
A Complexity Preserving
Transformation from Jinja Bytecode

to Rewrite Systems

master thesis in computer science

by

Michael Schaper

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Master of Science

supervisor: Assoc. Prof. Dr. Georg Moser,
Institute of Computer Science

Innsbruck, 15 May 2014

Master Thesis

A Complexity Preserving
Transformation from Jinja Bytecode to

Rewrite Systems

Michael Schaper (c7031025)
michael.schaper@student.uibk.ac.at

15 May 2014

Supervisor: Assoc. Prof. Dr. Georg Moser

mailto:michael.schaper@student.uibk.ac.at

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass
ich die vorliegende Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich
oder inhaltlich den angegebenen Quellen entnommen wurden, sind als solche
kenntlich gemacht.
Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht
als Magister-/Master-/Diplomarbeit/Dissertation eingereicht.

Datum Unterschrift

Abstract

In this thesis we revisit known transformations from object-oriented bytecode
programs to rewrite systems from the viewpoint of runtime complexity. We
analyse Jinja bytecode (JBC for short), which exhibits core features of well–
known object-oriented programming languages but provides a formal seman-
tics. Using standard techniques from static program analysis we define two
alternative representations of JBC executions. First, we provide a graph-based
abstraction of bytecode states and establish a Galois insertion between the ab-
stract domain and sets of bytecode states. We define an abstract semantics
from which we obtain a finite representation of JBC executions as computation
graphs. We show that this representation is correct and that the computa-
tion graph of a program is always computable and finite. Second, we provide
a term-based abstraction of bytecode states that we obtain from the nodes of
the computation graph. From the edge relation of the computation graph we
obtain a finite representation of JBC executions as constrained term rewrite
systems. We show that the transformation is complexity preserving. That is,
an upper bound on the runtime complexity of the resulting constrained term
rewrite system implies an upper bound on the runtime complexity of the byte-
code program. Moreover, we show that the transformation is non-termination
preserving. We restrict to non-recursive methods and make use of existing heap
shape analysis to approximate acyclicity and reachability. The transformation
has been implemented in the prototype JaT.

Acknowledgments

Foremost I express my gratitude to my supervisor Georg Moser, who dedicated
much time and effort to guide me throughout this master project. In particular,
I am thankful for introducing me to an interesting area of research. I thank
the Computational Logic group for providing a pleasant environment during
my studies and especially Martin Avanzini for helpful discussions. I thank all
my friends and colleagues for healthy diversions. Finally, I thank my family for
supporting me during my whole studies.

vii

Contents

1. Introduction 1

2. Preliminaries 5
2.1. Lattice Theory . 5
2.2. Static Program Analysis . 7

2.2.1. Data Flow Analysis . 8
2.2.2. Abstract Interpretation 10

2.3. Complexity Preserving Abstraction 13

3. Bytecode Programs 15

4. Concrete Domain 19
4.1. Concrete States . 19
4.2. State Graphs . 20
4.3. Bytecode Semantics . 22
4.4. Collecting Semantics . 23

5. Abstract JVM Domain 25
5.1. Abstract States . 25
5.2. Abstract Computation . 32
5.3. Computation Graphs . 36

6. Abstract Term Domain 40
6.1. Constrained Term Rewrite Systems 40
6.2. CTRS Transformation . 41

7. Related Work 49
7.1. Termination Graphs . 50
7.2. The SPEED Method . 51
7.3. Resource Static Analysis (RESA) 53
7.4. Resource Aware Java (RAJA) . 54
7.5. The JULIA Static Analyser . 54
7.6. Cost and Termination Analyser (COSTA) 55
7.7. Loop Bounds for C Programs (LOOPUS) 56

8. Implementation Details 59
8.1. Jinja Static Analysis . 59

8.1.1. Set of Simplified States 59
8.1.2. Type Analysis . 60
8.1.3. Sharing Analysis . 61

ix

8.1.4. Acyclicity Analysis . 64
8.2. The Prototype: JaT . 65

9. Conclusion and Future Work 69

Bibliography 70

A. Semantics of Jinja Bytecode Instructions 74

1. Introduction

Automated complexity analysis of computer programs is concerned with auto-
matically inferring upper bounds for suitable cost measures, such as the maxi-
mal number of computation steps or the maximal size of the memory consump-
tion. Such upper bounds are usually represented as cost functions in terms of
the input. Establishing upper bounds of computer programs is undecidable in
general: The decision problem that Turing machineM runs in polynomial time
is Σ0

2-complete in the arithmetical hierarchy [29]. However, suitable techniques
from static program analysis allow safe approximations. In this thesis we study
the automatic runtime complexity analysis of Jinja bytecode, an object-oriented
bytecode language, by means of a transformation to rewrite systems.
Object-oriented languages like Java are very popular1 and static analysis

techniques of such languages have been studied thoroughly, for example [21,
44, 45]. Though, the automatic complexity analysis of imperative and object-
oriented languages is still a big challenge and an active area of research. Several
methods have been proposed in recent years [2, 6, 22, 49].
In this work we study a transformational approach from object-oriented byte-

code programs to constrained term rewrite systems (cTRSs for short). Here,
cTRSs are defined as an extension of term rewrite systems (TRSs) that in-
corporate the theory of Presburger arithmetic to express integer and Boolean
operations naturally. Furthermore, constraints are added to rules such that a
rule is only applicable if its constraint is satisfied.
TRSs (and its derivatives) have been successfully applied before for proving

termination of computer programs: In [41] term-based abstractions are used to
provide termination analyses of programs in a functional language. In [16, 17]
a transformation from C like programs with integer valued variables to cTRSs
is presented: Terms correspond to program states at control flow points and
rules represent state transformations between control flow points. We want to
illustrate this approach with following example.

Example 1.1. Figure 1.1 illustrates a program with a single while loop. Rule
rem1 represents the assignment of 3 to n and rule rem2 represents the while
loop. A constraint is used to express the loop condition. The resulting cTRS
is non-terminating since the fact that variable n is a constant of value 3 is not
available in the second rule.

As already indicated in [16, 17] additional (standard) analyses to find in-
variants over integer valued variables improve the termination analysis. This
approach was extended in [11, 39] to prove termination of Java programs in-
cluding user-defined data structures. Here, an abstract state represents a set of

1http://www.tiobe.com/index.php/tiobe_index

1

http://www.tiobe.com/index.php/tiobe_index

1 Introduction

int n = 3;
while(m > n){

m = m - n;
}

rem1(m,n)→ rem2(m, 3)
rem2(m,n)→ rem2(m− n, n) Jm > nK

Figure 1.1.: Simple transformation to a cTRS.

program states. A finite relation on abstract states is obtained by symbolically
evaluating the bytecode instructions with abstract states, and suitably merging
them. This relation is then transformed into rewrite rules such that rewrite
steps mimic program steps.
The runtime complexity of TRSs forms an invariant cost model [7] and several

methods have been developed in recent years to compute upper bounds of TRSs
automatically [8, 35, 38]. Many of these techniques have been implemented in
the Tyrolean Complexity Tool, also known as TCT2.
This motivates to investigate aforementioned approaches in the context of

automatic complexity analysis of computer programs. We provide an abstrac-
tion from bytecode programs to cTRSs by means of standard techniques from
static program analysis, in particular abstract interpretations. Abstract inter-
pretations allow to relate concrete and abstract domains formally and provide
sufficient conditions to safely approximate the concrete domain by the abstract
domain. Similar to the approach presented in [11, 39], the proposed transforma-
tion encompasses two stages. The first stage provides a finite representation of
all execution paths of program P through a graph, termed computation graph.
The nodes of the computation graph are graph-based abstractions of JVM states
and the graph is formed by symbolic evaluation, essentially joining states with
equal program location. We establish a Galois insertion between the abstract
domain and sets of JVM states and show that the construction of the computa-
tion graph of P is correct, computable and finite. In the second stage, we encode
the (finite) computation graph as cTRS, where constraints are used to express
relations on program variables. We suitably transform abstract states to terms
and therefore obtain a term-based abstraction of JVM states. Our formalism
of abstract states is not rich enough to approximate acyclicity and reachability
precisely, but asks for a combination with existing heap shape analyses such
as [21, 42, 44]. We show that the proposed transformation from bytecode pro-
grams to cTRSs is complexity preserving, which allows to infer an upper bound
on the runtime complexity of P by analysing the runtime complexity of the
cTRSs obtained by the proposed transformation. As a corollary we obtain that
the transformation is also non-termination preserving.

Example 1.2. Figure 1.2 illustrates the cTRS that is obtained via our trans-
formation of the program from Figure 1.1. The resulting cTRS contains more
rules as we perform our transformation on the bytecode of the program. Our
transformation is capable to provide the invariant n = 3 for the loop.

2http://cl-informatik.uibk.ac.at/software/tct

2

http://cl-informatik.uibk.ac.at/software/tct

remI(Rem,m, null)→ remA(Rem,m, 3)
remA(Rem,m, 3)→ remB(b,Rem,m, 3)Jb ≡ m > 3K

remB(true,Rem,m, 3)→ remC(true,Rem,m, 3)
remC(true,Rem,m, 3)→ remA(Rem,m′, 3)Jm′ = m− 3K
remB(false,Rem,m, 3)→ remD(false,m, 3)
remD(false,Rem,m, 3)→ remE(Rem,m, 3)

Figure 1.2.: The cTRS of rem.

Although our transformation is capable of generating invariants over integer
valued variables, standard abstract integer domains such as the octagon or
polyhedra domain usually provide more sophisticated ones.
Operations on objects are captured by the term-based abstraction of our

transformation. We think that term-based abstractions are adequate to anal-
yse programs with composited data structures. Consider Figure 1.3 which illus-
trates one of the motivating examples in [39]. In [2, 45] objects are abstracted

class IntList {
IntList next;
int value;

}

class Tree{
Tree left;
Tree right;
int value;

}

class TreeList {
TreeList next;
Tree value;

}

class Flatten {
IntList flatten (TreeList list){

TreeList cur = list;
IntList result = null;
while (cur != null){

Tree tree = cur.value;
if (tree != null) {

IntList oldIntList = result ;
result = new IntList ();
result .value = tree.value;
result .next = oldIntList ;
TreeList oldCur = cur;
cur = new TreeList ();
cur.value = tree.left;
cur.next = oldCur ;
oldCur .value = tree.right;

} else {
cur = cur.next;

}
}
return result ;

}
}

Figure 1.3.: The flatten program.

to their maximal path-length. Suppose the parameter is initially bounded to
an acyclic list. The approaches presented in [2, 45] based on path-length fail
to provide an upper bound or show termination. Whereas our domain is rich

3

1 Introduction

enough to capture the behaviour of the program and our implementation is
able to infer a linear bound for the program fully automatically. We discuss
this example in more detail in Section 8.2.
The remainder of this thesis is structured as follows: Chapter 2 introduces

basic definitions and provides an overview over techniques from static program
analysis that are used in sequent chapters. In Chapter 3 bytecode programs are
formally introduced. Afterwards, program states and bytecode semantics are
introduced in Chapter 4. The abstract state domain is introduced in Chapter 5.
In Chapter 6 we present the transformation to cTRSs and provide our main
result. In Chapter 7 and Chapter 8 we discuss related work and implementation
details, respectively. We conclude in Chapter 9.

4

2. Preliminaries
Let f be a mapping from A to B, denoted f : A → B, then dom(f) = {x |
f(x) ∈ B} and rg(f) = {f(x) | x ∈ A}. Let a ∈ dom(f), we define:

f{a 7→ v}(x) :=
{
v if x = a

f(x) otherwise .
We compare partial functions with Kleene equality: Two partial functions

f : N→ N and g : N→ N are equal, denoted f =k g, if for all n ∈ N either f(n)
and g(n) are defined and f(n) = g(n) or f(n) and g(n) are not defined.
We usually use square brackets to denote a list. Furthermore, (:) denotes the

cons operator, and (@) is used to denote the concatenation of two lists.
Definition 2.1. A directed graph G = (VG, SuccG, LG) over the set L of labels is
a structure such that VG is a finite set, the nodes or vertices, SuccG : VG → V ∗G
is a mapping that associates a node u with an (ordered) sequence of nodes,
called the successors of u. Note that the sequence of successors of u may be
empty: SuccG(u) = []. Finally LG : VG → L is a mapping that associates each
node u with its label LG(u). Let u, v be nodes in G such that v ∈ SuccG(u),
then there is an edge from u to v in G; the edge from u to v is denoted as u→ v.
Definition 2.2. A structure G = (VG, SuccG, LG, EG) is called directed graph
with edge labels if (VG, SuccG, LG) is a directed graph over the set L and
EG : VG × VG → L is a mapping that associates each edge e with its label
EG(e). Edges in G are denoted as u `−→ v, where EG(u→ v) = l and u, v ∈ VG.
We often write u→ v if the label is either not important or is clear from context.
If not mentioned otherwise, in the following a graph is a directed graph with

edge labels. Usually, nodes in a graph are denoted by u, v, . . . possibly followed
by subscripts. We drop the reference to the graph G from VG, SuccG, and LG,
ie., we write G = (V, Succ,L) if no confusion can arise from this. Furthermore,
we also write u ∈ G instead of u ∈ V .
Let G = (V, Succ,L) be a graph and let u ∈ G. Consider Succ(u) =

[u1, . . . , uk]. We call ui (1 6 i 6 k) the i-th successor of u (denoted as u i
⇀G ui).

If u i
⇀G v for some i, then we simply write u ⇀G v. A node v is called reachable

from u if u ∗
⇀G v, where

∗
⇀G denotes the reflexive and transitive closure of⇀G.

We write +
⇀G for ⇀G ·

∗
⇀G. A graph G is acyclic if u +

⇀G v implies u 6= v. We
write G�u for the subgraph of G reachable from u.

2.1. Lattice Theory
In static program analysis often lattices are used to represent the underlying
property domain. In this section, we recapitulate important concepts of the
lattice theory following the presentation of [37].

5

2 Preliminaries

Definition 2.3. A partially ordered set, or poset, is a set L equipped with a
partial ordering v. A partial ordering is a relation v that is reflexive, transitive
and anti-symmetric. Let l ∈ L and Y be a subset of L. Then l is an upper
bound (lower bound) of Y if for all l′ ∈ Y the relation l′ v l (l v l′) holds.
An upper bound l0 is a least upper bound (greatest lower bound) of Y if l0 v l
(l v l0) holds for all upper bounds (lower bounds) l of Y . We use

⊔
Y (

d
Y)

to denote the least upper bound (greatest lower bound) of Y . A subset Y of L
is a chain if for all l1, l2 ∈ Y the relation l1 v l2 or l2 v l1 holds. A partially
ordered set satisfies the ascending chain condition (descending chain condition)
iff any infinite sequence l0 v l1 v · · · v ln v · · · (l0 w l1 w · · · w ln w · · ·) is
not strictly increasing (decreasing).

Definition 2.4. A complete lattice L = (L,v,
⊔
,
d
,⊥,>) is a partially or-

dered set (L,v) such that any subset Y has a least upper bound (
⊔
Y) and a

greatest lower bound (
d
Y). Here, ⊥ =

⊔
∅ =

d
L is the least element and

> =
d
∅ =

⊔
L is the greatest element. We write l1 t l2 (l1 u l2) instead of⊔

{l1, l2} (
d
{l1, l2}).

We use the convention that we identify the lattice itself with its underlying
domain, for example L for some lattice (L,v,

⊔
,
d
,⊥,>).

Example 2.5. Let S be an arbitrary set and ⊆ denote the subset relation.
Then P(S) := (P(S),⊆,

⋃
,
⋂
,∅, S) is a complete lattice.

Another simple, but interesting, example is the sign lattice, which is used to
analyse the sign of integer valued variables in a program.

Example 2.6. Let Sign = {0,−,+,−0, 0+,⊥,>} be the domain of signs. The
elements −,+,−0 and 0+ represent the negative, positive, non-positive and
non-negative domain of integers respectively. The complete lattice Sign :=
(Sign,v,

⊔
,
d
,⊥,>) is fully defined via the Hasse diagram depicted in Fig-

ure 2.1. We have s1 v s2 iff there exists a path in the diagram from s1 to s2 in
an upward manner.

>

-0 0+

- 0 +

⊥

Figure 2.1.: The Hasse diagram of the complete lattice Sign.

One may observe from the previous example that v defines a notion of pre-
cision on the sign domain. The bottom element contains no information at
all. The second level consisting of −, 0, and + is the most precise one. The

6

2.2 Static Program Analysis

third level looses the information about a value being precisely zero, whereas
no information about the sign of a value can be inferred at the top at all.
This observation leads to the following motivation for the usage of lattices in

static program analysis. In case of the sign analysis the Sign domain represents
all elements of the property domain. The order v induces precision along the
property domain. The operation

⊔
is used to abstract information from bottom

to top when a program location is visited multiple times. Finally, ⊥ serves as
unit value with respect to

⊔
, whereas > provides a way to ensure termination

of the analysis.
The former description indicates that

d
is not used in the sign analysis.

Indeed, often one only needs either
⊔

or
d
. We see later that the choice

depends on the actual analysis. Moreover, one could express
d

via
⊔

and vice
versa. In the sequent, when defining lattices, we restrict to define only the
operations needed for our analysis.

Definition 2.7. Let f : L → L be a monotone function on a complete lattice
L = (L,v,

⊔
,
d
,⊥,>). A fixed point of f is an element l ∈ L such that f(l) = l.

A fixed point l0 is the least fixed point (greatest fixed point) if l0 v l (l v l0)
holds for all fixed points l of L.

Let (L,v) be a poset and f be a monotone function. Tarski’s fixed point
theorem [48] states that the set of all fixed points of f forms a complete lattice
with respect to v. Therefore, f has a least fixed point and a greatest fixed
point. Moreover, if (L,v) admits the ascending chain condition (descending
chain condition) then there exists a n ∈ N such that fn(⊥) = fn+1(⊥) (fn(>) =
fn+1(>)) and fn(⊥) is the least fixed point (fn(>) is the greatest fixed point).
Here fn is the iterative application of f , ie., f0(x) = x and fn+1(x) = f(fn(x)).
In the next section we show that a data flow problem is a set of constraints

over the property domain. Transfer functions are used to describe the flow of
information and fixed points are solutions to the set of constraints. The above
observations suggests that one can obtain (under some conditions) the most
precise solution by iterative application of the transfer functions.

2.2. Static Program Analysis

Static program analysis is a concept to generate safe and computable approxima-
tions of (dynamic) program properties without executing the actual program.
Here, safe means that the desired property holds for all possible program runs.
Since programs may have infinitely many program runs, approximations are
necessary to provide finite analyses.
In this section we give an overview of important concepts of static program

analysis that will be used in sequent chapters. We first describe the classic
approach to data flow analysis. Then, we recapitulate how Galois connections
can be used to construct instances of data flow analyses.

7

2 Preliminaries

2.2.1. Data Flow Analysis
In data flow analysis programs are usually conceived as graphs, termed control
flow graphs (CFGs for short). Nodes represent (a sequence of) instructions,
whereas edges represent how information flows from one node to another. A
data flow problem is then defined by the underlying domain, an initial value,
and monotone functions representing the transformation of information along
the program flow. This gives rise to a set of constraints, where one is interested
in the most precise solution that satisfies all constraints.
We make this more formally by recapitulating the notion of generalized mono-

tone frameworks as presented in [37]. Let Label define a set of labels. Then,
an instance of a generalised monotone framework consists of:

• a complete lattice L,

• a finite flow F ⊆ Label × Label,

• a finite set of extremal labels E ⊆ Label,

• an extremal value e ∈ L, and

• a mapping from labels l to monotone transfer functions fl : L→ L.

The lattice L defines the property domain. Labels identify nodes uniquely.
The flow F defines directed edges between labels and captures the sequence of
statements to consider. The extremal value represents the initial property of
the analysis, whereas extremal labels represent entry and exit labels of the flow.
Transfer functions specify how one property is transformed along the program
flow into another property.
Let l, l′ be labels. An analysis A associates labels with properties in L and

generalises to a set of constraints, when considering

(i) A◦(l) w e, if l ∈ E is an extremal label,

(ii) A◦(l) w join A•(l′), for all edges from l′ to l in F , and

(iii) A•(l) w fl(A◦), where fl is the transfer function associated with l.

Intuitively, A◦(l) represents the property of l before the execution of the state-
ments associated to l. Conversely, A•(l) represents the property of l after ex-
ecution of the associated statements. The combination function join is either⊔

or
d

and depends on the actual analysis.
For the remainder of this chapter we will use the While programming language

to exemplify concepts of data flow analysis. While consists of assignments,
while loops and arithmetic operations over the integers. States in While are
defined by the program environment, ie., a mapping σ : V → Z from program
variables to integers. We denote the domain of states by State.

Example 2.8. Consider the following While program, where all statements are
already uniquely labelled.

[i:=0;]1 [n:=100;]2 while [i<=n;]3 do [i:=i+1;]4

8

2.2 Static Program Analysis

We keep the property domain L, the transfer functions fl and the combination
function join ∈ {t,u} abstract and define a forward analysis A with extremal
label 1 and extremal value e. We obtain:

F = {(1, 2), (2, 3), (3, 4), (4, 3)}
E = {1}

A◦(1) w e
A•(1) w f1(A◦(1))
A◦(2) w A•(1)
A•(2) w f2(A◦(2))

A◦(3) w A•(2) join A•(4)
A•(3) w f3(A◦(3))
A◦(4) w A•(3)
A•(4) w f4(A◦(1))

A solution can be obtained by chaotic iteration. First of all, for all labels
l, A◦(l) and A•(l) are initialized with the unit value. Then, left hand sides
are non-deterministically updated if the constraint is not fulfilled. If all fl are
monotone, then there exists local fixed points for every A◦(l), A•(l). If every
constraint admits a local fixed point, then the set of constraints admits a global
fixed point. In notation, (A◦, A•) |= Aw. If (L,v) satisfies the ascending chain
condition then this strategy always terminates successfully.
Next, we identify several useful characterisations of data flow analysis that

will be used in sequent chapters frequently.

May/Must. A may analysis identifies properties that are satisfied by all paths.
The desired solution is the least solution that satisfies the constraints and the
combination operator is usually

⊔
. On the other hand, amust analysis identifies

properties that are satisfied by at least one path. The desired solution is the
greatest solution that satisfies the constraints and the combination operator is
usually

d
.

Forward Flow/Backward Flow. A forward flow captures the standard execu-
tion order of statements. A backward flow is obtained by reversing the direction
of the edges of the forward flow.

Flow-Sensitive/Flow-Insensitive. In a flow-sensitive analysis the order of the
statements matters, whereas in a flow-insensitive analysis the order of state-
ments does not matter.

Intraprocedural/Interprocedural. Intraprocedural analyses are concerned with
the inspection of a single method. Method calls are usually abstracted using
the top element. Interprocedural analyses take method calls into account. Spe-
cial techniques are necessary to obtain a solution over valid paths, ie., if the
information flows from a call to a procedure it should flow back from the same
procedure to the call site.

Context Sensitive/Context Insensitive. In a context sensitive analysis differ-
ent call sites are distinguished by introducing contexts. Therefore, it may be
necessary to analyse a method multiple times. In a context insensitive setting
the information of all call sites are combined, and the same result is returned
back to all call sites.

9

2 Preliminaries

We conclude this subsection with a final example that serves as motivation
for the abstract interpretation framework below.

Example 2.9. We define the sets of states analysis, denoted SS. The sets
of states analysis approximates how sets of states are transformed into sets of
states. In particular, we obtain an approximation of the states reachable from
a given start state if the start state is an element of the extremal value.
Let State represent all states of While, e ⊆ State, and P(State) := (P(State),⊆

,
⋃
,
⋂
,∅, State) be a complete lattice. Furthermore, let the transfer function of

SS be defined as the component-wise application of the single-step semantics of
While.
Now consider a program P and the set of constraints SS⊇ induced by the

control flow graph of P . Suppose (SS◦,SS•) |= SS⊇ and state t can be derived
from a start state s in P . Then s ∈ e implies that t is an element of the union of
all sets of SS•(l). The claim follows straightforward by an inductive argument
over the derivation.

Note that (P(State),⊆) does not satisfy the ascending chain condition and
SS• is in general not computable. In particular, it is undecidable if some state
t is an element of SS•(l) for some label l. However, in the next subsection we
show how SS• can be safely approximated by means of abstract interpretation.

2.2.2. Abstract Interpretation

Abstract interpretation is a generic framework for static program analysis first
introduced in the seminal paper of P. Cousot and R. Cousot [14]. The basic
idea is that one relates concrete domains to abstract domains. Abstract domains
are designed such that the analysis is computable and program properties can
be inferred directly. If the abstract domain safely approximates the concrete
domain, then properties of the concrete domain can be deduced from properties
of the abstract domain.
For the complexity analysis of programs we have to consider all possible pro-

gram runs for a set of initial states. Hence, the concrete domain should capture
all possible traces. In this scenario one usually talks about the concrete seman-
tics or collecting semantics of the programming language. We already have
studied a possible formalization in Example 2.9, namely SS. The formaliza-
tion of the information flow in the abstract domain is usually termed abstract
semantics. One method for describing such relationship between concrete and
abstract domain are Galois connections.

Definition 2.10. A Galois connection is a quadruple (L,α, γ,M) such that
L and M are complete lattices, α : L → M and γ : M → L are monotone
functions, satisfying

∀l ∈ L : l v γ(α(l)) and ∀m ∈M : m w α(γ(m)) .

The functions α and γ are usually termed abstraction function and concretisa-
tion function, respectively.

10

2.2 Static Program Analysis

Here L defines the property domain of the concrete domain and M defines
the property domain of the abstract domain. The first condition implies that
we may lose precision, if we abstract an element of the concrete domain and
then concretise the result again. The second condition implies that it is safe, if
we concretise an element of the abstract domain and then abstract the result
again. The following lemma provides an intuitive way for relating the concrete
domain to the abstract domain.

Lemma 2.11. If (L,α, γ,M) is a Galois connection then α(l) v m ⇔ l v
γ(m).

Proof. Follows directly from the properties of α and γ.

A more strict variant of the Galois connection that is often useful in practice,
is the concept of Galois insertion.

Definition 2.12. A Galois insertion is a quadruple (L,α, γ,M) such that L
and M are complete lattices, α : L → M and γ : M → L are monotone func-
tions, satisfying

∀l ∈ L : l v γ(α(l)) and ∀m ∈M : m = α(γ(m)) .

In particular γ is injective, or equivalently α is surjective.

Obviously every Galois insertion is a Galois connection. A Galois insertion
ensures that M does not contain superfluous elements, ie., there are no two
elements m1,m2 ∈M such that m1 @ m2 and γ(m1) = γ(m2). In practice this
means that there exists no abstract element that is more precise than m1 and
at the same time represents the same domain in the concrete property space.
A Galois insertion can be obtained from a Galois connection by means of a
reduction operator.

Definition 2.13. Let (L,α, γ,M) be a Galois connection. The reduction opera-
tor ς : M →M returns the most precise element representing the same concrete
domain:

ς(m) =
l
{m′ | γ(m) = γ(m′)} .

Then (L,α, γ, ς∗(M)) is a Galois insertion, where ς∗ is the set extension of ς.

Under certain conditions Galois connections can be constructed in a simple
way. In particular if L is a powerset domain.

Definition 2.14. Let P(V) and M be complete lattices. Furthermore, let
V ′ ⊆ V , and β : V → M be a function mapping values of V to M . We call β
the representation function. Then (P(V), α, γ,M) is a Galois connection with

α(V ′) =
⊔
{β(v) | v ∈ V ′} ,and

γ(m) = {v ∈ V | β(v) v m} .

If M is also a powerset domain, for example P(D), then it is enough to provide
an extraction function η : V → D. Then

⊔
is
⋃

and β(v) = {η(v)} in the
previous definition of α and γ.

11

2 Preliminaries

Example 2.15. Recall Example 2.6, where we introduced the Sign lattice.
To analyse the sign of multiple variables in While programs we extend Sign to
StateSign. The domain is StateSign : V → Sign, and the partial order and the
join operation is defined component-wise for some program environment σ. We
omit the details here. We define sign : Z→ Sign as follows:

sign(z) :=

− if z < 0
0 if z = 0
+ if z > 0

Furthermore, let βsign : State→ StateSign be defined as β(x) := sign(σ(x)). Then
StateSign := (P(State), αsign, γsign, StateSign) is a Galois connection. It is easy to
see that γsign is injective as all elements of Sign represents different sets of
numbers. Hence StateSign is also a Galois insertion. Moreover, (StateSign,v)
satisfies the ascending chain condition.

We now motivate abstract interpretations by means of the monotone frame-
work and Galois connections. Suppose A is an instance of the generalised
monotone framework with complete lattice L, extremal value e and transfer
functions fl. Furthermore (L,α, γ,M) is a Galois connection. We construct an
instance B with complete lattice M . We require that

• the extremal value e\ of B satisfies e\ w α(e), and

• the monotone transfer functions f \l of B satisfy f \l w α ◦ fl ◦ γ.

Then (B◦, B• |= Bw) implies (γ ◦B◦, γ ◦B• |= Aw), ie., the solution in B is an
upper approximation to the solution in A. If B satisfies the above mentioned
requirements, we say that the abstraction is correct. Sometimes it is convenient
to restate the requirements. It holds that: (i) e\ w α(e) ⇔ e v γ(e\), and
(ii) f \l w α ◦ fl ◦ γ ⇔ fl v γ ◦ f \l ◦ α. The former relation ensures that the
initial concrete domain is an instance of the concretisation of the initial abstract
domain. The latter relation ensures that a step in the concrete domain is safely
approximated by a step in the abstract domain. The main observation follows
from an inductive argument. For a detailed proof, the interested reader is
referred to [37].

Example 2.16. We define the abstract semantics for StateSign informally as
follows: For an assignment, we first (abstractly) evaluate the right hand side.
Numbers are abstracted to their sign and arithmetic operations are the expected
operations on signs. The variable is then updated with the resulting expression.
Conditions do not affect the state, and therefore are mapped to the identity
function. The following constraints illustrates the result of the sign analysis of
our While program of Example 2.16. It is easy to check that the analysis is
correct, ie., (γsign ◦ StateSign◦, γsign ◦ StateSign• |= SS⊇)

12

2.3 Complexity Preserving Abstraction

A◦(1) := {i→ ⊥, n→ ⊥} w {i→ ⊥, n→ ⊥}
A•(1) := {i→ 0, n→ ⊥} w f1(A◦(1))
A◦(2) := {i→ 0, n→ ⊥} w A•(1)
A•(2) := {i→ 0, n→ +} w f2(A◦(2))

A◦(3) := {i→ 0+, n→ +} w A•(2) tA•(4)
A•(3) := {i→ 0+, n→ +} w f3(A◦(3))
A◦(4) := {i→ 0+, n→ +} w A•(3)
A•(4) := {i→ 0+, n→ +} w f4(A◦(1))

2.3. Complexity Preserving Abstraction
We express the complexity of a program in terms of the maximal derivation
height with respect to its input size. An abstract relation should safely approx-
imate the program state relation in a similar way as presented above. Addi-
tionally we employ a size condition on the start states.
Let A be a set and → ⊆ A×A be a binary relation on A. We write a1 → a2

instead of (a1, a2) ∈ →. The maximal derivation height is defined by

dh(a,→) =k max{n | ∃a′.a→n a′} .

Let |·| : A → N denote a suitable size measure on A. We define the complexity
function as the maximal derivation height with respect to input size and input
elements:

cc(n, S,→) =k max{dh(s,→) | s ∈ S and |s| 6 n} .

The complexity function is defined on all inputs, if→ is well-founded and finitely
branching. As shown in [8], well-foundedness alone is not a sufficient condition
and finitely branching is not a necessary condition.

Definition 2.17. Let →|S ⊆ A × A denote the restriction of → to elements
reachable from S. Let B be another set, ⊆ B×B and T ⊆ B. Moreover, let
� ⊆ B × A be a relation. We write b � a instead of (b, a) ∈ �. We say |T
abstracts →|S , if � ·→|S ⊆ |T · � and t � s for all s ∈ S and some t ∈ T .
We call � the abstraction of →|S to |T . Furthermore, � is a complexity
preserving abstraction if ‖t‖ = O(|s|), for all s ∈ S and t� s. Here |·| and ‖·‖
are suitable size measures for s ∈ S and t ∈ T , respectively.

When analysing programs the binary relation → is induced by a finite de-
scription: the program code, or equivalently the control flow graph, where the
edges are equipped with the concrete semantics. Recall the set of states con-
struction of Example 2.9. The concrete semantics transforms sets of states to
sets of states. In the special case where the concrete semantics is the set exten-
sion of the single-step semantics, we immediately obtain a relation on program
states. We express this more formally in the following lemma.

13

2 Preliminaries

Lemma 2.18. Let P(A) = (P(A),⊆,
⋃
,
⋂
,∅, A) and B be complete lattices,

and (P(A), α, γ,B) be a Galois connection. Moreover f∗ ⊆ γ ◦ f \ ◦ α and
S ⊆ γ(T) for extremal value S ∈ P(A) and T ∈ B hold. Suppose f∗(A′) =
{f(a) | a ∈ A′}, for A′ ⊆ A and some function f , then � ·→|S ⊆ |T · � and
T � s for all s ∈ S, where → ⊆ A×A and ⊆ B ×B.

Proof. By assumption f∗ ⊆ γ ◦ f \ ◦α and S ⊆ γ(T). We set b� a := γ(b) 3 a.
Then T � s for all s ∈ S. Using f \l w α ◦ f∗ ◦ γ ⇔ f∗ ⊆ γ ◦ f \ ◦ α, together
with Lemma 2.11 we obtain f∗(γ(b)) ⊆ γ(f \(b)), for all b ∈ B. Hence {f(a) |
a ∈ γ(b)} ⊆ {a′ | a′ ∈ γ(f \(b))}. Then {b � a → f(a)} ⊆ {b f \(b) � a′}
follows.

Example 2.19. Recall Example 2.16. By construction the abstraction StateSign
is correct and the previous lemma applies. Hence, � ·→SS|S ⊆ StateSign |T ·�
and T � s for all s ∈ S, where S = {{i 7→ ⊥, n 7→ ⊥}} and T = {i 7→ ⊥, n 7→
⊥}. The abstraction is also complexity preserving for a suitable size measure,
yet not well-founded as nodes 3 and 4 admit a cycle in T .

14

3. Bytecode Programs

In this chapter we introduce Jinja bytecode (JBC for short) programs. Jinja
is a Java like language that exhibits its core features, but is formally specified
and verified in the proof assistant Isabelle [30, 33]. We expect the reader to
be familiar with Java or a similar object-oriented language. Before introducing
JBC programs formally, we provide a short overview.

Bytecode. The bytecode obtained from the compilation process provides a suc-
cinct representation of the original program, as it abstracts away complex syn-
tax and programming features. The set of bytecode instructions we consider
consists of only 20 statements. However, it is expressive enough to state most
interesting programs. Bytecode is executed on a virtual machine. A program
state of the virtual machine consists of a program environment, ie., a mapping
from variables to values, and a global heap, ie., the dynamic memory.

Object-Oriented. The language provides a set of basic data types. Classes
allow the user to define more complex data types by composing existing types,
and consists of field and method declarations. Instances of classes are called
objects. The distinction between the basic set of data types and user-defined
data types is important as only objects can share memory in the heap, and
sharing gives rise to side-effects that have to be safely approximated in the
analysis.

Statically Typed. This means that we can approximate the content of program
variables and object fields by their static type. We will see that the program
specification gives rise to a subclass relation and the static type only provides
a safe upper bound on the runtime type with respect to the subclass relation.

Static Field Access/Static Field Update. Field access and field update of an
object do not depend on the runtime type of the object. In particular, the infor-
mation which field is accessed or updated, is already encoded in the bytecode
program.

Dynamic Method Invocation. On the other hand, method invocations depend
on the (dynamic) runtime type of the object. That is, different methods may
be invoked at the same program position depending on the runtime type of the
object. The runtime type of an object can only be approximated with respect
to the subclass relation. Hence, all possible types and methods have to be
considered for a method invocation.

Well-Formed. Besides type information, well-formedness of bytecode implies
several useful conditions on program states. This simplifies analysis, since mal-
formed states can be excluded beforehand. The compiler presented in [30]

15

3 Bytecode Programs

translates well-formed Jinja programs into well-formed JBC programs. Simi-
larly a JBC program that passes the bytecode verification is also well-formed.
In particular, well-formedness is a decidable property. We recapitulate relevant
properties of well-formedness after introducing program states formally.

Program examples are usually illustrated using source code in a Java-like
syntax, rather than the bytecode. The following example serves as running
example for the rest of this thesis.

Example 3.1. Figure 3.1 depicts the List class. Instances of List have two
accessible fields, next and val, and can invoke method append.

class List{
List next;
int val;

void append (List ys){
List cur = this;
while (cur.next != null){

cur = cur.next
}
cur.next = ys;

}

Figure 3.1.: The List class.

In the following we define Jinja bytecode programs formally.

Definition 3.2. A Jinja value can be

• a Boolean of type bool,

• an (unbounded) integer of type int,

• the dummy value unit of type void,

• the null reference null of type nullable, or

• a reference (or address).

The dummy value unit is used for the evaluation of assignments (see [30])
and to allocate uninitialised local variables. Non-null references are usually
referred to as addresses. The actual type of addresses is not important and we
usually identify the type of an address with the type of the object bounded to
the address.

Definition 3.3. A JBC program P consists of a set of class declarations. Each
class is identified by a class name and further consists of the name of its direct
superclass, field declarations and method declarations. The superclass declara-
tion is non-empty, except for a dedicated class termed Object. Moreover, the
subclass hierarchy of P is tree-shaped. A field declaration is a pair of field name

16

and field type. A method declaration consists of the method name, a list of pa-
rameter types, the result type and the method body. A method body is a triple
of (mxs × mxl × instructionlist), where mxs and mxl are natural numbers
denoting the maximum size of the operand stack and the number of local vari-
ables, not including the this reference and the parameters of the method, while
instructionlist gives a sequence of bytecode instructions. The this reference
can be conceived as a hidden parameter and references the object that invokes
the method. Let n denote a natural number, i an integer, v a Jinja value, cn a
class name, and mn a method name. The set of instructions Ins consists of:

Ins := Load n | Store n | Push v | Pop

| IAdd | ISub | ICmpGte | CmpEq | CmpNeq | BAnd | BOr | BNot

| Goto i | IfFalse n |
| New cn | Getfield fn cn | Putfield fn cn | Checkcast cn |
| Invoke mn n | Return

Class methods can only be invoked from class instances. Hence a program
should have a class independent entry point, ie., a main function. Often we are
only interested in a specific class method. Then we just assume that the this
reference is not null. Moreover, we often confuse a program with the method
under study.

Example 3.4. Consider the List class from Example 3.1. Figure 3.2 de-
picts the corresponding bytecode program, resulting from the compilation rules
in [30]. In the following we name the registers 0, 1, and 2 as this, ys, and cur,
respectively.

Let P be a JBC program. We fix P for the remainder of this chapter.

Definition 3.5. The class declarations of P naturally induces a strict subclass
relation, denoted ≺. Its reflexive closure is denoted �. We use subclasses(cn)
to denote all subclasses of class cn for program P including cn itself.

Definition 3.6. We extend the subclass relation to a partial order on types,
denoted 6type. The types of P consists of {bool, int, void, nullable} together with
all classes cn defined in P . We use type(v) to denote the type of value v and
types(P) to denote the collection of types in P . Recall that we usually identify
the type of an address with the type of the object bound to the address. Let
t, t′, cn, cn′ be types in P . Then t 6type t

′ holds if t = t′ or

• t = void,

• t = nullable and t′ = cn,

• t = cn, t′ = cn′ and cn � cn′.

The least common superclass is the least upper bound for a set of classes CN ⊆
types(P) and is always defined. If no confusion can arise, we abuse notation
and use type(x) to denote the type of the value bound to variable x.

17

3 Bytecode Programs

Class:
Name: List Bytecode :
Classbody : 00: Load 0

Superclass : Object 01: Store 2
Fields : 02: Push unit

List next 03: Pop
int val 04: Load 2

Methods : 05: Getfield next List
Method : void append 06: Push null

Parameters : 07: CmpNeq
List ys 08: IfFalse 7

Methodbody : 09: Load 2
MaxStack : 10: Getfield next List

2 11: Store 2
MaxVars : 12: Push unit

1 13: Pop
14: Goto -10
15: Push unit
16: Pop
17: Load 2
18: Load 1
19: PutField next List
20: Push unit
21: Return

Figure 3.2.: The bytecode for the List class.

We comment on the programming language features to clarify the scope of
the programs under study. All programs are single-threaded. No integer over-
flow can occur as the integer type represents unbounded integers. Furthermore
there is no instruction for multiplication. There is no support for arrays, strings
or floating point numbers. We assume that the garbage collector collects un-
reachable objects immediately. In Chapter 7 we will indicate some difficulties
arising from the above mentioned program features.

18

4. Concrete Domain

In this chapter we specify the concrete domain of our analysis. In Section 4.1
we provide a formal definition for program states based on the formalisation
in [30]. In Section 4.2 we introduce (an equivalent) graph based representa-
tion of program states. Afterwards, we provide the single-step and collecting
semantics in Section 4.3 and Section 4.4, respectively.

4.1. Concrete States
Bytecode is executed on the Jinja virtual machine (JVM).

Definition 4.1. A (JVM) state is a pair consisting of the heap and a list of
frames. A heap is a mapping from addresses to objects, where an object is a
pair (cn, ftable) such that:

• cn denotes the class name, and

• ftable denotes the fieldtable, ie., a mapping from (cn′, fn) to values,
where fn is a field name and cn � cn′.

A frame is a quintuple (stk, loc, cn,mn, pc) such that:

• stk denotes the operation stack, ie., an array of values,

• loc denotes the registers, ie., an array of values,

• cn denotes the class name,

• mn denotes the method name, and

• pc is the program counter.

Suppose obj = (cn, ftable). We define projection functions cl and ft as fol-
lows: cl(obj) := cn and ft(obj) := ftable. Note that cl(heap(a)) and ft(heap(a))
are undefined if heap(a) is undefined.

Let stk (loc) denote the operation stack (registers) of a given frame. Typically
the structure of loc is as follows: the 0th register holds the this pointer, followed
by the parameters and the local variables of the method. Uninitialised registers
are preallocated with the dummy value unit. We denote the entries of stk (loc),
by stk(i) (loc(i)) for i ∈ N and write dom(stk) (dom(loc)) for the set of indices
of the array stk (loc).
Observe that the domain of the fieldtable for a given object of class cn con-

tains all fields declared for cn together with all fields declared for superclasses
of cn. Clearly the domain of the fieldtable is equal for any instance of cn.

19

4 Concrete Domain

Definition 4.2. Let s = (heap, frms). The program location of s is a list of
triples (cn,mn, pc) obtained by restricting the elements of frms to class name,
method name and program counter.

The well-formedness criterion of JBC implies several properties on the JVM:
Bytecode instructions are provided with arguments of the expected type. No
instruction tries to get a value from the empty stack, nor puts more elements
on the stack or accesses more elements than specified. The program counter is
always within the code array of the method. All registers, except the register
storing this, must be written into before accessed. If two states have the same
program location, then for all frames the domain dom(stk) (dom(loc)) coincides
for the two states. Moreover, corresponding entries of stk (loc) of the two
states are well-typed in the sense that v 6type v

′ or v′ 6type v holds for the two
corresponding entries.
In the following we consider Jinja programs and JBC programs to be well-

formed. To ease readability, we do not consider exception handling, ie., an
exception yields immediate termination of the program. This is not a restriction
of our analysis, as it could be easily integrated, but complicates matters without
gaining additional insight.
While the above form of representing states allows for a succinct presentation,

it is more natural to conceive the heap (and conclusively a state) as a graph.
In the following we make this intuition precise.

4.2. State Graphs
Let s be a state and let heap denote the heap of s. We propose a graph-
based representations of heap and state s called heap graph and state graph.
This representation makes technical use of a set Iheap of implicit references.
Suppose a is an address on the heap, cn a class name, and id a field identifier.
Furthermore, suppose ftable = ft(heap(a)) is defined and ftable((cn, id)) = val
such that val is not an address. Then we say the triple (a, cn, id) is an implicit
reference for val. The set Iheap collects all implicit references of heap.

Definition 4.3. Let heap denote the heap. We represent heap as a directed
graph with edge labels H = (VH , SuccH , LH , EH), where the nodes, the succes-
sor relations and the labelling functions are defined as follows:

VH := dom(heap) ∪ dom(Iheap)

SuccH(u) :=

[f∗(u, (cn1, id1)), . . . ,
f∗(u, (cnk, idk))] if u is an address, ft(heap(u)) = f ,

dom(f) = {(cn1, id1), . . . , (cnk, idk)}
[] otherwise .

LH(u) :=
{

cl(heap(u)) if u is an address
val if u is an implicit reference for val .

EH(u→ v) :=
{

(cn, id) if u is an address, ft(heap(u)) = f, f∗(u, (cn, id)) = v

∅ otherwise .

20

4.2 State Graphs

Here f∗ is defined as follows: f∗(u, (cn, id)) := f((cn, id)) if f((cn, id)) is an
address and f∗(u, (cn, id)) := (u, cn, id) otherwise, where (u, cn, id) ∈ Iheap.

Based on the heap graph, we represent s as a state graph S. Let s =
(heap, frms) be a state and let frms = [frm1, . . . , frmk] such that frmi =
(stki, loci, cni,mni, pci). We define the set Stk(s) := {(stk, i, j) | 1 6 i 6 k, 1 6
j 6 |stki|} that collects all stack indices. Similarly we define the set of register
indices: Loc(s) := {(loc, i, j) | 1 6 i 6 k, 1 6 j 6 |loci|}. If s is clear from
context, we write Stk (Loc) instead of Stk(s) (Loc(s)). We extend the set Iheap
to cover also non-address values stored in the stack or registers. For this it suf-
fices to extend Iheap by a disjoint copy of Stk(s) ∪ Loc(s). The set of implicit
references with respect to s is denoted as Is. The copy of a stack or register
index in Is is called its implicit reference.

Definition 4.4. Let s = (heap, frms) be a state and let H denote the heap
graph of heap. Furthermore, let (stk, i, j) ∈ Stk and let (loc, i′, j′) ∈ Loc. We
write os(i,j) and l(i′,j′) to name the indices of the operation stack and registers.
We define the state graph of s as quadruple S = (VS , SuccS , LS , ES). The
nodes, the successor relation, and the labelling function of the directed graph
are defined as follows:

VS := Stk ∪ Loc ∪ VH ∪ Is

SuccS(u) :=

[stk∗i (j)] if u = (stk, i, j) ∈ Stk
[loc∗i (j)] if u = (loc, i, j) ∈ Loc
SuccH(u) if u ∈ VH .

LS(u) :=

os(i,j) if u = (stk, i, j) ∈ Stk
l(i,j) if u = (loc, i, j) ∈ Loc
LH(u) if u ∈ VH
val if u is an implicit reference for val .

ES(u→ v) :=
{
EH(u→ v) if u, v ∈ H
∅ otherwise .

Here stk∗i (j) and loc∗i (j) is defined like f∗ as introduced in Definition 4.3, ie.,
stk∗i (j) := stki(j) (loc∗i (j) := loci(j)), if stki(k) (loci(j)) is an address and
stk∗i (j)(loc∗i (j)) is defined as the implicit reference of (stk, i, j)((loc, i, j)) oth-
erwise.

Below we often confuse a state s and its representation as a state graph S.
We define some relevant properties on elements of the state graph:

Definition 4.5. Let s be a state and S be its state graph. Furthermore, let r,
p and q be references in VHeap. We say that:

• r alias with p, if r = p;

• r reaches p, if r +
⇀S p;

21

4 Concrete Domain

• r shares with p, if there exists q such that r ∗
⇀S q

∗
S↼ p;

• r is cyclic, if r +
⇀S r; and

• r is acyclic, if r is not cyclic.

Sometimes, we use the above properties on variables, eg., two variables alias if
they store the same address.

The size of a state is defined on a per-reference basis, which unravels sharing.
We explicitly add 1 to the overall construction. This does not affect the results
but allows a more convenient relation to the size of terms we present later.

Definition 4.6. Let s be a state and let S be its state graph. Let u, v be nodes
in S and u

+
⇀S v denote a simple path in S from u to v. Then the size of a

stack or register index u, denoted as |u|, is defined as follows:

|u| :=
∑

u
+
⇀S v

|LS(v)| ,

where |l| is abs(l) if l ∈ Z, otherwise 1, for l ∈ LS . Here, abs(z) denotes the
absolute value of the integer z. Then the size of s is the sum of all sizes of stack
or register indices in S plus 1. In the following we use |s| to denote the size of
a state s.

4.3. Bytecode Semantics
Reconsider the set of instructions provided in Definition 3.3. In the following
we provide an informal description of their semantics. Appendix A illustrates
the formalisation of all instructions in the same format as used below:

IAdd
(heap, (i2 : i1 : stk, loc, cn,mn, pc) : frms)

(heap, ((i2 + i1) : stk, loc, cn,mn, pc+ 1) : frms)

Here, i1, i2 denote arbitrary integer values.
Most instructions affect only the current frame. Load n pushes the value of

loc(n) onto the stack, whereas Store n pops the top value of the operand stack
and stores it at loc(n). Push v pushes the value v onto the stack, whereas Pop
removes the top element of the stack. IAdd, ISub, ICmpGte, BAnd, BOr, and
BNot denote the usual operations on integer and Boolean values. Operands are
taken from the top of the stack and the result is pushed onto the stack. CmpEq
and CmpNeq define equality and inequality on all values.

Goto i defines an unconditional (relative) jump. IfFalse n defines a condi-
tional control flow instruction that depends on the value on top of the stack.

New cn allocates a new instance of type cn in the heap and pushes the cor-
responding address onto the stack. All fields of the fresh created instance are
instantiated with the default value. That is, 0 for integer typed fields, false
for Boolean typed fields, and null otherwise. Getfield fn cn dereferences the
reference on top of the stack and replaces the reference by the content of the

22

4.4 Collecting Semantics

field identified by (cn, fn) onto the stack. Putfield fn cn dereferences the
reference next to the top of the stack and updates the content of the field
identified by (cn, fn) using the value on top of the stack. The instruction
Checkcast cn checks the type of the reference on top of the stack. The instruc-
tion Invoke mn n first copies the top n element of the stack in reversed order.
It then identifies the method to invoke by the runtime type of the corresponding
reference and constructs a new frame including this, the parameters, and the
local variables initialised with unit. The program counter of the new frame is
set to 0. The instruction Return pops the top frame and updates the stack of
the next frame with the return value. If the frame stack consists only of a single
frame then the program terminates.
All instructions beside the jump instructions increment the program counter

by one. The instructions Getfield, Putfield, Checkcast, Invoke dereference
references and may fail if the reference is null.

Definition 4.7. Let P be a program and let s and t be states. Then we
denote by s→P t the one-step transition relation of the JVM. If there exists a
evaluation of s to t, we write s→∗P t.

Consider the append method in Example 3.1. It is easy to see that the
complexity of append does not only depend on the size of the initial state but
also on the shape of the objects. If this is bound to an acyclic List instance,
then the complexity depends only on the length of the list. Otherwise, the
while loop does not terminate. There is one more case to consider. If this is
bound to an acyclic instance and this shares with parameter ys initially, then
the loop does terminate, but this is cyclic after the putfield instruction. This
information is relevant in an interprocedural analysis. Therefore, beside input
size, we incorporate the set of input states into the definition of the runtime
complexity of some program P .
We define the runtime of a JVM for a given evaluation s→∗P t as the number

of single-step executions in the course of the evaluation from s to t.

Definition 4.8. Let JS denote the set of JVM states, and S ⊆ JS. We define
the runtime complexity with respect to P as follows:

rcjvm(n) =k max
{
m

∣∣∣∣ i→∗P t holds such that the runtime is m,
i ∈ S and |i| 6 n

}
Note that we adopt a (standard) unit cost model for system calls.

4.4. Collecting Semantics

In this section we fix the collecting semantics for our analysis. Above, we already
restricted our attention to well-formed JBC programs. For the proposed static
analysis of these programs we also restrict ourselves to non-recursive methods.
In the next chapter we will see that our approach cannot handle unbounded list
of frames. In the following let P be a well-formed and non-recursive program.

23

4 Concrete Domain

Definition 4.9. The complete lattice P(JS) := (P(JS),⊆,∪,∩,∅,JS) de-
fines the concrete computation domain. Let S ⊆ JS. We define the collecting
semantics on the domain P(JS) as the component-wise extension of the one-
step transition relation to sets: {t | s→P t, s ∈ S}.

24

5. Abstract JVM Domain
In this chapter we provide an abstract representation of all program executions
of some program P . In Section 5.1 we introduce abstract program states. Ab-
stract states are similar to concrete states but incorporate variables, so that
an abstract state represents a set of concrete states. We construct a Galois
insertion between the set of concrete states and abstract states. In Section 5.2
we provide the abstract semantics and show that a computation step in the ab-
stract domain safely approximates a step in the concrete domain. In Section 5.3
we introduce computation graphs as finite representations of all program runs
of program P . Several concepts introduced in the previous chapters are gener-
alised here for abstract states. We use superscript \ to distinguish them. If it
is clear from the context the annotation is often omitted.

5.1. Abstract States
In this section, we introduce abstract states as generalisations of JVM states.
Definition 5.1. We extend Jinja expressions by countable many abstract vari-
ables X1, X2, X3, . . . , denoted by x, y, z, . . . An abstract variable may either
abstract an object, an integer or a Boolean value.
In denoting abstract variables typically the name is of less importance than

the type. Hence, we denote an abstract variable for an object of class cn,
simply as cn, while abstract integer or Boolean variables are denoted as int,
and bool, respectively. The subclass (cf. Definition 3.5) relation is extended
in the natural way to abstract variables for classes. For brevity we sometimes
refer to an abstract variable of integer or Boolean type, as abstract integer or
abstract Boolean, respectively.
Definition 5.2. An abstract value is either a Jinja value (cf. Definition 3.2), or
an abstract integer or an abstract Boolean. In turn a Jinja value is also called
a concrete value.
Definition 5.3. An abstract heap is a mapping from addresses to abstract
objects, where an abstract object is either a pair (cn, ftable) or an abstract
(class) variable cn. Abstract frames are defined like frames of the JVM, but
registers and operand stack of an abstract frame store abstract values. We
define (partial) projection functions cl and ft as follows:

cl(obj) :=
{
cn if obj is an object and obj = (cn, ftable)
cn if obj is an abstract variable of type cn ,

ft(obj) :=
{
ftable if obj is an object and obj = (cn, ftable)
undefined otherwise .

25

5 Abstract JVM Domain

Furthermore, we define annotations of addresses in an abstract state s, denoted
as iu. Formally, annotations are pairs p 6= q of addresses, where p, q ∈ heap
and p differs from q.

Definition 5.4. An abstract state s = (heap, frms, iu) is either a triple con-
sisting of an abstract heap heap, a list of abstract frames frms, and a set
of annotations iu, the maximal abstract state, denoted as >, or the minimal
abstract state, denoted as ⊥. If s = (heap, frms, iu), we demand that all ad-
dresses in heap are reachable from local variables or stack entries in the list of
frames frms. The set of abstract states is collected in the set AS.

Due to the presence of abstract variables, abstract states can represent sets of
states as the variables can be suitably instantiated. Thus different JVM states
can be abstracted to a single abstract state. To make this precise, we will
augment AS with a partial order v, the instance relation (see Definition 5.7).
We will extend the partial order (AS,v) to a complete lattice AS := (AS,v
,
⊔
,
d
,⊥,>) and establish a Galois insertion between P(JS) and AS. The

annotation p 6= q ∈ iu will be used to disallow sharing of these addresses in
states represented by the state s.
When depicting abstract states, we replace stack and register indices by intu-

itive names, written in roman font. Furthermore, we make use of the following
conventions: we use an italic font (and lower-case) to describe abstract variables
and a sans serif (and upper-case) to depict class names. Before we present the
formal definition of the relation v, we provide an example that should clarify
the intuition.

Example 5.5. Recall the List class from Example 3.1 together with the well-
formed JBC program depicted in Figure 3.2. Consider the state A depicted
below:

04 ε | this = o1, ys = o2, cur = o1
o1 = List(List.val = int,List.next = o3)

A o2 = list, o3 = list

The operation stack in A is empty, denoted by ε. The registers this and cur
contain the same address o1 and ys is mapped to o2. In the heap o1 is mapped to
an object of type List whose value is abstracted to int and whose next element
is referenced by o3. It is not difficult to see that A forms an abstraction of
any JVM state obtained with program counter 04 in the append program (if
this initially references a non-empty list) before any iteration of the while loop.
Now, consider state B:

04 ε | this = o1, ys = o2, cur = o3
o1 = List(List.val = int,List.next = o3)
o2 = list, o4 = list

B o3 = List(List.val = int,List.next = o4)

Again, it is not difficult to see that B abstracts any JVM state obtained if
exactly one iteration of the loop has been performed.

26

5.1 Abstract States

Definition 5.6. We define a preorder on abstract values, which are not ref-
erences, and abstract objects. We extend type(v) (cf. Definition 3.6) to ab-
stract values the intended way, ie., type(int) = int, type(bool) = bool and
type(cn) = cn for an integer variable int, a Boolean variable bool, and class
variable cn. We define the preorder P as follows: We have v P w, if either

(i) v = w, or

(ii) type(v) 6type type(w) and w is an abstract variable.

We write w Q v, if v P w.

Let |stk|, |loc| denote the size of the operand stack and the number of registers
respectively. We make use of the following abbreviation: w Qm v if either w Q v
or v, w are references and we have v = m(w), where m denotes a mapping on
references.

Definition 5.7. Let s = (heap, frms, iu) be a state in AS \ {⊥,>} with
frms = [frm1, . . . , frmk] and frmi = (stki, loci, cni,mni, pci). Furthermore
let t = (heap′, frms′, iu′) be a state with frms′ = [frm′1, . . . , frm′k] and
frm′i = (stk′i, loc′i, cn′i,mn′i, pc′i). Then s is an abstraction of t, denoted as
s w t, if the following conditions hold:

1. for all 1 6 i 6 k: pci = pc′i, cni = cn′i and mni = mn′i,

2. for all 1 6 i 6 k: dom(stki) = dom(stk′i) and dom(loci) = dom(loc′i) and

3. there exists a mapping m : dom(heap)→ dom(heap′) such that

• for all 1 6 i 6 k, 1 6 j 6 |stki|: stki(j) Qm stk′i(j),

• for all 1 6 i 6 k, 1 6 j 6 |loci|: loci(j) Qm loc′i(j),

• for all a ∈ dom(heap): heap(a) Q heap′(m(a)),

• for all a ∈ dom(heap) such that ft(heap(a)) is defined and for all
1 6 i 6 `: f(cni, idi) Qm f ′(cni, idi), where
f := ft(heap(a)) with dom(f) = {(cn1, id1), . . . , (cn`, id`)} and
f ′ := ft(heap′(m(a))) with dom(f ′) = {(cn1, id1), . . . , (cn`, id`)}.

4. finally, we have iu′ ⊇ m∗(iu).

Here, m∗ denotes the lifting of the morphism m to sets: m({iu1, . . . , iuk}) =
{m(iu1), . . . ,m(iuk)}. Furthermore for all s ∈ AS: s v > and ⊥v s.

Example 5.8 (continued from Example 5.5). For the state S depicted below
we obtain that A v S and B v S, ie., S forms an abstraction of both states.

04 ε | this = o1, ys = o2, cur = o4
o1 = List(List.val = int,List.next = o3)
o2 = list, o3 = list, o5 = list

S o4 = List(List.val = int,List.next = o5)

27

5 Abstract JVM Domain

The definition for the heap graph (cf. Definition 4.3) and the state graph
(cf. Definition 4.4) naturally extends to abstract states, when extending S =
(VS , SuccS , LS , ES) to S = (VS , SuccS , LS , ES , iuS) and considering abstract
values rather than concrete values only. Furthermore, we use > to denote the
state graph of > ∈ AS and the empty graph to denote ⊥ ∈ AS. In presenting
state graphs, we indicate references, but do not depict implicit references.

Example 5.9 (continued from Example 5.8). The state graphs of A and B
are given in Figure 5.1 and Figure 5.2, respectively. The state graph of the
abstraction S is depicted in Figure 5.3.

this cur ys

o1 : List

o2 : listint

o3 : list

nextval

Figure 5.1.: Abstract State A.

this cur ys

o1 : List

o2 : Listint

o4 : listint

o3 : list

nextval

nextval

Figure 5.2.: Abstract State B.

this cur ys

o1 : List

o2 : listint

o4 : List

o5 : listint

o3 : list

nextval nextval

Figure 5.3.: Abstraction S.

We introduce state homomorphisms that allow an alternative, but equivalent
definition of the instance relation v.

Definition 5.10. Let s, t ∈ AS \ {⊥,>} and S and T be their state graphs. A
state homomorphism from S to T (denoted m : S → T) is a function m : VS →
VT such that

1. for all u ∈ S and u ∈ Stk ∪ Loc, LS(u) = LT (m(u)),

2. for all u ∈ S \ (Stk ∪ Loc), LS(u) Q LT (m(u)),

3. for all u ∈ S: if u i
⇀S v, then m(u) i

⇀T m(v) and

4. for all u `−→ v ∈ S and m(u) `′−→ m(v) ∈ T , ` = `′.

28

5.1 Abstract States

We sometimes abuse notation and use m : s→ t instead of m : S → T .

If no confusion can arise we refer to a state homomorphism simply as mor-
phism. It is easy to see that the composition m1 ◦m2 of two morphisms m1, m2
is again a morphism. We say that two states s, t ∈ AS are isomorphic if there
exists a morphism from s to t and vice versa. Suppose the abstract states s and
t are isomorphic. Then they differ only in their abstract variables and can be
transformed into each other through a renaming of variables. Thus the set of
JVM states represented by s and t is equal; we call s and t equivalent (denoted
s ∼ t).
Let s, t ∈ AS and let S and T denote their state graphs. Then s w′ t if

one of the following alternatives holds: (i) S = >, (ii) T = ∅, or (iii) S, T 6=
∅ and there exists a state morphism m from S to T , s = (heap, frms, iu),
t = (heap′, frms′, iu′) have the same program location (cf. Definition 4.2) and
iu′ ⊇ m∗(iu).

Lemma 5.11. Let s, t ∈ AS. Then s v t iff s v′ t.

Proof. Straightforward.

Due to Lemma 5.11 and the composability of morphisms it follows that the
instance relation v is transitive. Hence the relation v is a preorder. Further-
more v can be lifted to a partial order, if we consider the factorisation of the
set of abstract states with respect to the equivalence relation ∼. In order to
express this fact notationally, we identify isomorphic states and replace ∼ by
=. Conclusively (AS,v) is a partial order. We are left to provide a least upper
bound definition of the join of abstract states.

Definition 5.12. Let s and s′ be states such that there exists an abstraction t
of s and s′. We call t the join of s and s′, denoted as st s′, if t is a least upper
bound of {s, s′} with respect to the preorder v.

The limit cases are handled as usual. If the program locations of s and
s′ differ, then s t s′ = >. Otherwise, we can identify invariants to con-
struct an upper bound t 6= > and prove well-definedness of s t s′. Let S =
(VS , SuccS , LS , ES , iuS) and S′ = (VS′ , SuccS′ , LS′ , ES′ , iuS′) be the two state
graphs of state s and s′, respectively. Furthermore, let t be an abstraction of s
and s′, and let T = (VT , SuccT , LT , ET , iuT) be its state graph. By definition
we have the following properties:

1. Let Stk (Loc) collect the stack (register) indices of state s. As s v t, Stk
(Loc) coincides with the set of stack (register) indices of t. Similarly for
s′ and thus VT ⊇ Stk ∪ Loc.

2. For any node u ∈ T there exist uniquely defined nodes v ∈ VS , w ∈ VS′

such that LS(v) P LT (u), LS′(w) P LT (u). We say the nodes v and w
correspond to u.

3. For any node u ∈ T and any successor u′ of u in T there exists a successor
v′ (w′) in S (S′) of the corresponding node v (w) in S (S′). Furthermore
v′ and w′ correspond to u′.

29

5 Abstract JVM Domain

4. For any edge u `−→ u′ ∈ T such that v (w) corresponds to u in S (S′) there
is an edge v k−→ v′ ∈ S and an edge w k′

−→ w′ ∈ S′ such that ` = k = k′.

5. For any annotation u 6= u′ ∈ iuT there exists v 6= v′ in iuS and w 6= w′ in
iuS′ , where v (v′) and w (w′) correspond to u (u′).

In order to construct an abstraction t of s and s′ we use the above properties
as invariants and define its state graph T by iterated extension. We define
T 0 by setting VT 0 := Stk ∪ Loc. Due to Property 1 these nodes exist in S
and S′ as well. The labels of stack or register indices trivially coincide in S
and S′, cf. Definition 5.10. Thus we set LT 0 accordingly. Furthermore we set
SuccT 0 = ET 0 = iuT 0 := ∅. Then T 0 satisfies Properties 1–5.
Suppose state graph Tn has already been defined such that the Properties 1–5

are fulfilled. In order to update Tn, let u ∈ VTn such that v and w correspond
to u. Suppose v k−→ v′ ∈ S and w

k−→ w′ ∈ S′ such that there is no node u′ in
Tn where v′ and w′ correspond to u′. Let u′ denote a node fresh to Tn. We
define VTn+1 := VTn ∪ {u′} and establish Property 2 by setting LTn+1(u′) such
that LS(v′) P LTn+1(u′) and LS′w′ P LTn+1(u′) where LTn+1(u′) is as concrete
as possible. If we succeed, we fix that v′ and w′ correspond to u′. It remains
to update iuTn+1 suitably such that Property 5 is fulfilled. If this also succeeds
Properties 1–5 are fulfilled for Tn+1. On the other hand, if no further update
is possible we set T := Tn. By construction T is an abstraction of S and S′

and indeed represents s t s′.

Example 5.13 (continued from Example 5.9). In Figure 5.3 abstract state S
is introduced as an abstraction of abstract states A and B. In particular, S
results from the construction defined above, ie., S = A tB.

Given the definitions above AS := (AS,v,
⊔
,
d
,⊥,>) is a complete lattice.

Lemma 5.14. The partial order (AS,v) satisfies the ascending chain condi-
tion, ie., any ascending chain eventually stabilises.

Proof. In order to derive a contradiction we assume the existence of an as-
cending sequence (si)i>0 that never stabilises. By definition for all i > 0:
|si| > |si+1|. By assumption there exists i ∈ N such that for all j > i: |si| = |sj |
and si @ sj . The only possibility for two different states si, sj of equal size that
si @ sj holds, is that addresses shared in si become unshared in sj . Clearly
this is only possible for a finite amount of cases. Contradiction.

Definition 5.15. Let s = (heap, frms) ∈ JS, we define the representation
function β : JS → AS, that injects JVM states into AS. Suppose dom(heap) =
{p1, . . . , pn}. Define iu such that all pi 6= pj ∈ iu for all different i, j. Then
β(s) = (heap, frms, iu). Let α : P(JS) → AS and γ : AS → P(JS) be the
abstraction function and the concretisation function induced by β (cf. Defini-
tion 2.14). Then (P(JS), α, γ,AS) is a Galois connection.

It is easy to see that AS may contain redundant elements. Consider abstract
states s\, t\. Let s\ = (heap, frms, iu), p, q ∈ dom(heap) and p 6= q ∈ iu. Let
t\ be defined like s\ but p 6= q /∈ iu. Furthermore, suppose that there exists

30

5.1 Abstract States

no concrete state s ∈ γ(s\) such that m(p) = m(q) in s for some morphism
m : s\ → β(s). This happens, for example, if s\ = β(s) for some concrete state
s, and references m(p),m(q) point to instances with a different type. Then
s\ @ t\ and γ(s\) = γ(t\).
To form a Galois insertion between P(JS) and AS, we introduce a reduction

operator (cf. Definition 5.16) that adds annotations for non-aliasing addresses.

Definition 5.16. Let s\ = (heap, frms, iu) be an abstract state. We define
the reduction operator ς : AS → AS as follows:

ς(s\) := (heap, frms, iu′) ,

where iu′ := {p 6= q | p, q ∈ dom(heap)} \ {p 6= q | s ∈ γ(s\),m : s\ →
β(s),m(p) = m(q)}. Then ς(s\) v s\ and γ(ς(s\)) = γ(s\).

In practice, we compute the reduction by a unification argument of p and q
in s\: We try to construct a new state t\ v s\, where r = m(p) = m(q). Let
T \ and S\ be the state graphs of t\ and s\. Suppose u, v, w represent r, p, q in
T \ and S\. We can use a similar reasoning we used for the join construction,
but now require LT \(u) P LS\(v) and LT \(u) P LS\(w) if v and w correspond
to u. If the construction succeeds, we can easily find a concrete state from t\

such that m(p) = m(q). The construction does not succeed if, for example,
successors of corresponding nodes have different concrete values; then we add
p 6= q.

Lemma 5.17. The maps α and γ define a Galois insertion between the complete
lattices P(JS) and ς∗(AS), where ς∗ denotes the set extension of ς.

Proof. It suffices to prove that γ is injective, ie., for all s\, t\ ∈ ς∗(AS) if s\ 6= t\

then γ(s\) 6= γ(t\). Suppose s\ 6= t\ but γ(s\) = γ(t\). It is a simple consequence
of our morphism definition that γ(s\) 6= γ(t\), if the state graphs of s\ and t\
differ. Hence, s\ can only be different from t\ if the annotations of s\ and t\

differ. However, by assumption they are equal. Contradiction.

It follows that the reduction operator defined in Definition 5.16, indeed re-
turns the greatest lower bound that represents the same element in the concrete
domain as required. In the following we identify the ς∗(AS) with AS.
Recall Definition 5.18 defining several properties on heap elements. We lift

this functions to abstract states.

Definition 5.18. Let s\ be an abstract state. We use S to denote the state
graph of β(s) for some concrete state s. Furthermore, let r, p and q be references
in VHeap. We say that:

• r and p may-alias, if m(r) = m(p) for some state s ∈ γ(s\) and morphism
m : s\ → β(s);

• r may-reaches p, if m(r) +
⇀S m(p) for some state s ∈ γ(s\) and morphism

m : s\ → β(s);

31

5 Abstract JVM Domain

• r may-share with p, if there exists an q ∈ s such thatm(r) ∗
⇀S q

∗
S↼m(p),

for some state s ∈ γ(s\) and morphism m : s\ → β(s);

• r is maybe-cyclic, if m(r) +
⇀S m(r) for some state s ∈ γ(s\) and morphism

m : s\ → β(s); and

• r is acyclic, if r is not maybe-cyclic.

Obviously these properties can not be computed in general, as γ(s\) may be
infinite. Furthermore, our representation does not provide a precise approxi-
mation of these properties, as abstract variables generally also present cyclic
instances. We will see that these properties are necessary to make our approach
admissible. For now, we assume a preliminary analysis. In Section 8.1, we show
how existing analyses can be incorporated in our approach.

5.2. Abstract Computation

In Section 4.4 we introduced the collecting semantics of JBC. In this section we
define the abstract semantics on abstract states. For every JBC instruction f we
define an abstract instruction f \ and show that f \ is an upper approximation
of the set extension of f , denoted f∗. Moreover we introduce state refinements.
State refinements allow to do case-analysis on abstract states such that an
abstract state is refined into multiple but finitely many abstract states. The
idea is that we perform state refinements if an abstract instruction f \ can not
be applied. Such refinements occur implicitly in control flow graphs by guarded
edges, for example, when considering conditional jumps. Here we explicitly
perform such refinements.
Appendix A illustrates the single-step semantics of JBC instructions. Based

on these instructions, and actually mimicking them quite closely, we define how
abstract states are evaluated symbolically. In most cases this is straightforward:
The instructions Push\, Pop\, Goto\ and New\ are defined identical. The in-

structions Load\, Store\, Checkcast\ and Return\ now consider abstract values
rather than concrete values.
Next, consider instructions IAdd\, ISub\, ICmpGte\, BAnd\, BOr\ and BNot\. If

the operands are concrete the instructions can be executed directly. Otherwise,
we introduce a fresh variable and a side-condition mimicking the instructions.
Figure 5.4 depicts the latter case for IAdd\ and BAnd\ formally. Here i3 and b3
are fresh variables. If the top element of the stack is a concrete value, IfFalse\

IAdd\ (heap, (i2 : i1 : stk, loc, cn,mn, pc) : frms, iu)
(heap, (i3 : stk, loc, cn,mn, pc+ 1) : frms, iu) i1 + i2 = i3

BAnd\ (heap, (b2 : b1 : stk, loc, cn,mn, pc) : frms, iu)
(heap, (b3 : stk, loc, cn,mn, pc+ 1) : frms, iu)

b2 ∧ b1 ≡ b3

Figure 5.4.: Symbolic evaluations of integer and Boolean operations.

32

5.2 Abstract Computation

can be executed directly. Otherwise we perform a Boolean refinement, replacing
the variable with values true and false.
The instructions Getfield\, Putfield\ and Invoke\ access the object on the

heap. In abstract states, elements of the heap may be class variables. Recall
that a class variable cn represents null as well as instances of cn and its subtypes.
Therefore, if the top of the stack is an address p and heap(s) = cn, then an
instance refinement is performed.

Definition 5.19. Let s\ = (heap, frms, iu) be a state and let p be an address
such that heap(p) = cn′. Let cn ∈ subclasses(cn′). Furthermore, suppose
(cn1, id1), . . . , (cnn, idn) denote fields of cn (together with the defining classes).
We perform the following two class instance steps, where the second takes care
of the case, where address p is replaced by null.

(heap, frms, iu)
(heap{p 7→ (cn, ftable1)}, frms, iu)

(heap, frms, iu)
(heap2, frms2, iu) .

Here ftable1((cni, idi)) := vi such that the type of the abstract variable vi is
defined in correspondence to the type of field (cni, idi), eg., a fresh int variable
for integer fields. On the other hand we set heap2 (frms2) equal to heap
(frms), but p /∈ dom(heap2) and all occurrences of p are replaced by null.

Consider a Putfield\ instruction on address p. Then this operation affects
also instances that reaches address p, ie., q +

⇀S\ p for some address q differ-
ent from p. Therefore we additionally employ unsharing refinements before
execution. The unsharing refinement resolves all cases where some address
q ∈ dom(heap) may-alias with p. We consider the cases where p = q and p 6= q.
The key observation is that after the unsharing refinement p does not alias
with other elements in the abstract heap. Hence only the object bound to p is
affected by the putfield instruction abstract heap.

Definition 5.20. Let s\ = (heap, frms, iu) be a state. Let p and q denote
different addresses in heap such that p 6= q /∈ iu. We perform the following
unsharing steps: The first case forces these addresses to be distinct. The second
case substitutes all occurrences of q with p.

(heap, frms, iu)
(heap, frms, iu ∪ {p 6= q})

(heap, frms, iu)
(heap′, frms′, iu) ,

where heap′ (frms′) is equal to heap (frms) with all occurrences of q replaced
by p.

Finally, we are left to show the abstract computation steps for CmpEq\ and
CmpNeq\. We have to consider multiple cases, depending on the values to com-
pare. We only show the cases for CmpEq\. The cases for CmpNeq\ are similar.

1. Let val1 and val2 be addresses. If the addresses of val1 and val2 are
the same then the test evaluates to true. Otherwise, we have to check if
val1 and val2 may-alias and perform an unsharing refinement (cf. Defini-
tion 5.20) if necessary. In the latter case the test returns false.

33

5 Abstract JVM Domain

2. Wlog. let val1 be an address and val2 be null. If heap(val1) = obj and
cl(obj) = cn, we perform an instance refinement according to Defini-
tion 5.19 on val1 and re-consider the condition.

3. If val1 and val2 are concrete non-address Jinja values, then the test (val1 =
val2) can be directly executed and the symbolic evaluation equals the
instruction on the JVM.

4. If val1 or val2 is an abstract Boolean or integer variable, then we introduce
a new Boolean variable b3 and the side condition (val1 = val2) ≡ b3.

Example 5.21. In Figure 5.5 we present an example detailing the need for the
given definition of class instantiation. Here class B overrides method m inherited
from class A. We only know the static type of the parameter when analysing
method call(A a). Method call(A a) accepts any instance of class A or any
instance of a subclass of A as parameter. In particular any instance of class B.
Due to the overridden method call(A a) does not terminate for instances of
class B.

class A{
void m(){ unit}

}
class B extends A{

void m(){ while (true)}
}

class C{
void call(A a){a.m()}
main (){

C c = new C();
c.call(new B());

}
}

Figure 5.5.: All subclasses have to be considered.

Let s\, s\′ and t\ be abstract states such that s\′ is obtained by zero or multiple
refinement steps from s\. Furthermore, suppose t\ is obtained from s\′ due
to a symbolic evaluation. Then we say t\ is obtained form s\ by an abstract
computation.

Correctness. To prove correctness of an abstract computation step, we have
to show that f∗(γ(s\)) ⊆ γ(f \(s\)). Hence, to prove correctness of an symbolic
evaluation step it is enough to show that for all s ∈ γ(s\) and s →P t it
follows that t ∈ γ(t\), where t\ is obtained from a symbolic evaluation step,
ie., t\ = f \(s\). Similarly, to prove correctness of the refinement steps it is
enough to show that for all s ∈ γ(s\) there exists a state s\i obtained by a state
refinement of s\ such that s ∈ γ(s\i). Correctness of an abstract computation
step follows from the correctness of refinement and symbolic evaluation steps.

Lemma 5.22. Let s\ ∈ AS. Suppose s\1, . . . , s\n is obtained by a state refine-
ment from s\. Then s\ w s\i for all s\i. Furthermore, s ∈ γ(s\) implies that
there exists an abstract state s\i such that s ∈ γ(s\i).

Proof. The claim follows easily by the definition of Boolean and class variables,
and the fact that two addresses in the heap of s\ either alias or not.

34

5.2 Abstract Computation

Lemma 5.23. Let s\ ∈ AS. Suppose f \(s\) is applicable. Then f∗(γ(s\)) ⊆
γ(f \(s\)), ie., for all s ∈ γ(s\) and s →P t it follows that t ∈ γ(t\), where
t\ = f \(s\).
Proof. The proof is straightforward in most cases. Let s\ = (heap\, frm\ :
frms\, iu) and s = (heap, frm : frms). By assumption the domain of frm\ :
frms\ and frm : frms coincide. We only treat some informative cases:
• Consider Push\ v. The step can be directly symbolically evaluated, as v

is a concrete value.

• Consider Load\ n. By assumption loc\(n) Qm loc(n). In the abstract
computation step loc\(n) is loaded on to the top of the stack. Obviously
stk\i(n) Qm′ stki(n), where stki represents the top of the stack. Then
t ∈ γ(t\).

• Consider IAdd\. Let i2, i1 denote the first two stack elements of s\. Wlog.
suppose that i1 is abstract. By definition of the symbolic evaluation of
IAdd\ we perform the step by introducing a new abstract integer i3 and
adding the constraint i3 = i1 + i2. Then t ∈ γ(t\), since i3 Q z for all
numbers z.

• Consider IfFalse\ i. Wlog. let false be the top element of the stack of
s\. Executing the symbolic step yields a state t\, which is an abstraction
of t by assumption on s and s\. Then t ∈ γ(t\).

• Consider Putfield\ fn cn on address p. By assumption the instruction
can be symbolically evaluated and p does not alias with some address
q ∈ dom(heap\) different from p. The only interesting case to consider
is when heap\(q) is a class variable and there exists s ∈ γ(s\) such that
m(q) ⇀S r

∗
⇀S m(p), where r ∈ dom(heap). Then m(q) reaches m(p) via

r and is affected by the update instruction. This does not matter, since
heap\(q) is also a class variable in t\, thus also representing the affected
instance. Then t ∈ γ(t\).

• Consider CmpEq\. By assumption the instruction can be symbolically ex-
ecuted. That is the necessary refinement steps are already performed.
Then t ∈ γ(t\) follows directly.

The next theorem is an immediate result of the Lemma 5.22 and Lemma 5.23.
Theorem 5.24. Let s and t be JBC states such that s→∗P t. Suppose s ∈ γ(s\)
for some abstract state s\. Then there exists an abstract computation from s\

to t\ such that t ∈ γ(t\).
Theorem 5.24 formally proves the correctness of the proposed abstract do-

main with respect to the operational semantics for Jinja, established by Klein
and Nipkow [30]. In order to exploit this abstract domain we require a finite
representation of the abstract domain AS induced by P . For that we pro-
pose computation graphs as finite representations of all relevant states in AS,
abstracting JBC states in P .

35

5 Abstract JVM Domain

5.3. Computation Graphs
In this section, we define computation graphs as finite representation of all
program traces of P . We recall the standard approach to data flow analysis as
presented in Section 2.2: (i) computation of the control flow graph of P ; (ii)
mapping functions fl to labels; (iii) computation of a fixed point from an initial
state of the abstract domain. Computation graphs unify the above mentioned
approach: The abstract domain is the set of all abstract states. Nodes in the
computation graph are also abstract states. Starting from an initial abstract
state, states are dynamically expanded through abstract computation. We
obtain a finite control flow graph and a fixed point over the abstract domain by
repeatedly expanding the graph via abstract computation and suitably merging
states having the same program location.

Definition 5.25. A computation graph G = (VG, EG) is a directed graph with
edge labels, where VG ⊂ AS and s\

`−→ t\ ∈ EG if either s\ is obtained from
t\ by an abstract computation or s\ is an instance of t\. Furthermore, if there
exists a constraint C in the symbolic evaluation, then ` := C. For all other
cases ` := ∅. We say that G is the computation graph of program P if for all
initial states i of P there exists an abstract state i\ ∈ G such that i ∈ γ(i\).

We obtain a finite representation of loops, if we suitably exploit the fact that
any subset of AS has a least upper bound and (AS,v) satisfies the ascending
chain condition. The intuition is best conveyed by an example.

Example 5.26. Consider the List program from Example 3.1 and the corre-
sponding bytecode from Example 3.4. Figure 5.6 illustrates the computation
graph of append. For the sake of readability we omit the val field of the list,
the unsharing annotations and some intermediate nodes.
Consider the initial node I. It is easy to see that I is an abstraction of all

concrete initial states, when this is not null. We assume that this is acyclic
and initially do not share with ys. Nodes A, B and S correspond to the situ-
ation described in Example 5.5 and Example 5.8. That is, node A is obtained
after assigning cur to this before any iteration of the loop, node B is obtained
after exactly one iteration of the loop and node S =

⊔
{A,B}. Intermediate

iterations are normally removed. This is indicated by a dashed border for B.
After pushing the reference of cur.next and null onto the operand stack, we

reach node C. At pc = 7 we want to compare the reference of cur.next with
null. But, cur.next is not concrete. Therefore, a class instance refinement is
performed, yielding nodes C1 and C2.
First, we consider that cur.next is not null, but references an arbitrary in-

stance, as illustrated in node C1. The step from C1 to D is trivial. Let id
denote the identity function and m = id(VS). Then m{o4 7→ o5, o5 7→ o6} is a
morphism from S to D. Therefore, D is an instance of S. Second, we consider
the case when cur.next is null, as depicted in node C2. Node E is obtained
from C2 after loading registers cur and ys onto the stack. At program counter
19 a Putfield\ instruction is performed. Therefore we perform a refinement
according to Definition 5.20. We obtain nodes E1, E2 and E3. In E1, this and

36

5.3 Computation Graphs

00 ε | this = o1, ys = o2, cur = unit
o1 = List(List.next = o3)

I o2 = list, o3 = list

04 ε | this = o1, ys = o2, cur = o1
o1 = List(List.next = o3)

A o2 = list, o3 = list 04 ε | this = o1, ys = o2, cur = o3
o1 = List(List.next = o3)
o2 = list, o4 = list

B o3 = List(List.next = o4)
04 ε | this = o1, ys = o2, cur = o4

o1 = List(List.next = o3)
o2 = list, o3 = list, o5 = list

S o4 = List(List.next = o5) 04 ε | this = o1, ys = o2, cur = o5
o1 = List(List.next = o3)
o2 = list, o3 = list, o6 = list

D o5 = List(List.next = o6)

07 o5, null | this = o1, ys = o2, cur = o4
o1 = List(List.next = o3)
o2 = list, o3 = list, o6 = list
o4 = List(List.next = o5)

C1 o5 = List(List.next = o6)07 o5, null | this = o1, ys = o2, cur = o4
o1 = List(List.next = o3)
o2 = list, o3 = list, o5 = list

C o4 = List(List.next = o5)

07 null, null | this = o1, ys = o2, cur = o4
o1 = List(List.next = o3)
o2 = list, o3 = list

C2 o4 = List(List.next = null)

19 o4, o2 | this = o1, ys = o2, cur = o4
o1 = List(List.next = o3)
o2 = list, o3 = list

E o4 = List(List.next = null)

19 o4, o2 | this = o1, ys = o2, cur = o1
o1 = List(List.next = null)

E1 o2 = list

−− ε | this = o1, ys = o2, cur = o1
o1 = List(List.next = o2)

F1 o2 = list

19 o4, o2 | this = o1, ys = o2, cur = o4
o1 = List(List.next = o3)
o2 = list, o3 = list

E3 o4 = List(List.next = null)

−− ε | this = o1, ys = o2, cur = o4
o1 = List(List.next = o3)
o2 = list, o3 = list

F3 o4 = List(List.next = o2)

19 o4, o2 | this = o1, ys = o2, cur = o3
o1 = List(List.next = o3)
o2 = list

E2 o3 = List(List.next = null)

−− ε | this = o1, ys = o2, cur = o3
o1 = List(List.next = o3)
o2 = list

F2 o3 = List(List.next = o2)

v

w

w

Figure 5.6.: The (incomplete) computation graph of append.

cur point to the same reference, in E2 this.next and cur point to the same
reference, and in E3 the abstracted part from cur is distinct from this, yet
this and cur shares. Nodes F1, F2 and F3 are obtained after performing the
Putfield\ instruction.
The complete graph that is automatically generated from the prototype im-

plementation, which we present in Chapter 8, consists of 38 nodes.

To concretise the employed strategy, note that whenever we are about to

37

5 Abstract JVM Domain

finish a loop, we attempt to use an instance refinement to the state starting
this loop. If this fails, for example in an attempted step from B to A in Ex-
ample 5.26, we join the corresponding states. Here we collect all states that
need to be abstracted and join them to obtain an abstraction. Complementing
the proposed strategy, we restrict the applications of state refinements suitably,
such that these refinement steps are only performed if no other steps are appli-
cable. The next lemma shows that if this strategy is followed we are guaranteed
to obtain a finite computation graph.

Lemma 5.27. Let G be the computation graph of a program P such that in the
construction of G the above strategy is applied. Then G is finite.

Proof. We argue indirectly. Suppose the computation graph G of P is infinite.
This is only possible if there exists an initial state i of P that is non-terminating,
which implies that starting from i we reach a loop in P that is called infinitely
often. As G is infinite this implies that the join operation for this loop gives rise
to an infinite sequence of states (s\j)j>0 such that s\j @ s

\
j+1 for all j. However,

this is impossible as any ascending chain of abstract states eventually stabilises,
cf. Lemma 5.14.

Let G be a computation graph. We write s\ ⇀G t
\ to indicate that state t\ is

directly reachable in G from s\. Sometimes we want to distinguish whether t\
is obtained by a refinement (denoted as s\ ⇀ref t

\) or by a symbolic evaluation
(denoted as s\ ⇀eva t

\), or whether s\ is an instance of t\ (denoted as s\ ⇀ins t
\).

If t\ is reachable from s\ in G we write s\ ∗
⇀G t\. If s\ 6= t\ this is denoted by

s\
+
⇀G t

\.

Lemma 5.28. Let s, t ∈ JS such that s →P t. Let G denote the computation
graph of P . Suppose s\ ∈ G such that s ∈ γ(s\), then there exists t\ ∈ G such
that t ∈ γ(t\) and a path s\ ∗

⇀ins ·
∗

⇀ref ·⇀eva t
\.

Proof. By construction of G we have to consider two cases: Suppose t\ is ob-
tained by an abstract computation from s\. We employ Lemma 5.23 to conclude
that t ∈ γ(t\). Then s\ ∗

⇀ref · ⇀eva t
\. Next, suppose t\ is obtained by an ab-

stract computation from s\′, where s\ v s\′. Hence, we also have s ∈ γ(s\′). We
employ Lemma 5.23 to conclude that t ∈ γ(t\). Then s\ ∗

⇀ins ·
∗

⇀ref · ⇀eva t
\.

Since G is finite we conclude that s\ ∗
⇀ins ·

∗
⇀ref · ⇀eva t

\ has finitely many
instance and refinement steps, only depending on G.

We arrive at the main result of this section.

Theorem 5.29. Let i, t ∈ JS and suppose i →∗P t, where the runtime of the
execution is m. Let G denote the computation graph of P . Suppose i\ ∈ G such
that i ∈ γ(i\), then there exists an abstraction t\ ∈ G and a path i\ ∗

⇀G t\ of
length m′ such that m 6 m′ 6 K ·m. Here constant K ∈ N only depends on G.

Proof. By induction on m (employing Lemma 5.28), we conclude the existence
of state t\ such that i\ ∗

⇀G t\. Hence, the first part of the theorem follows.
Furthermore by Lemma 5.28 there exists m′ such that m 6 m′ 6 K ·m.

38

5.3 Computation Graphs

Corollary 5.30. Let P be a program and S ⊆ JS. Suppose computation graph
G is obtained from initial state α(S). We have�· →P |S⊆

∗
⇀ins ·

∗
⇀ref ·⇀eva ·�

and α(S)� s for all s ∈ S, applying Lemma 2.18.

It is easy to see that the obtained abstraction is complexity preserving as
the size of abstract states are bounded by the size of some concrete state by
construction. Yet, the existence of cycles in the computation graph implies that
the relation of the abstraction is not well-founded as arbitrary long paths can
be constructed. In the next chapter we see how computation graphs give rise
to a term-based abstraction.

39

6. Abstract Term Domain
In this chapter we present the transformation from computation graphs to
rewrite systems and provide the main result of this thesis. In Section 6.1 we
introduce constrained term rewrite systems as a variant of term rewrite systems.
In Section 6.2 we show how the rewrite rules are obtained from the computation
graph. We construct a Galois connection from set of concrete states to set of
terms and show that the rewrite relation obtained from the transformation is
an upper approximation of all program executions.

6.1. Constrained Term Rewrite Systems
Let G be the computation graph for program P with initial state i\. G is
kept fixed for the remainder of this chapter. In the following we describe the
translation from G into a constrained term rewrite system (cTRS for short).
Our definition is a variation of cTRSs as for example defined by Falke and
Kapur [16, 17]. Recently, Kop and Nishida introduced a very general formal-
ism of term rewrite systems with constraints, termed logical constrained term
rewrite systems (LCTRSs) [31]. The proposed notion of cTRSs is not directly
interchangeable with LCTRSs, yet the rewrite system resulting from the trans-
formation could also be formalised as LCTRS.
Let C be a (not necessarily finite) sorted signature and let V ′ denote a count-

ably infinite set of sorted variables. Furthermore, let T denote a theory over
C. Quantifier-free formulas over C are called constraints. Suppose F is a sorted
signature that extends C and let V ⊇ V ′ denote an extension of the variables
in V ′. Let T (F ,V) denote the set of (sorted) terms over the signature F and
V. Note that the sorted signature is necessary to distinguish between theory
variables that are to be interpreted over the theory T and term variables whose
interpretation is free. A constrained rewrite rule, denoted as l→ r JCK, is a
triple consisting of terms l and r, together with a constraint C. We assert that
l 6∈ V, but do not require that Var(l) ⊇ Var(r) ∪ Var(C), where Var(t) (Var(C))
denotes the variables occurring in the term t (constraint C). A constrained
term rewrite system is a finite set of constrained rewrite rules.
Let R denote a cTRS. A context D is a term with exactly one occurrence of

a hole �, and D[t] denotes the term obtained by replacing the hole � in D by
the term t. A substitution σ is a function that maps variables to terms, and
tσ denotes the homomorphic extension of this function to terms. We define the
rewrite relation →R as follows. For terms s and t, s→R t holds, if there exists
a context D, a substitution σ and a constrained rule l→ r JCK∈ R such that
s =T D[lσ] and t = D[rσ] with T ` Cσ. Here =T denotes unification modulo
T . For extra variables x, possibly occurring in t, we demand that σ(x) is in
normal-form.

40

6.2 CTRS Transformation

We often drop the reference to the cTRS R, if no confusion can arise from
this. A function symbol in F is called defined if f occurs as the root symbol
of l, where l→ r JCK∈ R. Symbols in C are called theory symbols and function
symbols in F \ C that are not defined, are called constructor symbols.
A cTRS R is called terminating, if the relation →R is well-founded. For a

terminating cTRS R, we define its runtime complexity, denoted by rctrs. We
adapt the runtime complexity with respect to a standard TRS suitable for cTRS
R. (See [25] for the standard definition.) The derivation height of a term t (with
respect to R) is defined as the maximal length of a derivation (with respect to
R) starting in t. The derivation height of t is denoted by dh(t). Note that →R
is not necessarily finitely branching for finite cTRSs, as fresh variables on the
right-hand side of a rule can occur.

Definition 6.1. We define the runtime complexity (with respect to R) as fol-
lows:

rctrs(n) =k max{dh(t) | t is basic and ‖t‖ 6 n} ,

where a term t = f(t1, . . . , tk) is called basic if f is defined, and the terms ti
are only built over constructor, theory symbols, and variables. We fix the size
measure ‖·‖ below.

In the following we are only interested in cTRS over a specific theory T ,
namely Presburger arithmetic. That is, we have T ` C, if all ground instances
of the constraint C are valid in Presburger arithmetic. Recall, that Presburger
arithmetic is decidable. If T ` C, then C is valid. On the other hand, if there
exists a substitution σ such that T ` Cσ, then C is satisfiable.
To represent the basic operations in the Jinja bytecode instruction set (cf. Def-

inition 3.3) we collect the following connectives and truth constants in C: ∧, ∨,
¬, true, and false, together with the following relations and operations: =, 6=, >,
+, −. Furthermore, we add infinitely many constants to represent integers. We
often write l→ r instead of l→ r JtrueK. As expected C makes use of two sorts:
bool and int. We suppose that all abstract variables X1, X2, . . . are present in
the set of variables V, where abstract integer (Boolean) variables are assigned
sort int (bool) and all other variables are assigned sort univ. The remaining
elements of the signature F will be defined in the course of this section. As
the signature of these function symbols is easily read off from the translation
given below, in the following the sort information is left implicit to simplify the
presentation.
The size of a term t, denoted by ‖t‖ is defined as follows:

‖t‖ :=

1 if t is a variable
abs(t) if t is an integer
1 +

∑n
i=1‖ti‖ if t = f(t1, . . . , tn) and f is not an integer .

6.2. CTRS Transformation
In the next definition, we show how program states become representable as
terms over F .

41

6 Abstract Term Domain

Definition 6.2. Let s\ = (heap, frms, iu) be a state and let the index sets
Stk and Loc be defined as above. Suppose v is a value. Then the value v is
translated as follows:

tval(v) :=

null if v ∈ {unit, null}
v if v is a non-address value, except unit or null
taddr(v) if v is an address .

Let a be an address. Then a is translated as follows:

taddr(a) :=

x if a is maybe-cyclic, x is fresh
x if heap(a) is a class variable x
cn(tval(v1), . . . , tval(vn)) if heap(a) = (cn, ftable) .

Here we suppose in the last case that dom(ftable) = {(cn1, id1), . . . , (cnn, idn)}
and for all 1 6 i 6 n: ftable((cni, idi)) = vi. Finally, to translate the state s\
into a term, it suffices to translate the values of the registers and the operand
stacks of all frames in the list frms. Let (stk, i, j) ∈ Stk such that stki(j)
denotes the jth value in the operation stack of the ith frame in frms. Similarly
for (loc, i′, j′) ∈ Loc. Then we set

ts(s) := [tval(stk1(1)), . . . , tval(stkk(|stkk|))), tval(loc1(1)), . . . , tval(lock(|lock|))]

where the list [. . .], is formalised by an auxiliary binary symbol : and the con-
stant nil.

Example 6.3 (continued from Example 5.26). Consider the simplified presen-
tation of state C in Figure 5.6. Then ts(C) yields following term:

ts(C) = [list5, null, List(list3), list2, List(List(list5))] .

This transformation immediately gives rise to a Galois connection between set
of states and set of terms. Let P(T (F ,V)) := (P(T (F ,V)),⊆,∪,∩,∅, T (F ,V))
be the complete lattice of terms over signature F ordered by set inclusion. Re-
call Definition 5.15, where we defined β : JS → AS. We set η(s) := ts(β(s)).
Then α : P(JS)→ P(T (F ,V)) and γ : P(T (F ,V))→ P(JS) are the abstrac-
tion function and the concretisation function induced by η (cf. Definition 2.14).
Hence, (P(JS), α, γ,P(T (F ,V))) is a Galois connection. Observe that our term
representation can only fully represent acyclic data: Consider the translation of
state C of the previous example. Suppose that this is initially cyclic, then this
and cur are cyclic in C and we would have: ts(C) = [list8, null, list6, list2, list7].
However, we still obtain following lemma.

Lemma 6.4. Let s\ and t\ be abstract states. If t\ v s\, then there exists a
substitution σ such that ts(t\) = ts(s\)σ.

Proof. Let S\ and T \ be the state graphs of s\ and t\, respectively. By assump-
tion there exists a morphism m : S\ → T \. The lemma is a direct consequence
of the following observations:

42

6.2 CTRS Transformation

• Consider the terms ts(s\) and ts(t\). By definition these terms encode the
standard term representations of the graphs S\ and T \.

• Let u and v be nodes in S\ and T \ such that m(u) = v. The label of u (in
S\) can only be distinct from the label of v (in T \), if LS\(u) is an abstract
variable or null. In the former case tval(LS\(u)) is again a variable and the
latter case implies that LT \(v) = unit. Thus in both cases, tval(LS\(u))
matches tval(LT \(v)).

• By correctness of our abstraction, we have m(u) is maybe-cyclic, if v is
maybe-cyclic. In this case tval(LS\(u)) and tval(LT \(v)) are fresh vari-
ables. Hence, tval(LS\(u)) matches tval(LT \(v))

The next lemma relates the size of a state to its term representation and vice
versa.

Lemma 6.5. Let s = (heap, frms) be a state such that heap does not admit
cyclic data. Then ‖ts(β(s))‖ = |s|.

Proof. As a consequence of Definition 4.6 and the above proposed variant of
the term complexity we see that ‖ts(β(s))‖ = |s| for all states s.

Lemma 6.6. Let s = (heap, frms) be a state such that heap may contain
cyclic data. Then ‖ts(β(s))‖ 6 |s| and therefore ‖ts(β(s))‖ ∈ O(|s|).

Proof. Follows from the previous lemma and the fact that addresses bounded
to cyclic data are replaced by fresh variables.

Let G be a computation graph. For any state s\ in G we introduce a new
function symbol fs\ . Suppose ts(s\) = [s\1, . . . , s\n]. To ease presentation we
write fs\(ts(s\)) instead of fs\(s\1, . . . , s\n).

Definition 6.7. Let G be a finite computation graph and s\ = (heap, frms, iu)
and t\ be states in G. We define the constrained rule corresponding to the edge
(s\, t\), denoted by rule(s\, t\), as follows:

rule(s\, t\) =

fs\(ts(s\))→ ft\(ts(s\)) if s\ v t\

fs\(ts(t\))→ ft\(ts(t\)) if t\ is a state refinement of s\

fs\(ts(s\))→ ft\(ts(t\)) Jtval(C)K the edge is labelled by C
fs\(ts(s\))→ ft\(ts∗(t\)) s\ corresponds to a Putfield\

on address p, heap(q) is vari-
able cn, and q may-reach p

fs\(ts(s\))→ ft(ts(t\)) otherwise .

Here tval(C) denotes the standard extension of the mapping tval to labels of
edges and ts∗ is defined as ts but employs fresh variables for any reference q
that may-reach the object that is updated. The cTRS obtained from G consists
of rule rule(s\, t\) for all edges s\ → t\ ∈ G.

43

6 Abstract Term Domain

By construction G is finite. We comment on rule(s\, t\): If s\ v t\, then s\ is
more precise than t\. We want to keep this information during transformation.
If t\ is a state refinement of s\, then a pattern matching on t\ is performed. If
the edge from s\ to t\ is labelled by some constraint C. Then fs\ corresponds
to an operation and the right hand side is updated. When fs\ is a Putfield\,
we additionally have to incorporate side-effects resulting from the update.

Example 6.8 (continued from Example 5.26). Figure 6.1 illustrates the cTRS
obtained from the computation graph. We use following conventions: L denotes
the list constructor symbol and l followed by a number a list variable. In the
last rule l4 is fresh on the right-hand side. This is because we update cur and
have a side-effect on this that is not directly observable in the abstraction.

fI(L(l3), l2, null)→ fA(L(l3), l2, L(l3))
fA(L(l3), l2, L(l3))→ fS(L(l3), l2, L(l3))
fS(L(l3), l2, L(l5))→ fC(l5, null, L(l3), l2, L(l5))

fC(L(l6), null, L(l3), l2, L(L(l6)))→ fC1(L(l6), null, L(l3), l2, L(L(l6)))
fC(null, null, L(l3), l2, L(null))→ fC2(null, null, L(l3), l2, L(null))

fC1(L(l6), null, L(l3), l2, L(L(l6)))→ fD(L(l3), l2, L(l6))
fD(L(l3), l2, L(l6))→ fS(L(l3), l2, L(l6))

fC2(null, null, L(l3), l2, L(null))→ fE(L(null), l2, L(l3), l2, L(null))
fE(L(null), l2, L(null), l2, L(null))→ fE1(L(null), l2, L(null), l2, L(null))

fE1(L(null), l2, L(null), l2, L(null))→ fF1(L(l2), l2, L(l2))
fE(L(null), l2, L(L(null)), l2, L(null))→ fE2(L(null), l2, L(L(null)), l2, L(null))

fE2(L(null), l2, L(L(null)), l2, L(null))→ fF2(L(L(l2)), l2, L(l2))
fE(L(null), l2, L(l3), l2, L(null))→ fE3(L(null), l2, L(l3), l2, L(null))

fE3(L(null), l2, L(l3), l2, L(null))→ fF3(L(l4), l2, L(l2))

Figure 6.1.: The cTRS of append.

Example 6.9. Figure 1.2 illustrates the cTRS obtained of the program from
Figure 1.1 and shows how constraints are integrated; irrelevant intermediate
nodes are omitted.

In the following we show that the rewrite relation of the obtained cTRS
safely approximates the concrete semantics of the concrete domain. We first
argue informally:

• By Lemma 5.28 there exists a path s\
∗

⇀ins ·
∗

⇀ref · ⇀eva t\ in G for
s→P t such that s ∈ γ(s\) and t ∈ γ(t\).

• Together with Lemma 6.4 we have to show that fs\(ts(s′))→+
R ft\(ts(t′)),

for s′ = β(s) and t′ = β(t).

44

6.2 CTRS Transformation

• We do this by inspecting the rules obtained from the transformation. We
will see that instance steps and refinement steps do not modify the term
instance. In case of evaluation steps the effect is either directly observable
in the abstract state, as it happens for Push\ for example, or indirectly
by requiring that the substitution is conform with the constraint. In the
case of the Putfield\ instructions we have to find a suitable substitution
for fresh variables to accommodate possible side-effects.

Lemma 6.10. Let s\ and t\ be states in G connected by an edge s\ `−→ t\ from
s\ to t\. Suppose s ∈ JS with s ∈ γ(s\). Suppose further that if the constraint `
labelling the edge is non-empty, then s satisfies `. Moreover, if s\ `−→ t\ follows
due to a refinement step, then s is consistent with the chosen refinement. Then
there exists t ∈ γ(t\) such that fs\(ts(s′)) →rule(s\,t\) ft\(ts(t′)) with s′ = β(s),
t′ = β(t).

Proof. The proof proceeds by case analysis on the edge s\ `−→ t\ in G, where we
only need to consider the following four cases. The argument for the omitted
fifth case is very similar to the third case.

• Case s\ `−→ t\, as s\ v t\; ` = ∅. By assumption s′ v s\ v t\. Hence,
s ∈ γ(t\) by transitivity of the instance relation. By Lemma 6.4 there
exists a substitution σ such that ts(s′) = ts(s\)σ. In sum, we obtain:

fs\(ts(s′)) = fs\(ts(s\))σ →rule(s\,t\) ft\(ts(s\))σ = ft\(ts(t′)) ,

where we set t′ := s′.

• Case s\ `−→ t\, as t\ is a refinement of s\; ` = ∅. By assumption s′ v s\ and
s is concrete. Hence, s′ v t\ by definition of t\. Again by Lemma 6.4 there
exists a substitution σ, such that ts(s′) = ts(t\)σ. In sum, we obtain:

fs\(ts(s′)) = fs\(ts(t\))σ →rule(s\,t\) ft\(ts(t\))σ = ft\(ts(t′)) ,

where we again set t′ := s′.

• Case s\
`−→ t\, as t\ is the result of the symbolic evaluation of s\ and

` = C 6= ∅. By assumption s satisfies the constraint C. More precisely,
there exists a substitution σ such that ts(s′) = ts(s\)σ and T ` tval(C)σ.
We obtain:

fs\(ts(s′)) = fs\(ts(s\))σ →rule(s\,t\) ft\(ts(t\))σ .

Let t be defined such that s→P t. By Lemma 5.23 we obtain t′ v t\ and
by inspection of the proof of Lemma 5.23 we observe that ts(t′) = ts(t\)σ.
In sum, fs\(ts(s′))→rule(s\,t\) ft\(ts(t′)).

• Case s\ `−→ t\, as t\ is the result of a Putfield\ instruction on p and there
exists an address q in s\ that may-reaches p. By assumption s′ v s\ and
thus ts(s′) = ts(s\)σ for some substitution σ. Let t be defined such that
s →P t. Due to Lemma 5.23, we have t′ v t\ and thus there exists a
substitution τ such that ts(t′) = ts∗(t\)τ .

45

6 Abstract Term Domain

Consider the rule fs\(ts(s\))→ ft\(ts∗(t\)). By definition address q points
in s\ to an abstract variable x such that x occurs in ts(s\) and ts(t\).
Furthermore, x is replaced by an extra variable x′ in ts∗(t\). Wlog., we
assume that x′ is the only extra variable in ts∗(t\). Let m be a morphism
such that m : s\ → s′ and m(q) +

⇀ m(p). By definition of Putfield\,
m(p) and m(q) exist in t′ and only the part of the heap reachable from
these addresses can differ in s′ and t′.
In order to show the admissibility of the rewrite step fs\(ts(s′))→ ft\(ts(t′))
we define a substitution ρ such that ts(s\)ρ = ts(s′) and ts∗(t\)ρ = ts(t′).
We set:

ρ(y) :=
{
τ(x) if y = x′

σ(y) otherwise .

Then ts(s\)ρ = ts(s′) by definition as x′ 6∈ Var(s\). On the other hand
ts∗(t\)ρ = ts(t′) follows as the definition of ρ forces the correct instantia-
tion of x′ and Lemma 5.23 in conjunction with Lemma 6.4 implies that σ
and τ coincide on the portion of the heap that is not changed by the field
update.

The next lemma emphasises that any execution step is represented by finitely
many but at least one rewrite steps in R.

Lemma 6.11. Let s, t ∈ JS and s\ ∈ G such that s ∈ γ(s\). Suppose s→P t,
then there exists t\ ∈ G such that t ∈ γ(t\) and fs\(ts(β(s))) 6K−−→R ft\(ts(β(t))).
Here K ∈ N depends only on G and 6K−−→R denotes at least one and at most K
many rewrite steps in R.

Proof. The lemma follows from the proof of Lemma 5.28 and Lemma 6.10.

We arrive at the main result of this thesis.

Theorem 6.12. Let s, t ∈ JS. Suppose s →∗P t, where s is reachable in P
from some initial state i ∈ JS. Let s′ = β(s) and t′ = β(t). Suppose G is
the computation graph of P such that i\ ∈ G and i ∈ γ(i\). Then there exists
s\, t\ ∈ G and a derivation fs\(ts(s′)) →∗R ft\(ts(t′)) such that s ∈ γ(s\) and
t ∈ γ(t\). Furthermore, for all n: rcjvm(n) ∈ O(rctrs(n)).

Proof. The existence of s\ follows from the correctness of abstract computation
together with the construction of the computation graph. Let m denote the
runtime of the execution s→∗P t. Then by induction on m in conjunction with
Lemma 6.11 we obtain the existence of a state t\ such that t ∈ γ(t\) and a
derivation:

fs\(ts(s′)) 6K·m−−−−→R ft\(ts(t′)) . (6.1)

Here the constant K ∈ N depends only on G. We have fs\(ts(s′))→∗R ft\(ts(t′))
from which we conclude the first part of the theorem.
To conclude the second part, let n be arbitrary and suppose m denotes the

runtime of the execution i →∗P t, where |i| 6 n. We set i′ = β(i). As G is the

46

6.2 CTRS Transformation

computation graph of P we obtain i ∈ γ(i\). From Lemma 6.6 it follows that
‖ts(β(i))‖ 6 |i|. Specialising (6.1) to i\ and i′ yields fi\(ts(i′))

6K·m−−−−→R ft\(ts(t′)).
Thus we obtain

rcjvm(|i|) = m 6 K ·m 6 rctrs(‖ts(β(i))‖) 6 rctrs(|i|) .

The corollary follows directly from the previous theorem.

Corollary 6.13. Let P be a program and S ⊆ JS. Suppose computation graph
G is obtained from initial state α(S). Suppose cTRS R is obtained from G. We
set t � s iff ts(β(s)) = t. Then �· →P |S⊆ →

+
R · �, and t � s for all s ∈ S

and some t ∈ α(S). Furthermore, ‖t‖ = O(|s|) for all s ∈ S and t� s. Hence,
� is a complexity preserving abstraction.

It is tempting to think that the precise bound on the number of rewrite steps
presented in Lemma 6.11 should translate to a linear simulation between JVM
executions and rewrite derivation. Unfortunately this is not the case as the
transformation is not termination preserving. For this consider the program of
Figure 6.2.

class List{
List next;

}

class Main{
void inits(List ys){

while (ys.next != null){
List cur = ys;

while (cur.next.next != null){
cur = cur.next

}
cur.next = null;
}

}
}

Figure 6.2.: The inits program.

Here the outer loop cuts away the last cell until the initial list consists only
of one cell whereas the inner loop is used to iterate through the list. It is
easy to see that the main function terminates if the argument is an acyclic list.
Since variables ys and cur share during iteration, the proposed transformation
introduces a fresh variable for the next field of the initial argument ys when
performing the Putfield\ instruction. Termination of the resulting rewrite
system can not be shown any more.
However non-termination preservation follows as an easy corollary of Theo-

rem 6.12.

47

6 Abstract Term Domain

Corollary 6.14. The computation graph method, that is the transformation
from a given JBC program P to a cTRS R is non-termination preserving.

Proof. Suppose there exists an infinite run in P , but R is terminating. Let i be
some initial state i of P . By Theorem 6.12 there exists a state t such that i→∗P t
and fi\(ts(i′))→∗R ft\(ts(t′)), where i ∈ γ(i\), i′ = β(i), t ∈ γ(t\), and t′ = β(t).
Furthermore, as R is terminating we can assume ft\(ts(t′)) is in normalform.
However, as t is non-terminating, there exists a successor, thus Lemma 6.11
implies that ft\(ts(t′)) cannot be in normalform. Contradiction.

48

7. Related Work

In this chapter we review related work. First, we take a look into general
programming language properties and features. For example, new challenges
arise when the integer type of a programming language is bounded and an
overflow can occur. Afterwards, we give an overview over related approaches
that have been developed in recent years.

Integer Overflow. The examples in Figure 7.1 are taken from [18] and illustrate
the problem of approximating bounded integers with overflow by unbounded
integers. Program overflow1 terminates when considering bounded integers
with overflow as the counter eventually gets negative, but does not terminate
when considering unbounded integers. The abstraction with unbounded inte-
gers is sound, but termination of the abstraction can not be shown. Program
overflow2 does not terminate when considering bounded integers with overflow
and parameter j equals the upper integer bound, but always terminates using
unbounded integer. This however gives rise to a false positive example. In [18]

void overflow1 (int i){
while (i >0){++ i;}

}

void overflow2 (int i,int j){
while (i=<j){++i;}

}

Figure 7.1.: Problems arising from integer overflow.

a special abstract domain based on bitvector arithmetic is used to handle such
programs correctly. In Jinja the integer domain is unbounded and this problem
does not arise. This is not true for Java, as the integer domain is bounded.

Garbage Collection. We implicitly assume that objects that are not reachable
from the program environment are immediately collected by the garbage col-
lector. This is very common in practice [39, 44] as the garbage collector often
depends on the implementation rather than on the language specification. In [5]
different strategies are identified to incorporate garbage collection in heap space
analysis.

Arrays. Arrays for Jinja are introduced in [33], together with threads. Arrays
are treated similar to objects, but consists of a dedicated set of instructions.
Since the size of an array may be determined dynamically, it is not clear how
to represent arrays and operations on arrays using terms in a sound and proper
way. One may abstract arrays similarly as we abstract cyclic data.

Threads. Programs are considered to be single-threaded. Multiple threads im-
pose multiple challenges, such as undeterministic behaviour and access of shared

49

7 Related Work

variables. A rewriting based analysis of multi-threaded Java programs can be
found in [19]. The semantics are presented in a continuation based style. This
results in an increase of the state space. Search and model-checking techniques
are then used to verify safety properties.

Non-Linear Arithmetic. Due to abstraction, non-linear arithmetic expressions
may arise in program analysis in the presence of a multiplication operator. This
could happen, for example, if the concrete value of the operands are not known
and abstracted to integer variables during analysis. Analysis of non-linear arith-
metic expressions depends on sophisticated numerical property domains. Cur-
rent tools often rely on the polyhedra domain to infer linear constraints on
variables, for example [4, 45]. Variables affected by non-linear expressions are
abstracted by losing all information about the variable. Here, we rely on cTRSs
and constraints over Presburger arithmetic. The programs under study also do
not contain float and bitwise operations.

Recursion. Our approach can not handle unbounded list of frames and therefore
we restrict our analysis to non-recursive programs. A common approach to
handle recursion is to consider only the program environment of the current
frame (or method) [2, 45]. Then side-effects have to be safely approximated on
call-sites.

7.1. Termination Graphs

As already indicated our transformation approach is based on previous achieve-
ments of Otto et al. [39] and Brockschmidt et al. [11]. We clarify the connections
here:
The concept of computation graphs for object-oriented bytecode has been

introduced before in [11, 39] as termination graphs to prove termination of
bytecode programs. Several extensions have been introduced to prove termi-
nation of recursive programs [10], to prove non-termination [12], and to prove
termination with cyclic data [9]. Termination graphs have also been applied
for functional [47] and logic programming [43]. These techniques have been
implemented in the prover AProVE1.
In comparison to [11, 39], we employ a simpler representation of abstract

states, by not including sharing and shape information of the heap directly into
the abstract state. This results in a more intuitive description of abstraction by
means of graph morphisms. On the other hand, additional (external) analyses
are necessary to make our approach useful. In Section 8.1 we are going to
present the analyses currently used in our implementation. These analyses
provide data facts for all program locations and can be easily integrated in
the computation graph approach to refine the transformation. However, the
information obtained from state refinements in the computation graph can in
general not be used that easily to refine information of the external analysis, as
the flow graph in the external analyse may differ from the computation graph.

1http://aprove.informatik.rwth-aachen.de

50

http://aprove.informatik.rwth-aachen.de

7.2 The SPEED Method

This may result in a loss of precision. The combination of the computation
graph method with domains for shape analysis is subject to future work.
In [11, 39], the main result was a non-termination preserving transformation

such that termination of the resulting rewrite system implies termination of
the original program. Here we have shown that our approach is in addition
complexity preserving. This result extends also to their work. Furthermore,
we have shown the connection of the computation graph approach to standard
techniques of program analysis.

7.2. The SPEED Method
One of the major challenges for analysing imperative programs is to cope with
user-defined data structures. In [23] Gulwani et al. present SPEED; a tool that is
designed to compute symbolic complexity bounds for C/C++ programs, handling
conditional loops as well as iterations over user-defined data structures.
The method is based on counter instrumentation which is already presented

in [14] as a possible application for abstract interpretation. In the most simple
case, a single imaginary counter variable is introduced. This counter is ini-
tialised to zero at the beginning of a procedure and incremented within every
loop construct. The intuition is that the total number of iterations are counted.
Safe upper approximations are computed using techniques from static analysis.
In particular, relational domains, such as the polyhedra domain allow to de-
scribe an upper bound of the counter variable in terms of the input parameters.
In practice this approach is limited as the polyhedra domain just provides linear
invariants and the generation of invariants gets infeasible for complex programs.
To overcome this limitation Gulwani et al. proposed a method where multiple

counter variables are used. Furthermore, counter variables can be reinitialised
to zero within loops. Invariants are computed for each counter variable and
composed adequately. To find a suitable counter instrumentation an exhaustive
proof search is applied. We leave out the details for computing the bound but
exemplify the general idea with the following example:

Example 7.1. Figure 7.2 depicts a program with a non-linear bound. The grey
code segments correspond to the counter instrumentation of variables c and d.
A single counter variable would fail as the invariant analysis with the polyhedra
domain only provides linear constraints. In the else branch of the condition,
c is reinitialised to zero whereas d is incremented by one. This means that the
bound of c depends on d and for every iteration of d we have to account for
the bound of c. This can be compared with a nested loop statement, where the
inner loop is initialised to a constant in each iteration of the outer loop. The
generated bound is max(0, n) + max(0,m)×max(0, n).

We now address how bounds for iterations over user-defined data structures,
such as lists and trees, are computed in SPEED. Rather than an automated anal-
ysis of the heap, the user is required to define quantitative functions and effects
of method calls on it. Quantitative functions represent numerical properties of
data structures and are represented by uninterpreted functions. Method effects

51

7 Related Work

simplemultipledep (int n,m){
int c=0; int d=0;
int x=0; int y=0;
while (x<n){

if(y<m){
y++; c=++;

}else{
y=0; x++;
c=0; d++;

}
}

}

Figure 7.2.: Counter instrumentation for a non-linear bounded program.

are specified by constraints over the combined domain of linear constraints and
uninterpreted functions. Bounds are then generated by computing invariants.

Example 7.2. Following uninterpreted function symbols provide quantitative
measures for single linked lists:

Len(L) := length of list L, and
Pos(e, L) := position of element e in list L.

The effect of getting the next element can be described by the following con-
straints:

e = L.GetNext(f) := Pos(e, L) = Pos(f, L) + 1;
Assume(0 6 Pos(f, L) < Len(L))

Notice the combination of the domain of linear constraints and uninterpreted
functions. We consider a program iterating over a list:

for(e = f ; e 6= null; e = L.GetNext(e));

The invariant generator of the SPEED tool can establish following invariant:
c = Pos(e, L)−Pos(f, L)∧ Pos(e, L) 6 Len(L), which simplifies to c 6 Len(L)−
Pos(f, L).

This method requires that invariants over the combination of linear con-
straints and uninterpreted functions can be generated. In [24] Gulwani and Ti-
wari present a new method for combining abstract interpreters automatically,
which is is based on the Nelson and Oppen method for combining decision
procedures [36]. The proposed approach often provides intuitive and precise
bounds. However, the method is not fully automatic and the constraints for
the method effects can get complex for more sophisticated data structures or
when side-effects have to be considered.
In contrast to SPEED our approach provides a fully automatic analysis of

programs with user-defined data structures. Our termed-based abstraction to-
gether with symbolic evaluation is able to capture the operations on user-defined
data structures.

52

7.3 Resource Static Analysis (RESA)

7.3. Resource Static Analysis (RESA)

In [6] Atkey presents an approach for amortised resource analysis of imperative
languages by embedding a logic of resources within Separation logic. The tech-
niques developed have later been implemented for the resource analysis of Java
bytecode [20].
The conceptual idea of amortised analysis is that data structures store re-

sources that can be consumed by other operations. Separation logic [15] is an
extension of Hoare logic that allows reasoning about the presence and shape of
shared mutable data structures. For example, the assertion A∗B holds for store
s and heap h, if h can be split into two disjoint heaps h1 and h2, and assertion A
holds for s, h1 and assertion B holds for s, h2. Atkey proposes that information
about consumable resources can be incorporated in a similar manner besides
the heap.
For that purpose a resource aware program logic is introduced, including an

additional instruction consume r that indicates the consumption of resource
r. The rules of the logic mimic the operational semantics of the instructions.
Furthermore, procedures are annotated with preconditions and postconditions.
Preconditions state predicates about arguments, heap and available resources.
Postconditions state predicates about arguments, heap, remaining resources and
return value. A variant of separation logic including resource information serves
as the language for assertions in the program logic. For example, following
resource-aware inductive predicate represents a list segment where resources R
are associated to each element:

lseg(R, x, y) := (x = y ∧ emp) ∨ ∃z, z′.[x data7−−→ z] ∗ [x next7−−→ z′] ∗R ∗ lseg(R, z′, y)

Automation is achieved as follows: First, verification conditions are generated.
Verification conditions represent intermediate assertions between preconditions
and postconditions of a procedure. The conditions are induced by the program
logic and are generated in a bottom up fashion starting from the postcondition.
To resolve loops, additional loop invariants are required. Given the collection
of problems generated, a goal driven proof search is performed verifying that
the precondition implies the postcondition. Moreover, the proof search proce-
dure collects linear constraints describing the resource usage of the bytecode
instruction. The resulting set of linear constraints can then be solved by a
linear constraint solver.
The motivating examples in [6] suggest that this analysis works well on cyclic

data structures. Though, the implementation [20] indicates still some chal-
lenges: The proof search procedure depends strongly on the predicates for data
structures. Therefore only lists and trees are supported. Loop invariants are not
generated automatically and have to be stated by the user. Moreover, different
techniques have to be used to handle loops depending on numeric quantities
rather than on allocated data structures. Currently only linear bounds can be
established from the generated linear constraints.

53

7 Related Work

7.4. Resource Aware Java (RAJA)

In [27] a type system for amortised heap-space analysis for a Java-like program-
ming language, termed RAJA (Resource Aware JAva), has been introduced.
Later on, a fully automatic type inference algorithm has been presented in [28].
A prototype implementation is publicly available2.
Here, data structures are associated with potentials (or resources). The po-

tential of the data structures in the input state represents an upper bound on
the total heap consumption.
Types in RAJA are refined class types. That is, a type consists of a class iden-

tifier together with a view. Field access, field update, and method invocations
are extended to refined types. The idea is that different potentials and effects
can be associated to a data structure depending on its refined type. One of the
motivating examples in [27] is a method for copying a singly-linked list. A rich
and a poor view have been introduced for list cells such that the potential for a
rich cell is 1 and the potential for a poor cell is 0. For copying list cells, objects
are created and potential is used. The well-typing requires that the initial list
is a rich list and the resulting list is a poor list. Hence, the method can not be
invoked repeatedly. A runtime object can have multiple refined types and the
overall potential of the object is the sum over all access paths, thus accounting
for aliasing. Typing judgements in RAJA additionally incorporate the cost of
evaluating an expression and ensure that whenever an expression terminates
with an unbounded memory, then it terminates with a bounded memory of size
n plus the potential in the current state before the execution.
To determine upper bounds automatically, view variables were introduced

in [28]. Moreover, methods are equipped with a set of subtyping and linear
arithmetic constraints capturing the resource consumption of the method. Con-
straints are generated via an extended type inference algorithm. A solution
of the constraints provides a typing judgement and therefore also a bound.
Arithmetic constraints are solved via a linear constraint solver. The subtyp-
ing constraints are reduced to inequality constraints over infinite labelled trees.
Current methods assume that the solution are regular infinite trees, which im-
plies a linear bound.

7.5. The JULIA Static Analyser

The JULIA static analyser3 is one of the first and probably the most elaborated
Java bytecode analyser. It has been developed over the last few years by Spoto
et al. to provide an extensive and scalable system for program analysis for full
Java [45]. The tool provides various kinds of analyses, such as class, null pointer,
initialisation, sharing, acyclicity, aliasing, path-length and termination.
Currently JULIA does not perform any kind of complexity analysis. How-

ever, it features a fully automatic termination check, handling user-defined data
structures dynamically allocated in memory [46]. We summarise the basic idea:

2http://raja.tcs.ifi.lmu.de
3http://www.juliasoft.com

54

http://raja.tcs.ifi.lmu.de
http://www.juliasoft.com

7.6 Cost and Termination Analyser (COSTA)

First, a path-length analysis of the bytecode program is performed [40]. Here
variables are abstracted into an integer path-length. If a variable is bound to
an integer i then its path-length is i itself. If a variable is bound to an address
a then its path-length is the maximal length of a path in the graph induced by
the heap starting from a. Path-lengths are represented by numerical constraints
in the closed polyhedra abstract domain. The transfer functions describe the
constraints on variables for the operand stack and local variables. Consider
for example the Getfield\ fn cn instruction: Let sn, s′n denote the variable
representing the top of the stack before and after executing the instruction. If
the accessed field fn of class cn is of type integer, we obtain no information
about its length. Note that all informations of an object, besides path-length,
is disregarded. If the field is a class type and the current object is maybe-cyclic
we obtain sn > s′n, ie., the new value is not larger than the old value. If the field
is a class type and the current object is acyclic we obtain sn > 1 + s′n, ie., the
new value is strictly smaller than the old value. As observed the path-length
analysis makes use of other analysis such as maybe-cyclic, maybe-sharing, and
definite aliasing to improve precision.
Afterwards, a constraint logic program (CLP) is extracted from the path-

length analysis. For example, following CLP is obtained for the append example
(cf. Figure 3.1), when this is not cyclic:

entry980(IL2) :- {IL2>=2,IL2-OL2>=1,OL2>=0}, entry980(OL2).

Here, entry980 corresponds to the entry of the while loop, IL2 and OL2 de-
note the path-length of cur before and after executing the body of the loop.
This transformation is non-termination preserving, ie., termination of the CLP
program implies termination of the original bytecode program.
Finally, the obtained CLP program can be analysed by a termination prover

for constraint logic programs. For example, BinTerm4 tries to find affine ranking
functions for recursive predicates after performing simplifications.
Currently, JULIA does not provide automatic complexity analysis of pro-

grams. However, the path-length abstraction described here is also used by
the tool we present in the next subsection. We want to remark that the CLPs
obtained by the aforementioned analysis can be directly expressed as cTRSs.

7.6. Cost and Termination Analyser (COSTA)
The COSTA (COSt and Termination Analyser for Java Bytecode)5 tool is de-
veloped by Albert et al. and provides automatic cost and termination analysis
of Java bytecode programs [2, 3, 4]. The tool provides a generic way to apply
different cost models and often returns precise cost results. A cost model de-
termines the cost to be assigned to an execution step, for example, the number
of bytecode instructions or the heap consumption.
At first, a control flow graph of the bytecode program is constructed, where

blocks are sequences of (non-branching) instructions and edges are labelled by
4http://lim.univ-reunion.fr/staff/fred/dev
5http://costa.ls.fi.upm.es/web

55

http://lim.univ-reunion.fr/staff/fred/dev
http://costa.ls.fi.upm.es/web

7 Related Work

constraints that represent conditions on the flow. Based on the control flow
graph an intermediate representation, termed rule based representation (RBR),
is generated. Rules correspond to blocks and define a recursive representation
with a flattened stack. Rules follow roughly the following pattern:

mi(loc, stki, ret)← guard, bi,1, . . . , bi,n,mj(loc, stkj , ret) ,

where mi,mj are block identifier, loc are the local variables, stki, skj are stack
variables, ret is a variable storing the return value, guard a (possibly empty)
control flow constraint, bi,1, . . . , bi,n are the bytecode instructions of block mi,
and mj(loc, stkj , ret), denotes the continuation of mi. Several simplifications
and optimisations are performed on the RBR. For example, a static single
assignment transformation of the bytecode and stack variable elimination.
Based on the RBR (linear) size-relations among variables are generated. Size

relations are given as conjunction of linear constraints. In particular one is inter-
ested in inferring input-output relations, which relates input arguments of a rule
with input arguments of its continuations. These size relations are obtained us-
ing techniques from abstract interpretation. Guards and bytecode instructions
are compiled into linear constraints. This is trivial for (linear) arithmetic oper-
ations. Objects are abstracted by their maximal path-length [40]. Afterwards
bottom up fixed points are generated.
Rules give rise to cost equations. The cost of executing a rule consists of the

cost for executing the bytecode instructions together with the cost of executing
the continuation of the rule. A set of (recursive) cost equations is termed cost
relation system (CRS). A (non-recursive) closed form representation can be
obtained using solvers for CRSs, for example the PUBS solver [1].
The basic concept of our method is similar to the COSTA approach: Ab-

stract interpretations are used to find a representation that over-approximates
the program relation. In contrast to COSTA we use a term-based abstraction
of objects. We think that term-based abstractions are more suitable for pro-
grams with composited data structures such as those appearing in the flatten
program of Figure 1.3. The COSTA tool is not able to prove termination or
provide an upper bound of the program. Our transformation allows us to infer
a linear bound automatically. We discuss this in more detail in Section 8.2.

7.7. Loop Bounds for C Programs (LOOPUS)
The LOOPUS tool computes loop bounds for C programs using the size-change
abstraction (SCA) [49]. Originally, SCA has been introduced to proof termi-
nation of functional programs with well-founded data [32]. The size-change
analysis generates an abstraction of a program P . This abstraction approx-
imates the size relations between source and destination parameters in each
function call. Then P terminates on all inputs if every infinite computation
implies an infinite descent in some data value.
In LOOPUS SCA is used to generate loop invariants for inner loops. The

domain of SCA can be represented as Boolean combinations of (in)equality
constraints between variables (or norms) in disjunctive normal form. SCA is a

56

7.7 Loop Bounds for C Programs (LOOPUS)

disjunctive abstract domain in contrast to the standard polyhedra domain for
example. Therefore, this domain can naturally abstract multiple paths within
a loop body. In [49] the abstract domain is termed set of size-change relations
(SCRs). SCRs defines the standard powerset domain of (in)equality constraints
over a finite set of (primed) norms. Norms are functions from states to integers
and are extracted at the beginning of the analysis using heuristics. For example,
if x > y is an arithmetic constraint in a cycle-free path from location l back to
location l, then x− y is used as a norm if x− y decreases along the path.

LOOPUS infers upper bounds for program locations l. An upper bound de-
fines how often l is visited in an execution of P wrt. to the input. The overall
procedure proceeds in two steps. First, a transition system for l wrt. P is gen-
erated. A transition system represents an over approximation of the concrete
transition relation. A transition relation is represented by a conjunction of lin-
ear constraints over variables. Second, the algorithm tries to infer a bound from
the resulting transition system.
In the first step inner loops are summarised recursively. For example, sup-

pose l0 is the program location of a loop and l1 is the program location of a
loop within the body of l0. The initial transition system for l1 is obtained by
the composition of the transition relations along (cycle-free) paths from l1 to
l1. There can exist multiple paths in the presence of branching statements.
The most precise loop invariant would be obtained by iteratively expanding the
initial transition system, but is not computable in general. Hence the transi-
tive hull (or fixed-point) of the abstraction of the initial transition system is
computed. The domain SCRs is finite by construction and the fixed-point can
always be computed. The transition system l0 is then obtained by enumerat-
ing all (cycle-free) paths from l0 to l0. Here, l1 is replaced by the transition
invariant. SCR is a disjunctive domain. A pathwise analysis is obtained by
considering each disjunct.
The second step first applies contextualisation of the resulting transition sys-

tem. The contextualisation of a transition system infers which transitions can
be executed from a given program location. The idea is that the transition
system of a loop can be classified into multiple loop phases. Afterwards an
overall bound is composed from bounds of all SCCs. LOOPUS uses the topo-
logical order from the contextualisation of the transition system to define de-
pendencies amongst SCCs and suitably combine them with max and addition.
To compute a bound from an SCC LOOPUS looks for non-increasing norms
in the abstraction of the transition relation. For example, if norm n is non-
increasing, ie. n > n′, on all transitions of the SCC but decreasing and bounded,
ie. n > n′, n > 0, on some transitions of the SCC then max(n, 0) provides a
bound. Global invariants, which are generated by standard abstract domains
such as the octagon or polyhedra domain, are used to provide upper bounds in
terms of the input. Non-linearity can arise if a norm is not non-increasing on
all transitions, but existing bounds can approximate how often the subgraph
defined by all non-increasing edges of the norm can be entered.
The combination of pathwise analysis together with contextualisation seems

to perform well in practice, as different loop phases and the dependencies among
them can be extracted. In particular, for the analysis of single (possibly nested)

57

7 Related Work

loops. As the actual bound depends on global invariants the analysis may fail
when the bound is non-linear. For that, consider a program with two sequent
loops such that the bound for the second loop depends on a value computed
by the first loop. If the size of the value is non-linear wrt. to the input, then
standard domains such as the octagon or polyhedra domain can not provide a
bound on the value.
In [26] graph-based techniques for the analysis of term rewrite systems were

introduced. This techniques are similar to the aforementioned pathwise analysis
and contextualisation. Though, a possible limitation of our approach is that
we do not generate sophisticated invariants among variables and therefore the
path analysis is less precise. It is conceivable to support the transformation with
additional constraints generated by an external invariant analyser or actually
perform invariant analyses on cTRSs. An investigation of the latter option is
subject to future work.

58

8. Implementation Details

A prototype, termed JaT1 (Jinja Analysis Tool), has been implemented in the
Haskell2 programming language. In this chapter we discuss the details of the
implementation. In Section 8.1 we show how (external) heap shape analyses
are incorporated into our transformational approach. In Section 8.2 we provide
some information about the tool itself.

8.1. Jinja Static Analysis

We kept parts of the bytecode transformation in previous chapters abstract. In
particular, we relied on heap shape properties such as sharing and acyclicity. In
this section we present the additional flow analyses used in the current imple-
mentation. First, we introduce the set of simplified states domain. A simplified
state disregards information about the program location and allows a more
concise representation of the other property domains. Afterwards, we present
a type analysis based on the bytecode verifier of JBC [30]. The type analysis
provides type information on operand stack and local variables. Finally, we
introduce the sharing and acyclicity domains that provide shape information
on objects bound to stack and local variables during runtime. In the following
let P be a well-formed and non-recursive bytecode program.

8.1.1. Set of Simplified States

Let JS∗ denote the set of simplified JVM states. We define JS∗ like JS but
disregard all informations about the program location in a state. That is,
frames in JS∗ only consists of operand stack and local variables. Similarly, the
semantics on JS∗ is defined identically to the semantics on JS with non-relevant
elements ignored. Then P(JS∗) := (P(JS∗),⊆,∪,∩,∅,JS∗) is a complete
lattice.
We establish Galois connections between JS∗ and the other domains of inter-

est. As simplified states do not contain any information of the program location
we can provide a more concise presentation of the other domains. We make our
actual algorithm responsible for keeping track of the program location by defin-
ing adequate successor functions for our instructions. In the following we do
not differentiate between a JVM state and a simplified JVM state if it is clear
from the context or irrelevant.

1http://cl-informatik.uibk.ac.at/users/georg/cbr/tools/jat
2http://www.haskell.org

59

http://cl-informatik.uibk.ac.at/users/georg/cbr/tools/jat
http://www.haskell.org

8 Implementation Details

8.1.2. Type Analysis
The type analysis abstracts values of the program environment to types. In
particular it provides an upper bound with respect to (types(P),6type) (cf.
Definition 3.6) on stack and local variables. The analysis is based on the well-
typed analysis of JBC [30], but extended to an interprocedural analysis. The
type information obtained from the analysis is used in the sharing and acyclicity
domain.

Definition 8.1. We define the complete lattice on program types types(P) :=
(types(P),6type,

⊔
type,

d
type, void,>), by extending (types(P),6type) with a ded-

icated top symbol such that t 6type > for all t ∈ types(P), and providing a
suitable join operation:

t ttype t
′ :=

t′ if t 6type t

′

t0 if t0 is the least common superclass of t and t′

> otherwise .

The abstract domain is denoted TY ⊇ {⊥,>}. Elements of TY are denoted τ
and obtained from JVM states, when mapping the values of the operand stack
and local variables to its type. More formally:

Definition 8.2. Let s = (heap, frms) denote a state in JS∗ with frms =
[frm1, . . . , frmk] and frmi = (stki, loci). Let type∗ be the component-wise
extension of type to lists. Then βTY is defined as follows:

βTY(s) := [(type∗(stk1), type∗(loc1)), . . . , (type∗(stkk), type∗(lock))] .

Let dom(τ) collect all stack and local variables, ie., Stk∪Loc. We lift opera-
tions of the complete lattice of types to type environments by a component-wise
application of 6type and ttype. Since P is well-formed by assumption, the do-
mains of two environments coincide for some specific program location. In
particular occurrences of > during analysis indicate a type error. Hence, in the
following definition we only consider the interesting cases.

Definition 8.3. Let τ, τ ′ be elements of TY for some specific program loca-
tion. Then τ vTY τ ′ holds, if type(v) 6type type(v′) for all v ∈ dom(τ), v′ ∈
dom(τ ′) and v = v′. We obtain the supremum τ ′′ of τ and τ ′ as follows:
We set dom(τ ′′) := dom(τ), and type(v′′) := type(v) ttype type(v′) for all v ∈
dom(τ), v′ ∈ dom(τ ′), v′′ ∈ dom(τ ′′), and v = v′ = v′′. Then TY := (TY,vTY
,
⊔

TY,
d

TY,⊥,>) is a complete lattice.

The representation function βTY gives rise to αTY : P(JS∗) → TY and
γTY : TY → P(JS∗) (cf. Definition 2.14). Then (P(JS∗), αTY, γTY,TY) is a
Galois connection. Intuitively, the concretisation of a type environment repre-
sents all states that are compatible with the type environment. In particular,
the abstract domain contains no information about the shape of an object in
the heap, except what can be inferred from the types in the environment. Let
cn, dn denote class names and t, t′ denote types in P . Figure 8.1 depicts the

60

8.1 Jinja Static Analysis

abstract transfer functions of TY. We omit some instructions as they can be
easily inferred from the given ones. In the definition of GetfieldTY fn cn, type
t′ correspond to the type of field (cn, fn). It is easy to check that the defined
functions safely approximate the concrete semantics.

LoadTY n ((stk, loc) : frms) := (loc(n) : stk, loc) : frms
StoreTY n ((t : stk, loc) : frms) := (stk, loc{n 7→ t}) : frms

PushTY v ((stk, loc) : frms) := (type(v) : stk, loc) : frms
PopTY ((t : stk, loc) : frms) := (stk, loc) : frms

IAddTY ((int : int : stk, loc) : frms) := (int : stk, loc) : frms
CmpEqTY ((t : t : stk, loc) : frms) := (bool : stk, loc) : frms

BAndTY ((bool : bool : stk, loc) : frms) := (bool : stk, loc) : frms
GotoTY ((stk, loc) : frms) := (stk, loc) : frms

IfFalseTY ((bool : stk, loc) : frms) := (stk, loc) : frms
NewTY cn ((stk, loc) : frms) := (cn : stk, loc) : frms

GetfieldTY fn cn ((cn′ : stk, loc) : frms) := (t′ : stk, loc) : frms
PutfieldTY fn cn ((t : cn′ : stk, loc) : frms) := (stk, loc) : frms

CheckcastTY cn ((cn′ : stk, loc) : frms) := (cn : stk, loc) : frms
InvokeTY mn n ((stk′ : stk, loc) : frms) :=

(ε, loc′ : [void0 : · · · : voidmxl−1]) : (stk′ : stk, loc) : frms
where (stk′, loc′) = (tn−1 : · · · : t0 : cn, cn : t0 : · · · : tn−1)

ReturnTY (([t], loc) : (stk′ : stk, loc) : frms) := (t : stk, loc) : frms
where stk′ = tn−1 : · · · : t0 : cn

Figure 8.1.: The transfer functions of TY.

8.1.3. Sharing Analysis

Sharing analysis is essential to make our approach admissible. It is necessary
to describe side-effects on objects which are abstracted by our approach. We
apply the domain of sharing variable pairs and closely follow the presentation
in [44]. Two variables share if there exists a shared part in the heap starting
from the values bound to the variables. Elements of the abstract domain of
pair sharing are (unordered) pairs of variables.
The pair sharing analysis is a may-analysis. That is, if two variables may-

share in the abstract domain, then the variables do not necessarily share in the
concrete domain. Contrary, if two variables share in the concrete domain, then
they may-share in the abstract domain. We usually just say that two variables
share, rather than two variables may-share.

61

8 Implementation Details

We first comment in an informal manner on the sharing domain. Consider
x, y, z to be program variables. An assignment x := y replaces the value of
x by the value of y. Therefore x shares with the variables y shares with. If
the value of y is not an address then y shares with no variable. Consequently
x shares with no variable. If the value of y is an address and y shares with
some variable z then x also shares with z after the assignment. In particular
x shares also with y. Now consider a field update x.f = y. If the value of y is
not an address, then the only information assured is that no additional sharing
is introduced. If the value of y is an address and y shares with z then x and y
share. Furthermore, x shares with z. Similarly, if x and z share before the field
update, then y and z share after it.
When restricting the analysis to non-recursive programs, side-effects of a

method call can be analysed exactly by incorporating the stack and local vari-
ables of all frames in the domain. Hence, sharing is only introduced via the
Putfield instruction.
In the following we will introduce the sharing domain more formally, based

on [44]. We obtain a Galois insertion between sets of simplified states and the
pair sharing domain.
We define the set of reachable classes, taking the subclass relation and the

field table into account.

Definition 8.4. Recall Definition 3.5, introducing subclasses(cn). Let cn be
a class of P . The set of reachable classes of cn is denoted as reaches(cn) and
defined iteratively as follows:

reaches(cn) :=
⋃
i>0 reachesi(cn)

reaches0(cn) := subclasses(cn)
reachesi+1(cn) :=

⋃
{subclasses(cn′′) | cn′ ∈ reachesi(cn), cn′′ ∈ ft∗(cn′)}

Where ft∗(cn) returns the class types of declared fields in cn. We say that cn
and cn′ statically share, if reaches(cn)∩ reaches(cn′) 6= ∅. Similarly, we say that
two variables v1 and v2 statically share, if their corresponding type statically
share and use reaches(v) to denote the classes reachable by v.

Let τ be a type environment. We parametrise abstraction, concretisation and
transfer functions with a type environment, usually denoted with superscript τ .
Note that we already know how to compute the type environment (cf. Subsec-
tion 8.1.2). The type environment allows to restrict the sharing domain to
variable pairs that statically share.

Definition 8.5. Let τ be a type environment. The set of (unordered) pairs,
whose static type shares, is defined by:

SV τ := {(v1, v2) ∈ dom(τ)× dom(τ) | reaches(v1) ∩ reaches(v2) 6= ∅} .

The abstract domain of pair sharing SH is:

SHτ := {sh ⊆ SV τ | if (v1, v2) ∈ sh then (v1, v1) ∈ sh and (v2, v2) ∈ sh} .

Furthermore, SH := (SHτ ,⊆,
⋃
,
⋂
,∅, SV τ) is a complete lattice.

62

8.1 Jinja Static Analysis

The side condition in the definition of the sharing domain SH states, that
(v1, v2) can only share if v1, v2 share with themselves, ie., there are bound to
(maybe) non-null references.
After fixing the property space of the sharing domain, we are able to relate

the concrete and abstract domain by means of an abstraction function and
concretisation function.
Definition 8.6. Let S ⊆ JS∗ be a set of states compatible with τ . We define
abstraction αSH : P(JS∗) → SH and concretisation γSH : SH → P(JS∗) as
follows:

ατSH(S) :=
{

(x, y) ∈ dom(τ)× dom(τ)
∣∣∣∣ there exists s ∈ S such that
variables x and y share in s

}
,

γτSH(sh) :=
{
s ∈ S

∣∣∣∣ for all v1, v2 ∈ dom(τ) if v1 and v2 share in s then
(v1, v2) ∈ sh

}
.

Then, (P(JS∗), αSH, γSH,SH) is a Galois insertion.
To complete the definition of the sharing analysis, we are left to define the

(abstract) transfer functions. We do this informally by first defining an assign-
ment and a field update operation. We will see that this is enough to describe
almost all operations. Before, we define two operations on the sharing domain:
Definition 8.7. Let sh be a sharing domain. Then, sh−v denotes the sharing
domain, in which pairs including variable v are removed from sh:

sh− v := {(v1, v2) | (v1, v2) ∈ sh, v 6= v1 and v 6= v2} .

The closure sh∗v operation transitively closes sh with respect to v:

sh∗v := sh ∪ {(v1, v2) | (v, v1) ∈ sh and (v, v2) ∈ sh} .

Definition 8.8. Let v, v1, v2 be variables.

(v := v1)(sh) :=
{
sh′ ∪ {(v, v)} ∪ {(v, v2) | (v1, v2) ∈ sh} if (v1, v1) ∈ sh
sh′ otherwise

where sh′ = sh− v, and

(v.f := v1)(sh) :=
{

((sh ∪ {(v, v1)})∗v1 − v1)∗v if (v1, v1) ∈ sh
sh otherwise .

It is easy to see that (v := v1) and (v.f := v1) correspond to the observations
we stated at the beginning of this subsection. We now lift this operations to the
set of instructions. The instructions LoadSH, and StoreSH are actually assign-
ments between local and stack variables. Similarly, in the non-recursive case,
passing of function parameters and return values of InvokeSH and ReturnSH

reduces to multiple application of the assignment operator. In the definition of
field update (v.f := v1) we take into account that v1 is a value on the stack that
is removed after the PutfieldSH instruction. For the instruction NewSH we add
(si, si) for the corresponding stack variable. The instructions CheckcastSH and
GetfieldSH refine the type of the top stack variable. Therefore we normalise
with respect to the new type environment. All other instructions operate on
non-address values and do not effect the sharing domain.

63

8 Implementation Details

8.1.4. Acyclicity Analysis

Akin to the previous subsections we are going to present an acyclicity analy-
sis. When transforming program states to terms, we unfold acyclic data and
abstract possible cyclic data by introducing a fresh variable. The analysis pre-
sented here ensures that the data bound to a variable is acyclic, if the variable is
in the defined property domain. We follow the presentation in [42] and suitably
adapt it to our target language.
The acyclicity analysis is a must analysis. The property domain is the set

of variables. Whenever a variable is in the acyclicity domain for some program
location, then the data bound to the variable is definitely acyclic for all possible
executions at the corresponding program location.
Let v1, v2 be variables. Furthermore, the types of v1 and v2 do not restrict

them to be acyclic. First, consider the assignment operation v1 := v2. If v2 is
(possibly) cyclic then so is v1. If v2 is acyclic, then so is v1. Next, consider the
putfield operation v1.f := v2. If the type of the field v.f is restricted to acyclic
types then v2 has to be acyclic and the operation does not affect the property
domain. If v2 is acyclic then v1 is acyclic, if v2 and v1 do not share before the
putfield instruction. Otherwise, we are not able to infer that v1 is definitely
acyclic. Furthermore, the putfield operation may effect other variables sharing
with v1.
As noted above, the acyclicity domain depends on the typing and sharing

domain. The precision of the domain can be increased by requiring that the
domain contains at least those variables, whose static type is acyclic. Therefore,
we define a predicate that checks the desired property.

Definition 8.9. Non class types are acyclic. A class cn is acyclic if the predicate
acyclic(cn) holds:

acyclic(cn) :=
∧
{acyclic∗(cn′) | cn′ ∈ reaches(cn)}

acyclic∗(cn) := cn /∈
⋃
i>0 reachesi(cn)

Next, we define the abstract property space of the analysis.

Definition 8.10. Let τ be a type environment. The set of variables, whose
static type is acyclic, is defined by:

ACτ := {v ∈ dom(τ) | type of v is acyclic} .

The abstract domain of acyclic variables AC is:

ACτ := {ac ∈ P(dom(τ)) | ACτ ⊆ ac} .

Furthermore, AC := (ACτ ,⊇,
⋃
,
⋂
, dom(τ), ACτ) is a complete lattice.

The acyclicity analysis is a must analysis and dom(τ) ⊇ ACτ . We are inter-
ested in the greatest subset of dom(τ) that holds for all paths in an execution.
Values are initialised with the least element dom(τ) and abstracted with respect
to the order ⊇. Incoming paths are combined using

⋂
.

64

8.2 The Prototype: JaT

Definition 8.11. Let ac ⊆ dom(τ) and S ⊆ JS∗ be a set of states compat-
ible with τ . We define abstraction αAC : P(JS∗) → AC and concretisation
γAC : AC→ P(JS∗) as follows:

γτAC(ac) := {s ∈ S | v ∈ ac and v is acyclic in s} , and
ατAC(S) := {v ∈ dom(τ) | v is acyclic in every s ∈ S} .

Then, (P(JS∗), αAC, γAC,AC) is a Galois connection.

We are left to define the transfer functions for AC. First, we define the
assignment and putfield operation in a formal manner. Afterwards, we comment
on the bytecode instructions.

Definition 8.12. Let v and its variants denote variables.

(v := v′)(ac) :=
{
ac ∪ {v} if v′ ∈ ac
ac \ {v} otherwise .

(v.f := v′)(ac) :=

ac if v.f is acyclic
ac if v′ ∈ ac and v, v′ do not share
ac \ {v′′ | v, v′′ share} otherwise .

The bytecode instructions LoadAC, StoreAC, InvokeAC, and ReturnAC are
simulated via the assignment operation. The data obtained by PushAC and
NewAC is always acyclic. Therefore, we add the corresponding stack variable to
the property domain. When the type of the field of a GetfieldAC instruction
is acyclic we add the corresponding stack variable to the domain. All other
instructions operate on primitive values. Therefore all involved stack variables
are acyclic.

8.2. The Prototype: JaT
In this section we comment on the implementation of JaT. The tool consists of
three modules:

Jinja. This module provides data type, parser and general functionalities for
JBC programs.

JFlow. This module provides the data flow analysis presented in the previous
section. In the spirit of [13], we combine all abstract domains to a single abstract
domain TY × SH × AC. Each domain additionally provides an interface that
allows to interact with other domains. We call elements of this domain data
facts. The implementation of the data flow algorithm follows the graph-free
approach presented in [34]. The analysis is context-sensitive and the result
allows to query data facts for some arbitrary program location, that is a list of
triples (cn,mn, pc). This is achieved by introducing value based contexts. The
idea is that the result of a specific method call does not depend on the program

65

8 Implementation Details

location but only on the context (or value) of the call-site. Hence, a mapping
from contexts to data facts of a method call is established. When encountering
method calls during analysis the algorithm first checks, whether the method is
already analysed under the current context. If so, we obtain the return value
from the mapping and can proceed. Otherwise, we first compute the fixed point
of the method before updating the context mapping.

Jat. This module provides the transformation from bytecode programs to
cTRSs. Figure 8.2 depicts the overall design choice of the implementation.

Abstract Program Semantics

Memory DomainInt Domain

Computation Graph

cTRS Transformation

Figure 8.2.: JaT: An Overview.

As defined in Chapter 5 an abstract computation can be a refinement or a
symbolic evaluation. Refinements only depend on the current state. Hence
an abstract instruction should return either a finite set of refined states or a
single state obtained from symbolic evaluation. To apply different approaches
we make the abstract program semantics dependent on an int domain and a
memory domain. An int domain provides refinement and evaluation steps for
integer operations as well as integer relations. Currently only a simple domain
that keeps track of the sign of integer variables is implemented. This allows
to evaluate conditions like x < y when x is known to be negative and y is
known to be positive for example. This may result in a more concise graph
representation. In the future the incorporation of more sophisticated domains
is planned. A memory domain provides refinement and evaluation steps for
operations accessing and modifying the heap. Currently we have implemented
two domains: (i) the sharing domain as introduced in Chapter 5 augmented
with the data facts obtained from a pre-analysis of the JFlow module, and (ii)
the unsharing domain as presented in [11, 39].
Given the clear separation of the semantic operations the construction of the

computation graph and the transformation to cTRSs is rather straightforward.
Figure 8.3 depicts the flatten example we already introduced in Chapter 1.

We want to discuss the analysis of this program in more detail.
Suppose the input argument list is acyclic. Our pre-analysis fails to show

that variable cur remains acyclic, therefore termination can not be shown. Due
to the assignments in lines 3 and 12, oldCur shares with cur and tree. After

66

8.2 The Prototype: JaT

class IntList {
IntList next;
int value;

}

class Tree{
Tree left;
Tree right;
int value;

}

class TreeList {
TreeList next;
Tree value;

}

class Flatten {
IntList flatten (TreeList list){

TreeList cur = list;
IntList result = null;
while (cur != null){

Tree tree = cur.value;
if (tree != null) {

IntList oldIntList = result ;
result = new IntList ();
result .value = tree.value;
result .next = oldIntList ;
TreeList oldCur = cur;
cur = new TreeList ();
cur.value = tree.left;
cur.next = oldCur ;
oldCur .value = tree.right;

} else {
cur = cur.next;

}
}
return result ;

}
}

Figure 8.3.: The flatten program.

the field update in line 14, cur shares with oldCur. Therefore acyclicity can
not be shown any more for cur after the update in line 15.
The automatic analysis presented in [11] also fails to show the desired prop-

erty. However, the actual implementation in the AProVE tool incorporates
additional reachability information to handle such examples.
A small modification of the example and our acyclicity analysis allows us to

show that cur remains acyclic. First we swap the update operations in lines 14
and 15. This does not affect the result of the program. Then cur shares with
oldCur and tree after 14. The update cur.value = tree.left can make cur not
cyclic, if we consider that a Tree object never reaches a TreeList object. The
order of the field update is important as cur shares with oldCur after updating
the value field.
Obviously this is not quite satisfactory, as we actually analyse a different pro-

gram. A more sophisticated domain that incorporates aliasing and reachability
information, as presented in [21], is able to show that cur remains acyclic. Here,
oldCur does not alias or reaches cur after the field update in line 14. Therefore,
cur can not get cyclic when setting cur.next = oldCur.
As it turned out, it is not enough to show that cur remains acyclic. It is

also necessary to show that the remaining TreeList of cur.next.next, which
is abstracted to a variable, is unaffected by the field update oldCur.value =
tree.right. We have to check if the variable reaches oldCur. We argue that
this is not possible as it would contradict the acyclicity of oldCur.

67

8 Implementation Details

TCT is now able to show that flatten has a linear runtime complexity.
To test the viability of our approach is beyond the scope of this thesis as

techniques to handle cTRSs in TCT are yet in development. Though, we want
to comment on some general observations: The flatten example shows that
sharing, acyclicity and reachability information are essential and fine-tuning is
still necessary. We also consider to incorporate aforementioned domains into
the computation graph method, as refinements could also be applied to the
other domains.
The append example shows that even if the analysis is exact, we have to

account for side-effects as only a finite part of the heap is considered in the ab-
straction. Suppose that we would iterate through this after appending another
list. As we require that fresh variables are instantiated with normal-forms, we
would still be able to prove termination of the program, since it is enough to
consider each loop individually. The same reasoning does not apply for com-
plexity analysis. It would be necessary to provide and incorporate an upper
bound on the size of this after the update.
Note that a single program statement in Jinja is compiled into multiple in-

structions and therefore bytecode programs are usually bigger than source code
programs. Furthermore, due to class refinements the computation graph can
grow exponentially with respect to the number of bytecode instructions: Con-
sider two classes A and B such that A is a superclass of B. Both classes define i
methods m16k6i(). In each method mk() we can enforce a class variable a using
a while loop, and invoke mk+1() after refining a. The current method is not
able merge nodes resulting from this construction as the program locations for
each call differs.
The cTRS of flatten has 110 rules in total. TCT is able to infer a linear

bound automatically. Though, many techniques require to incorporate all rules
and TCT needs over 3 minutes. In practice, we will combine rules such that a
single rule corresponds to a sequence of instructions. We then obtain a linear
speed-up with respect to the original system. The main result still holds. Such
simplifications have already been considered in [17, 39] and the current proto-
type also provides a (experimental) transformation. Then flatten consists of
only 8 rules and TCT can infer the bound immediately.

68

9. Conclusion and Future Work

In this thesis we defined a representation of JBC executions as computation
graphs from which we obtain a representation of JBC executions as constrained
rewrite systems. A similar technique to computation graphs was introduced
before in [11, 39] to prove termination of bytecode programs. We studied the
connection to standard techniques from data flow analysis, and express the
relationship between sets of program states and abstract states via a Galois
insertion. Abstract states are represented as graphs incorporating (sorted)
variables to abstract values and objects. Computation graphs correspond to
control flow graphs, where the property domain is fixed and nodes are obtained
by dynamically expanding the graph using the abstract semantics.
The computation graph construction is proven to be finite, but (currently)

limited to non-recursive bytecode programs. The transformation to cTRSs re-
quires sharing and shape information as only acyclic data can be expressed
as terms and side-effects of update operations have to be taken into account.
Constraints are used to express integer and Boolean operations on (abstract)
values. We have shown that the resulting transformation is complexity preserv-
ing, thus upper bounds of bytecode programs can be established by analysing
the complexity of the resulting rewriting system.
The prototype implementation JaT makes use of type [30], sharing [44] and

acyclicity [42] analyses to express properties on heap elements. The viability of
our approach has still to be shown through experiments, as current methods in
complexity analysis of term rewrite systems do not support constraints.
Future work will be dedicated towards methods for complexity analysis of

cTRSs and generalising the approach to recursive programs.

69

Bibliography

[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper
Bounds in Static Cost Analysis. JAR, 46:161–203, 2011.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost
Analysis of Java Bytecode. In Proc. 16th ESOP, volume 4421 of LNCS,
pages 157–172. Springer Verlag, 2007.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA:
Design and Implementation of a Cost and Termination Analyzer for Java
Bytecode. In Proc. 6th FMCO, volume 5382 of LNCS, pages 113–132.
Springer Verlag, 2008.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost
Analysis of Object-Oriented Bytecode Programs. TCS, 413:142–159, 2012.

[5] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis for
Garbage Collected Languages. SCP, 78:1427–1448, 2013.

[6] R. Atkey. Amortised Resource Analysis with Separation Logic. In Proc.
19th ESOP, volume 6012 of LNCS, pages 85–103. Springer Verlag, 2010.

[7] M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity
and Polytime Computability. In Proc. 21th RTA, LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2010.

[8] M. Avanzini and G. Moser. A Combination Framework for Complexity.
In Proc. 24th RTA, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2013.

[9] M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated Termi-
nation Proofs for Java Bytecode with Cyclic Data. In Proc. 24th CAV,
volume 7358 of LNCS, pages 105–122, 2012.

[10] M. Brockschmidt, C. Otto, and J. Giesl. Modular Termination Proofs
of Recursive Java Bytecode Programs by Term Rewriting. In Proc. 22nd
RTA, volume 10 of LIPIcs, pages 155–170, 2011.

[11] M. Brockschmidt, C. Otto, C. von Essen, and J. Giesl. Termination Graphs
for Java Bytecode. In Verification, Induction, Termination Analysis, vol-
ume 6463 of LNCS, pages 17–37. Springer Verlag, 2010.

[12] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated Detec-
tion of Non-termination and NullPointerExceptions for Java Bytecode. In
FoVeOOS, volume 7421 of LNCS, pages 123–141. Springer Verlag, 2011.

70

Bibliography

[13] A. Cortesi, B. L. Charlier, and P. V. Hentenryck. Combinations of Abstract
Domains for Logic Programming: Open Product and Generic Pattern Con-
struction. SCP, 38:27 – 71, 2000.

[14] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proc. of 4th POPL, pages 238–252, 1977.

[15] J. C.Reynolds. Separation Logic: A Logic for Shared Mutable Data Struc-
tures. In Proc. 17th LICS, pages 55–74. IEEE Computer Society, 2002.

[16] S. Falke and D. Kapur. A Term Rewriting Approach to the Automated
Termination Analysis of Imperative Programs. In Proc. 22nd CADE, vol-
ume 5663 of LNCS, pages 277–293. Springer Verlag, 2009.

[17] S. Falke, D. Kapur, and C. Sinz. Termination Analysis of C Programs
Using Compiler Intermediate Languages. In Proc. 22nd RTA, volume 10 of
LIPIcs, pages 41–50. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011.

[18] S. Falke, D. Kapur, and C. Sinz. Termination Analysis of Imperative
Programs Using Bitvector Arithmetic. In Proc. 4th VSTTE, volume 7152
of LNCS, pages 261–277, 2012.

[19] A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal Analysis of Java
Programs in JavaFAN. In Proc. 16th CAV, volume 3114 of LNCS, pages
501–505. Springer Verlag, 2004.

[20] D. Fenacci and K. MacKenzie. Static Resource Analysis for Java Bytecode
Using Amortisation and Separation Logic. ENTCS, 279:19 – 32, 2011.
Proc. 6th BYTECODE.

[21] S. Genaim and D. Zanardini. Reachability-Based Acyclicity Analysis by
Abstract Interpretation. TCS, 474:60–79, 2013.

[22] S. Gulwani. SPEED: Symbolic Complexity Bound Analysis. In Proc. 21st
CAV, volume 5643 of LNCS, pages 51–62. Springer Verlag, 2009.

[23] S. Gulwani, K. Mehra, and T. Chilimbi. SPEED: Precise and Efficient
Static Estimation of Program Computational Complexity. In Proc. 36th
POPL, pages 127–139. ACM, 2009.

[24] S. Gulwani and A. Tiwari. Combining Abstract Interpreters. In Proc.
PLDI, pages 376–386. ACM, 2006.

[25] N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the
Dependency Pair Method. In Proc. 4th IJCAR, volume 5195 of LNCS,
pages 364–380, 2008.

[26] N. Hirokawa and G. Moser. Complexity, Graphs, and the Dependency
Pair Method. In Proc. 15th LPAR, volume 5330 of LNCS, pages 652–666.
Springer Verlag, 2008.

71

Bibliography

[27] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Analysis.
In Proc. 15th ESOP, volume 3942 of LNCS, pages 22–37. Springer Verlag,
2006.

[28] M. Hofmann and D. Rodriguez. Automatic Type Inference for Amortised
Heap-Space Analysis. In Proc. 22nd ESOP, volume 7792 of LNCS, pages
593–613. Springer Verlag, 2013.

[29] P. Hájek. Arithmetical Hierarchy and Complexity of Computation. TCS,
8:227 – 237, 1979.

[30] G. Klein and T-Nipkow. A Machine-Checked Model for a Java-like Lan-
guage, Virtual Machine, and Compiler. ACM TOPLAS, 28:619–695, 2006.

[31] C. Kop and N. Nishida. Term Rewriting with Logical Constraints. In Proc.
9th FroCos, volume 8152 of LNCS, pages 343–358. Springer Verlag, 2013.

[32] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The Size-Change Principle
for Program Termination. In Proc. of 28th POPL, volume 28, pages 81–92.
ACM, 2001.

[33] A. Lochbihler. Jinja With Threads. In The Archive of Formal Proofs.
http://afp.sf.net/entries/JinjaThreads.shtml, 2007. Formal proof
development.

[34] M. Mohnen. A Graph-Free Approach to Data-Flow Analysis. In Proc. 11th
CC, volume 2304 of LNCS, pages 46–61. Springer Verlag, 2002.

[35] G. Moser. Proof Theory at Work: Complexity Analysis of Term Rewrite
Systems. CoRR, abs/0907.5527, 2009. Habilitation Thesis.

[36] G. Nelson and D. C. Oppen. Simplification by Cooperating Decision Pro-
cedures. TOPLAS, 1:245–257, 1979.

[37] F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis.
Springer Verlag, 2005.

[38] L. Noschinski, F. Emmes, and J. Giesl. A Dependency Pair Framework for
Innermost Complexity Analysis of Term Rewrite Systems. In Proc. 23rd
CADE, volume 6803 of LNCS, pages 422–438. Springer Verlag, 2011.

[39] C. Otto, M. Brockschmidt, C. v. Essen, and J. Giesl. Automated Ter-
mination Analysis of Java Bytecode by Term Rewriting. In Proc. 21th
RTA, LIPIcs, pages 259–276. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2010.

[40] P. M. Hill, E. Payet and F. Spoto. Path-length Analysis of Object-Oriented
Programs. In In Proc. 1st EAAI. Elsevier, 2006.

[41] S. E. Panitz and M. Schmidt-Schauß. TEA: Automatically Proving Ter-
mination of Programs in a Non-Strict Higher-Order Functional Language.
In Proc. 4th SAS, volume 1302 of LNCS, pages 345–360. Springer Verlag,
1997.

72

http://afp.sf.net/entries/JinjaThreads.shtml

Bibliography

[42] S. Rossignoli and F. Spoto. Detecting Non-cyclicity by Abstract Compila-
tion into Boolean Functions. In Proc. 7th VMCAI, volume 3855 of LNCS,
pages 95–110. Springer Verlag, 2006.

[43] P. Schneider-Kamp, J. Giesl, T. Ströder, A. Serebrenik, and R. Thiemann.
Automated Termination Analysis for Logic Programs with Cut*. TPLP,
10:365–381, 2010.

[44] S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs.
In Proc. 12th SAS, volume 3672 of LNCS, pages 320–335. Springer Verlag,
2005.

[45] F. Spoto. Julia: A Generic Static Analyser for the Java Bytecode. In Proc.
of 7th FTfJP, 2005.

[46] F. Spoto, F. Mesnard, and É. Payet. A Termination Analyzer for Java
Bytecode Based on Path-Length. ACM TOPLAS, 32:8:1–8:70, 2010.

[47] S. Swiderski and P. Schneider-Kamp. Automated Termination Analysis for
Haskell: From Term Rewriting to Programming Languages. In Proc. 17th
RTA, volume 4098 of LNCS, pages 297–312. Springer Verlag, 2006.

[48] A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

[49] F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound Analysis of Im-
perative Programs with the Size-Change Abstraction. In Proc. 18th SAS,
volume 6887 of LNCS, pages 280–297, 2011.

73

A. Semantics of Jinja Bytecode
Instructions

Load n
(heap, (stk, loc, cn,mn, pc) : frms)

(heap, (loc(n) : stk, loc, cn,mn, pc+ 1) : frms)

Store n
(heap, (v : stk, loc, cn,mn, pc) : frms)

(heap, (stk, loc{n 7→ v}, cn,mn, pc+ 1) : frms)

Push v
(heap, (stk, loc, cn,mn, pc) : frms)

(heap, (v : stk, loc, cn,mn, pc+ 1) : frms)

Pop
(heap, (v : stk, loc, cn,mn, pc) : frms)
(heap, (stk, loc, cn,mn, pc+ 1) : frms)

We use BOp together with ⊗ = {+,−,∨,∧,>,==, 6=} to define instructions
IAdd, ISub, BOr, BAnd, ICmpGt, CmpEq and CmpNeq.

BOp
(heap, (v1 : v2 : stk, loc, cn,mn, pc) : frms)

(heap, (v2 ⊗ v1 : stk, loc, cn,mn, pc+ 1) : frms)

BNot
(heap, (b : stk, loc, cn,mn, pc) : frms)

(heap, (¬b : stk, loc, cn,mn, pc+ 1) : frms)

IfFalse i
(heap, (false : stk, loc, cn,mn, pc) : frms)

(heap, (stk, loc, cn,mn, pc+ i) : frms)

(heap, (true : stk, loc, cn,mn, pc) : frms)
(heap, (stk, loc, cn,mn, pc+ 1) : frms)

Goto i
(heap, (stk, loc, cn,mn, pc) : frms)

(heap, (stk, loc, cn,mn, pc+ i) : frms)

New cn′ creates a new instance obj of class cn′. The fields of obj are instan-
tiated with the default values, ie., 0 for int, false for bool and null otherwise.
Instance obj is mapped to by a fresh address a in heap. Getfield fn cn′ ac-
cess field (cn′, fn) of ft(heap(a)). Putfield fn cn′ updates field (cn′, fn) in
(cn′′, ftable) = heap(a) with value v. Checkcast cn′ fails if cn′ � cn does not
hold. Getfield and Putfield fail if a is null.

New cn′
(heap, (stk, loc, cn,mn, pc) : frms)

(heap{a 7→ obj}, (a : stk, loc, cn,mn, pc+ 1) : frms)

Getfield fn cn′
(heap, (a : stk, loc, cn,mn, pc) : frms)

(heap, (ftable(cn′, fn) : stk, loc, cn,mn, pc+ 1) : frms)

Putfield fn cn′
(heap, (v : a : stk, loc, cn,mn, pc) : frms)

(heap{a 7→ (cn′′, ftable′)}, (stk, loc, cn,mn, pc+ 1) : frms)

Checkcast cn′
(heap, (cn : stk, loc, cn,mn, pc) : frms)

(heap, (cn : stk, loc, cn,mn, pc+ 1) : frms)

74

Invoke mn′ n inspects the type of heap(a), and performs a bottom-up search
(with respect to the subclass hierarchy) for the first method declaration mn′.
The new frame is frm′ = (ε, loc, cn′,mn′, 0), where loc consists of the this
reference (address a), parameters p0 : · · · : pn−1 and mxl registers instantiated
with unit (mxl is defined in the method declaration), and cn′ denotes the class
wheremn′ is declared. The program terminates if Return is executed and frms
consists of a single frame. Otherwise, the top frame is dropped and the next
frame updated; frm′ drops the parameters and the reference and pushes the
return value v onto the stack.

Invoke mn′ n
(heap, (pn−1 : · · · : p0 : a : stk, loc, cn,mn, pc) : frms)

(heap, frm′ : (pn−1 : · · · : p0 : a : stk, loc, cn,mn, pc) : frms)

Return
(heap, [frm])

(heap, [])
(heap, (v : stk, loc, cn,mn, pc) : frm : frms)

(heap, frm′ : frms)

75

	Introduction
	Preliminaries
	Lattice Theory
	Static Program Analysis
	Data Flow Analysis
	Abstract Interpretation

	Complexity Preserving Abstraction

	Bytecode Programs
	Concrete Domain
	Concrete States
	State Graphs
	Bytecode Semantics
	Collecting Semantics

	Abstract JVM Domain
	Abstract States
	Abstract Computation
	Computation Graphs

	Abstract Term Domain
	Constrained Term Rewrite Systems
	CTRS Transformation

	Related Work
	Termination Graphs
	The SPEED Method
	Resource Static Analysis (RESA)
	Resource Aware Java (RAJA)
	The JULIA Static Analyser
	Cost and Termination Analyser (COSTA)
	Loop Bounds for C Programs (LOOPUS)

	Implementation Details
	Jinja Static Analysis
	Set of Simplified States
	Type Analysis
	Sharing Analysis
	Acyclicity Analysis

	The Prototype: JaT

	Conclusion and Future Work
	Bibliography
	Semantics of Jinja Bytecode Instructions

