
The Tyrolean Complexity Tool TCT is a library that helps to design and create new
resource analysis tools. At the heart of this framework is a inference system for complexity
problems. The implementation of this inference system embodies a transformational
approach to resource analysis, which allows to reuse and combine individual instances
of the library. Moreover, the implementation exposes an expressive strategy language
that facilitates proof search. In this work, we have outlined the software architecture of
the TCT library. We have given detailed insights on the implementation of the inference
system and strategy language. In addition, we have demonstrated several case studies
that exemplify the successful application of the framework. The case studies include
resource analysis of higher-order functional programs, object-oriented bytecode programs,
term rewrite systems and constraint transition systems.

136

Bibliography

[1] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, G. Puebla, D. V. Ramı́rez-
Deantes, G. Román-Dı́ez, and D. Zanardini. Termination and Cost Analysis with
COSTA and its User Interfaces. ENTCS, 258(1):109–121, 2009.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Cost Relation Systems: A
Language-Independent Target Language for Cost Analysis. ENTCS, 248:31–46,
2009.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. JAR, 46(2):161–203, 2011.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Object-Oriented Bytecode Programs. TCS, 413(1):142–159, 2012.

[5] E. Albert, S. Genaim, and A. N. Masud. On the Inference of Resource Usage Upper
and Lower Bounds. TOCL, 14(3):22:1–22:35, 2013.

[6] E. Albert, P. Arenas, S. Genaim, and G. Puebla. A Practical Comparator of Cost
Functions and Its Applications. SCP, 111:483–504, 2015.

[7] E. Albert, R. Bubel, S. Genaim, R. Hähnle, G. Puebla, and G. Román-Dı́ez. A
Formal Verification Framework for Static Analysis - As well as its instantiation to
the resource analyzer COSTA and formal verification tool KeY. SOSYM, 15(4):
987–1012, 2016.

[8] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey. EthIR: A Framework
for High-Level Analysis of Ethereum Bytecode. In Proc. 16th ATVA, volume 11138
of LNCS, pages 513–520, 2018.

[9] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional Rankings,
Program Termination, and Complexity Bounds of Flowchart Programs. In Proc.
of 17th SAS, volume 6337 of LNCS, pages 117–133, 2010.

[10] R. Atkey. Amortised Resource Analysis with Separation Logic. LMCS, 7(2), 2011.

[11] M. Avanzini. Verifying Polytime Computability Automatically. PhD thesis, Univer-
sity of Innsbruck, 2013.

[12] M. Avanzini and U. D. Lago. Automating Sized-Type Inference for Complexity
Analysis. PACMPL, 1(ICFP):43:1–43:29, 2017.

137

Bibliography

[13] M. Avanzini and G. Moser. Tyrolean Complexity Tool: Features and Usage. In
Proc. of 24th RTA, volume 21 of LIPIcs, pages 71–80, 2013.

[14] M. Avanzini and G. Moser. A Combination Framework for Complexity. IC, 248:
22–55, 2016.

[15] M. Avanzini and G. Moser. Complexity of Acyclic Term Graph Rewriting. In Proc.
of 1st FSCD, volume 52 of LIPIcs, pages 10:1–10:18, 2016.

[16] M. Avanzini, U. D. Lago, and G. Moser. Analysing the Complexity of Functional
Programs: Higher-Order Meets First-Order. In Proc. of 20th ICFP, pages 152–164,
2015.

[17] M. Avanzini, C. Sternagel, and R. Thiemann. Certification of Complexity Proofs
using CeTA. In Proc. of 26th RTA, volume 36 of LIPIcs, pages 23–39, 2015.

[18] M. Avanzini, G. Moser, and M. Schaper. TcT: Tyrolean Complexity Tool. In Proc.
of 22nd TACAS, volume 9636 of LNCS, pages 407–423, 2016.

[19] M. Avanzini, U. Dal Lago, and A. Yamada. On Probabilistic Term Rewriting. In
Proc. of 14th FLOPS, volume 10818 of LNCS, pages 132–148, 2018.

[20] M. Avanzini, M. Schaper, and G. Moser. Modular Runtime Complexity Analysis
of Probabilistic While Programs. In Proc. of 3rd DICE-FOPARA, volume 298 of
EPTCS, 2019.

[21] M. Avanzini, M. Schaper, and G. Moser. Modular Runtime Complexity Analysis of
Probabilistic While Programs. CoRR, abs/1908.11343, 2019. Technical Report.

[22] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[23] R. Bagnara and F. Mesnard. Eventual Linear Ranking Functions. In Proc. of 15th
PPDP, pages 229–238. ACM, 2013.

[24] R. Bagnara, A. Pescetti, A. Zaccagnini, and E. Zaffanella. PURRS: Towards
Computer Algebra Support for Fully Automatic Worst-Case Complexity Analysis.
CoRR, abs/cs/0512056, 2005.

[25] R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. A New Look at the
Automatic Synthesis of Linear Ranking Functions. IC, 215:47–67, 2012.

[26] S. Bellantoni and S. A. Cook. A New Recursion-Theoretic Characterization of the
Polytime Functions. Computational Complexity, 2:97–110, 1992.

[27] A. M. Ben-Amram. Size-Change Termination with Difference Constraints. TOPLAS,
30(3):16:1–16:31, 2008.

[28] A. M. Ben-Amram. On Decidable Growth-Rate Properties of Imperative Programs.
In Proc. of 1st DICE, volume 23 of EPTCS, pages 1–14, 2010.

138

Bibliography

[29] A. M. Ben-Amram. Size-Change Termination, Monotonicity Constraints and
Ranking Functions. LMCS, 6(3), 2010.

[30] A. M. Ben-Amram. Monotonicity Constraints for Termination in the Integer
Domain. LMCS, 7(3), 2011.

[31] A. M. Ben-Amram and S. Genaim. Ranking Functions for Linear-Constraint Loops.
JACM, 61(4):26:1–26:55, 2014.

[32] A. M. Ben-Amram and S. Genaim. Complexity of Bradley-Manna-Sipma Lexico-
graphic Ranking Functions. In Proc. of 27th CAV, volume 9207 of LNCS, pages
304–321, 2015.

[33] A. M. Ben-Amram and G. W. Hamilton. Tight Worst-Case Bounds for Polynomial
Loop Programs. In Proc. of 22nd FoSSaCS, volume 11425 of LNCS, pages 80–97,
2019.

[34] A. M. Ben-Amram and L. Kristiansen. On the Edge of Decidability in Complexity
Analysis of Loop Programs. IJFCS, 23(7):1451–1464, 2012.

[35] A. M. Ben-Amram and C. S. Lee. Program Termination Analysis in Polynomial
Time. TOPLAS, 29(1):5:1–5:37, 2007.

[36] A. M. Ben-Amram and A. Pineles. Growth-Rate Analysis of Flowchart Programs.
Master’s thesis, Academic College of Tel-Aviv Yaffo, 2014. URL http://www2.mta.
ac.il/˜amirben/projects/aviad_final.pdf. [Online; accessed 15-September-
2019].

[37] A. M. Ben-Amram and A. Pineles. Flowchart Programs, Regular Expressions,
and Decidability of Polynomial Growth-Rate. In Proc. of 4th VPT, volume 216 of
EPTCS, pages 24–49, 2016.

[38] A. M. Ben-Amram and M. Vainer. Bounded Termination of Monotonicity-
Constraint Transition Systems. CoRR, abs/1202.4281, 2012.

[39] A. M. Ben-Amram, N. D. Jones, and L. Kristiansen. Linear, Polynomial or
Exponential? Complexity Inference in Polynomial Time. In Proc. of 4th CiE,
volume 5028 of LNCS, pages 67–76, 2008.

[40] R. Bird. Introduction to Functional Programming using Haskell, Second Edition.
Prentice Hall, 1998.

[41] C. Borralleras, M. Brockschmidt, D. Larraz, A. Oliveras, E. Rodŕıguez-Carbonell,
and A. Rubio. Proving Termination Through Conditional Termination. In Proc. of
23rd TACAS, volume 10205 of LNCS, pages 99–117, 2017.

[42] A. Bouajjani and R. Mayr. Model Checking Lossy Vector Addition Systems. In
Proc. of 16th STACS, volume 1563 of LNCS, pages 323–333, 1999.

139

http://www2.mta.ac.il/~amirben/projects/aviad_final.pdf
http://www2.mta.ac.il/~amirben/projects/aviad_final.pdf

Bibliography

[43] O. Bournez and F. Garnier. Proving Positive Almost-Sure Termination. In Proc.
of 16th RTA, volume 3467 of LNCS, pages 323–337, 2005.

[44] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear Ranking with Reachability. In
Proc. of 17th CAV, volume 3576 of LNCS, pages 491–504, 2005.

[45] T. Brázdil, K. Chatterjee, A. Kucera, P. Novotný, D. Velan, and F. Zuleger. Efficient
Algorithms for Asymptotic Bounds on Termination Time in VASS. In Proc. of
33rd LICS, pages 185–194. ACM, 2018.

[46] M. Brockschmidt, C. Otto, C. v. Essen, and J. Giesl. Termination Graphs for Java
Bytecode. In Verification, Induction, Termination Analysis, volume 6463 of LNCS,
pages 17–37, 2010.

[47] M. Brockschmidt, C. Otto, and J. Giesl. Modular Termination Proofs of Recursive
Java Bytecode Programs by Term Rewriting. In Proc. of 22nd RTA, volume 10 of
LIPIcs, pages 155–170, 2011.

[48] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated Detection of
Non-termination and NullPointerExceptions for Java Bytecode. In Proc. of 2nd
FoVeOOS, volume 7421 of LNCS, pages 123–141, 2011.

[49] M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated Termination Proofs
for Java Programs with Cyclic Data. In Proc. of 24th CAV, volume 7358 of LNCS,
pages 105–122, 2012.

[50] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating Runtime
and Size Complexity Analysis of Integer Programs. In Proc. of 20th TACAS, volume
8431 of LNCS, pages 140–155, 2014.

[51] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing Runtime
and Size Complexity of Integer Programs. TOPLAS, 38(4):13:1–13:50, 2016.

[52] P. Cadek, C. Danninger, M. Sinn, and F. Zuleger. Using Loop Bound Analysis For
Invariant Generation. In Proc. of 18th FMCAD, pages 1–9, 2018.

[53] Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional Certified Resource
Bounds. In Proc. of 36th PLDI, pages 467–478, 2015.

[54] Q. Carbonneaux, J. Hoffmann, T. W. Reps, and Z. Shao. Automated Resource
Analysis with Coq Proof Objects. In Proc. of 29th CAV, volume 10427 of LNCS,
pages 64–85, 2017.

[55] T. Colcombet, L. Daviaud, and F. Zuleger. Size-Change Abstraction and Max-Plus
Automata. In Proc. of 39th MFCS, volume 8634 of LNCS, pages 208–219, 2014.

[56] M. Colón, S. Sankaranarayanan, and H. Sipma. Linear Invariant Generation Using
Non-linear Constraint Solving. In Proc. of 15th CAV, volume 2725 of LNCS, pages
420–432, 2003.

140

Bibliography

[57] B. Cook, A. Podelski, and A. Rybalchenko. Termination Proofs for Systems Code.
In Proc. of 27th PLDI, pages 415–426, 2006.

[58] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2009.

[59] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of 4th POPL, pages 238–252, 1977.

[60] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In Proc. of 5th POPL, pages 84–96, 1978.

[61] K. Crary and S. Weirich. Resource Bound Certification. In Proc. of 27th POPL,
pages 184–198, 2000.

[62] S. A. Crosby and D. S. Wallach. Denial of Service via Algorithmic Complexity
Attacks. In Proc. of 12th USENIX, 2003.

[63] N. Danner, J. Paykin, and J. S. Royer. A Static Cost Analysis for a Higher-order
Language. In Proc. of 7th PLPV, pages 25–34, 2013.

[64] S. K. Debray and N. Lin. Cost Analysis of Logic Programs. TOPLAS, 15(5):
826–875, 1993.

[65] S. K. Debray, N.-W. Lin, and M. V. Hermenegildo. Task Granularity Analysis in
Logic Programs. In Proc. of PLDI’90, pages 174–188, 1990.

[66] E. W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation of
Programs. CACM, 18(8):453–457, 1975.

[67] S. Falke and D. Kapur. A Term Rewriting Approach to the Automated Termination
Analysis of Imperative Programs. In Proc. of 22nd CADE, volume 5663 of LNCS,
pages 277–293, 2009.

[68] S. Falke, D. Kapur, and C. Sinz. Termination Analysis of C Programs Using
Compiler Intermediate Languages. In Proc. of 22nd RTA, volume 10 of LIPIcs,
pages 41–50, 2011.

[69] D. Fenacci and K. MacKenzie. Static Resource Analysis for Java Bytecode Using
Amortisation and Separation Logic. ENTCS, 279(1):19–32, 2011.

[70] T. Fiedor, L. Hoĺık, A. Rogalewicz, M. Sinn, T. Vojnar, and F. Zuleger. From
Shapes to Amortized Complexity. In Proc. of 19th VMCAI, volume 10747 of LNCS,
pages 205–225, 2018.

[71] L. M. F. Fioriti and H. Hermanns. Probabilistic Termination: Soundness, Com-
pleteness, and Compositionality. In Proc. of 42nd POPL, pages 489–501, 2015.

141

Bibliography

[72] A. Flores-Montoya. Upper and Lower Amortized Cost Bounds of Programs Ex-
pressed as Cost Relations. In Proc. of 21st FM, volume 9995 of LNCS, pages
254–273, 2016.

[73] A. Flores-Montoya. Cost Analysis of Programs Based on the Refinement of Cost
Relations. PhD thesis, Darmstadt University of Technology, Germany, 2017.

[74] A. Flores-Montoya and R. Hähnle. Resource Analysis of Complex Programs with
Cost Equations. In Proc. of 12th APLAS, volume 8858 of LNCS, pages 275–295,
2014.

[75] R. W. Floyd. Assigning Meanings to Programs. Proceedings of Symposium on
Applied Mathematics, 19:19–32, 1967.

[76] F. Frohn and J. Giesl. Complexity Analysis for Java with AProVE. In Proc. of
13th IFM, volume 10510 of LNCS, pages 85–101, 2017.

[77] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
SAT Solving for Termination Analysis with Polynomial Interpretations. In Proc.
of 10th SAT, volume 4501 of LNCS, pages 340–354, 2007.

[78] S. Genaim and D. Zanardini. Reachability-Based Acyclicity Analysis by Abstract
Interpretation. TCS, 474:60–79, 2013.

[79] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann.
Automated Termination Proofs for Haskell by Term Rewriting. TOPLAS, 33(2):
7:1–7:39, 2011.

[80] J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic
Evaluation Graphs and Term Rewriting - A General Methodology for Analyzing
Logic Programs. In Proc. of 22nd LOPSTR, volume 7844 of LNCS, page 1, 2012.

[81] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker,
P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Proving Termi-
nation of Programs Automatically with AProVE. In Proc. of 7th IJCAR, volume
8562 of LNCS, pages 184–191, 2014.

[82] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel,
C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann.
Analyzing Program Termination and Complexity Automatically with AProVE.
JAR, 58(1):3–31, 2017.

[83] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder. Static
Analysis of Energy Consumption for LLVM IR Programs. In Proc. of 18th SCOPES,
pages 12–21, 2015.

[84] S. Gulwani. SPEED: Symbolic Complexity Bound Analysis. In Proc. of 21st CAV,
volume 5643 of LNCS, pages 51–62, 2009.

142

Bibliography

[85] S. Gulwani and A. Tiwari. Combining Abstract Interpreters. In Proc. of 27th
PLDI, pages 376–386, 2006.

[86] S. Gulwani and F. Zuleger. The Reachability-Bound Problem. In Proc. of 31st
PLDI, pages 292–304, 2010.

[87] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In Proc. of 36th POPL, pages
127–139, 2009.

[88] P. Habermehl, L. Hoĺık, A. Rogalewicz, J. Simácek, and T. Vojnar. Forest Automata
for Verification of Heap Manipulation. FMSD, 41(1):83–106, 2012.

[89] E. Hainry and R. Péchoux. Objects in Polynomial Time. In Proc. of 14th APLAS,
pages 387–404, 2015.

[90] E. Hainry and R. Péchoux. A Type-Based Complexity Analysis of Object Oriented
Programs. IC, 261:78–115, 2018.

[91] M. V. Hermenegildo, G. Puebla, F.Bueno, and P. López-Garćıa. Integrated Program
Debugging, Verification, and Optimization using Abstract Interpretation (and the
Ciao System Preprocessor). SCP, 58(1-2):115–140, 2005.

[92] N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Depen-
dency Pair Method. In Proc. of 4th IJCAR, volume 5196 of LNCS, pages 364–379,
2008.

[93] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. CACM, 12(10):
576–580, 1969.

[94] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with Polynomial
Potential. In Proc. of 19th ESOP, volume 6012 of LNCS, pages 287–306, 2010.

[95] J. Hoffmann, K. Aehlig, and M. Hofmann. Resource Aware ML. In Proc. of 24rd
CAV, volume 7358 of LNCS, pages 781–786, 2012.

[96] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-Order
Functional Programs. In Proc. of 30th POPL, pages 185–197, 2003.

[97] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Analysis. In Proc. of
15th ESOP, volume 3924 of LNCS, pages 22–37, 2006.

[98] M. Hofmann and G. Moser. Amortised Resource Analysis and Typed Polynomial
Interpretations. In Proc. of RTA-TLCA 2014, volume 8560 of LNCS, pages 272–286,
2014.

[99] M. Hofmann and D. Rodriguez. Efficient Type-Checking for Amortised Heap-Space
Analysis. In Proc. of 18th CSL, volume 5771 of LNCS, pages 317–331, 2009.

143

Bibliography

[100] M. Hofmann and D. Rodriguez. Automatic Type Inference for Amortised Heap-
Space Analysis. In Proc. 22nd ESOP, volume 7792 of LNCS, pages 593–613,
2013.

[101] J. Hopcroft and J. Pansiot. On the Reachability Problem for 5-dimensional Vector
Addition Systems. TCS, 8(2):135 – 159, 1979.

[102] B. Jeannet and A. Miné. Apron: A Library of Numerical Abstract Domains for
Static Analysis. In Proc. of 21st CAV, volume 5643 of LNCS, pages 661–667, 2009.

[103] N. D. Jones and L. Kristiansen. A Flow Calculus of mwp-bounds for Complexity
Analysis. TOCS, 10(4):28:1–28:41, 2009.

[104] S. Kahrs. The Primitive Recursive Functions are Recursively Enumerable, 2008.

[105] B. L. Kaminski, J. Katoen, C. Matheja, and F. Olmedo. Weakest Precondition
Reasoning for Expected Run-Times of Probabilistic Programs. In Proc. of 25th
ESOP, volume 9632 of LNCS, pages 364–389, 2016.

[106] Z. Kincaid, J. Breck, A. F. Boroujeni, and T. W. Reps. Compositional Recurrence
Analysis Revisited. In Proc. of 38th PLDI, pages 248–262, 2017.

[107] G. Klein and T. Nipkow. A Machine-Checked Model for a Java-Like Language,
Virtual Machine, and Compiler. TOPLAS, 28(4):619–695, 2006.

[108] L. Kristiansen and K. Niggl. On the Computational Complexity of Imperative
Programming Languages. TCS, 318(1-2):139–161, 2004.

[109] D. Lankford. On Proving Term Rewriting Systems are Noetherian. Technical
Report MTP-3, Louisiana Technical University, 1979.

[110] C. S. Lee, N. D.Jones, and A. M.Ben-Amram. The Size-Change Principle for
Program Termination. In Proc. of 28th POPL, pages 81–92, 2001.

[111] J. Leike and M. Heizmann. Ranking Templates for Linear Loops. LMCS, 11(1),
2015.

[112] J. Leroux and P. Schnoebelen. On Functions Weakly Computable by Petri Nets
and Vector Addition Systems. In Proc. of 8th RP, volume 8762 of LNCS, pages
190–202, 2014.

[113] S. Magill, M. Tsai, P. Lee, and Y. Tsay. Automatic Numeric Abstractions for
Heap-Manipulating Programs. In Proc. of 37th POPL, pages 211–222, 2010.

[114] J.-Y. Marion. A Type System for Complexity Flow Analysis. In Proc. of 26th
LICS, pages 123–132, 2011.

[115] J.-Y. Marion and R. Péchoux. Analyzing the Implicit Computational Complexity
of Object-Oriented Programs. In Proc. of 38th FSTTCS, volume 2 of LIPIcs, pages
316–327, 2008.

144

Bibliography

[116] A. R. Meyer and D. M. Ritchie. The Complexity of Loop Programs. In Proc. of
22nd NC, pages 465–469, 1967.

[117] A. Miné. The Octagon Abstract Domain. HOSC, 19(1):31–100, 2006.

[118] G. Moser. Proof Theory at Work: Complexity Analysis of Term Rewrite Systems.
CoRR, abs/0907.5527, 2009. Habilitation Thesis.

[119] G. Moser and M. Schaper. From Jinja Bytecode to Term Rewriting: A Complexity
Reflecting Transformation. IC, 261:116–143, 2018.

[120] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[121] J.-Y. Moyen. Resource Control Graphs. TOCL, 10(4):29:1–29:44, 2009.

[122] M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl. Complexity Analysis
for Term Rewriting by Integer Transition Systems. In Proc. of 11th FroCoS, volume
10483 of LNCS, pages 132–150, 2017.

[123] J. A. Navas, M. Méndez-Lojo, and M. V. Hermenegildo. User-Definable Resource
Usage Bounds Analysis for Java Bytecode. ENTCS, 253(5):65–82, 2009.

[124] N. C. Ngo, Q. Carbonneaux, and J. Hoffmann. Bounded Expectations: Resource
Analysis for Probabilistic Programs. In Proc. of 39th PLDI, pages 496–512, 2018.

[125] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

[126] H. R. Nielson. A Hoare-Like Proof System for Analysing the Computation Time of
Programs. SCP, 9(2):107–136, 1987.

[127] K. Niggl and H. Wunderlich. Certifying Polynomial Time and Linear/Polynomial
Space for Imperative Programs. SIAM, 35(5):1122–1147, 2006.

[128] F. Olmedo, B. L. Kaminski, J.-P. Katoen, and C. Matheja. Reasoning about
Recursive Probabilistic Programs. In Proc. of 31st LICS, pages 672–681, 2016.

[129] C. Otto, M. Brockschmidt, C. v. Essen, and J. Giesl. Automated Termination
Analysis of Java Bytecode by Term Rewriting. In Proc. of 21st RTA, volume 6 of
LIPIcs, pages 259–276, 2010.

[130] S. Panitz and M. Schmidt-Schauß. TEA: Automatically Proving Termination of
Programs in a Non-strict Higher-Order Functional Language. In Proc. of 4th SAS,
volume 1302 of LNCS, pages 345–360, 1997.

[131] G. D. Plotkin. LCF Considered as a Programming Language. TCS, 5(3):223–255,
1977.

145

Bibliography

[132] A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis of Linear
Ranking Functions. In Proc. 5th VMCAI, volume 2937 of LNCS, pages 239–251,
2004.

[133] A. Podelski and A. Rybalchenko. Transition Predicate Abstraction and Fair
Termination. TOPLAS, 29(3):15, 2007.

[134] J. C. Reynolds. Definitional Interpreters for Higher-Order Programming Languages.
HOSC, 11(4):363–397, 1998.

[135] J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Proc. of 17th LICS, pages 55–74, 2002.

[136] X. Rival and L. Mauborgne. The Trace Partitioning Abstract Domain. TOPLAS,
29(5), 2007.

[137] M. Rosendahl. Automatic Complexity Analysis. In Proc. of 4th FPCA, FPCA ’89,
pages 144–156, 1989.

[138] S. Rossignoli and F. Spoto. Detecting Non-Cyclicity by Abstract Compilation into
Boolean Functions. In Proc. of 7th VMCAI, volume 3855 of LNCS, pages 95–110,
2006.

[139] M. Schaper. Automated Resource Analysis with paicc (Extended Ab-
stract). http://cl-informatik.uibk.ac.at/users/zini/events/dice18/
abstracts/S.pdf, 2018. [Online; accessed 15-September-2019].

[140] M. Schaper and G. Moser. On Abstract Program Representations for Automated
Resource Analysis, 2018. Resubmitted.

[141] A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience Series
in Discrete Mathematics and Optimization. Wiley, 1999.

[142] S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs. In
Proc. of 12th SAS, volume 3672 of LNCS, pages 320–335, 2005.

[143] A. Serrano, P. López-Garćıa, and M. V. Hermenegildo. Resource Usage Analysis of
Logic Programs via Abstract Interpretation Using Sized Types. TPLP, 14(4-5):
739–754, 2014.

[144] M. Sinn. Automated Complexity Analysis for Imperative Programs. PhD thesis,
TU Wien, Faculty of Informatics, Wien, Austria, 2016. URL http://katalog.ub.
tuwien.ac.at/AC13356888.

[145] M. Sinn, F. Zuleger, and H. Veith. A Simple and Scalable Static Analysis for Bound
Analysis and Amortized Complexity Analysis. In Proc. 26th CAV, volume 8559 of
LNCS, pages 745–761, 2014.

146

http://cl-informatik.uibk.ac.at/users/zini/events/dice18/abstracts/S.pdf
http://cl-informatik.uibk.ac.at/users/zini/events/dice18/abstracts/S.pdf
http://katalog.ub.tuwien.ac.at/AC13356888
http://katalog.ub.tuwien.ac.at/AC13356888

Bibliography

[146] M. Sinn, F. Zuleger, and H. Veith. Complexity and Resource Bound Analysis of
Imperative Programs Using Difference Constraints. JAR, 59(1):3–45, 2017.

[147] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
1997.

[148] D. D. Sleator and R. E. Tarjan. Self-Adjusting Binary Search Trees. JACM, 32(3):
652–686, 1985.

[149] F. Spoto. The Julia Static Analyzer for Java. In Proc. of 23rd SAS, volume 9837
of LNCS, pages 39–57, 2016.

[150] F. Spoto, F. Mesnard, and E. Payet. A Termination Analyzer for Java Bytecode
based on Path-Length. TOPLAS, 32(3):8:1–8:70, 2010.

[151] R. E. Tarjan. Amortized Computational Complexity. SIAM, 6(2):306–318, 1985.

[152] D. M. Volpano, C. E. Irvine, and G. Smith. A Sound Type System for Secure Flow
Analysis. JCS, 4(2/3):167–188, 1996.

[153] P. Wang, D. Wang, and A. Chlipala. TiML: A Functional Language for Practical
Complexity Analysis with Invariants. PACMPL, 1:79:1–79:26, 2017.

[154] B. Wegbreit. Mechanical Program Analysis. CACM, 18(9):528–539, 1975.

[155] B. Wegbreit. Verifying Program Performance. JACM, 23(4):691–699, 1976.

[156] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-
lat, and P. Stenstrom. The Worst Case Execution Time Problem - Overview of
Methods and Survey of Tools. TECS, 7(3):1–53, 2008.

[157] F. Zuleger. Asymptotically Precise Ranking Functions for Deterministic Size-
Change Systems. In Proc. of 10th CSR, volume 9139 of LNCS, pages 426–442,
2015.

[158] F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound Analysis of Imperative
Programs with the Size-Change Abstraction. In Proc. 18th SAS, volume 6887 of
LNCS, pages 280–297, 2011.

147

	Introduction
	Preliminaries
	Imperative Programs
	Introduction
	Overview of the Contribution
	Preliminary Discussion
	Directed Graph
	Constraint Transition Systems
	Complexity Functions and Complexity Bounds
	A Mundane Approach to Modular Runtime Analysis
	Ranking Functions
	Applications for Numeric Invariants
	Program Abstraction

	Overview of Abstract Program Representations
	Loop Programs
	Core Programs
	Size-Change Constraints Programs
	Monotonicity Constraints Programs
	Vector Addition Systems with States
	Difference Constraints Programs
	Polynomial Constraints Programs

	Automated Resource Analysis with KoAT
	Polynomial Constraints Programs

	Automated Resource Analysis with Loopus
	Monotonicity Constraints Programs
	Monotone Difference Constraints Programs
	Difference Constraints Programs

	Automated Resource Analysis with Paicc
	Loop Programs
	Ben-Amram - Jones - Kristiansen Constraints Programs

	Overview of Tools
	Comparing Tools and Abstract Program Representations
	Concluding Remarks

	Imperative Programs with Heap
	Introduction
	Preliminaries
	Goto Programs with Records
	Complexity Reflecting Program Abstraction
	Size Abstraction
	Term Abstraction

	Term Abstraction of Object-Oriented Bytecode Programs
	Related Work
	Concluding Remarks

	Imperative Probabilistic Programs
	Introduction
	Preliminaries
	Probabilistic While Programs
	Expectation Transformers
	Towards A Modular Analysis
	Automation
	Concluding Remarks

	Framework for Automation
	Introduction
	Architectural Overview
	A Formal Framework for Complexity Analysis
	Implementing the Complexity Framework
	Proof Trees, Processors, and Strategies
	From the Core to Executables

	Case Studies
	Abstract Program Representations
	Real World Programs

	Concluding Remarks

	Conclusion

