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Abstract
Proving theorems with automated techniques like those based on saturation and implicit
induction is becoming a standard practice, since it o�ers to the users a framework for solving
sometimes complicated problems without much human interaction. On the other hand,
in the generated proofs the used induction base and step cases are hard to discover and
therefore the proofs are hard to read by humans. The proposed solution will be to translate
a speci�cation and a proof created by an implicit induction prover into a speci�cation and a
proof in the Calculus of Inductive Constructions using explicit induction. The resulted proof
script is checked afterwards by the Coq prover. A general translation mechanism and an
implementation of it as a module for the Spike prover will be described.
Keywords: Implicit induction, Spike, Calculus of Inductive Constructions, Coq

Résumé
La preuve de théorèmes avec des techniques automatisées, comme celles basées sur la sat-
uration et la récurrence implicite, est devenue aujourd'hui une pratique courrante, car elle
o�re aux utilisateurs un cadre pour la résolution des problèmes parfois compliqués sans trop
d'interaction humaine. En même temps, dans les preuves générées il est di�cile de décou-
vrir le(s) cas de base et le(s) pas de récurrence, ce qui rend di�cile leur correction par des
humains. La solution proposée sera de traduire les spéci�cations et les preuves générées par
un preuveur qui utilise la récurrence implicite dans des spéci�cations et des preuves dans le
calcul des constructions inductives basé sur la récurrence explicite. Le script de la preuve
ainsi générée est ensuite véri�ée par l'outil Coq. Un mécanisme général de traduction, ainsi
que sa mise en ÷uvre en tant que module pour le prouveur Spike, seront décrits.
Mots-clés: Récurrence implicite, Spike, Calcul des Constructions Inductives, Coq
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Chapter 1

Introduction

Nowadays, formal methods are often used in various areas of research that require more and more so-
phisticated veri�cation operations. Formal veri�cation is becoming widely used, since the proofs are
becoming larger and their soundness is hard to be seen by humans. Formal methods are the only means
for checking the correctness of large software programs or important theorems.

Many of these techniques are capable of handling industrial-size examples. Some cases have even been
used on a regular basis in industry. The success of formal speci�cations can be assigned to the ability of
system designers to use notations for new methodologies and apply them e�ectively.

Formal methods are mathematically based languages, techniques and tools for specifying and verifying
theorems or properties about systems. Many frameworks have been built upon formal methods to provide
to the users the ability to specify, develop, and verify hardware or software systems.

Automated theorem provers for �rst-order logic are procedures or programs that can be used to show
that a given formula (goal) is implied by a �rst-order theory, usually de�ned by a �nite set of axioms.
Automatic theorem proving in �rst-order logic has been a subject of research for over 30 years, which
made it one of the most developed computer science domains.

1.1 Applications of the Automated Theorem Proving
Automated theorem proving is used in many areas of mathematics and computer science, of which the
most worth of mentioning are:
• Assisting mathematicians � A �rst-order prover can be used on its own to relieve a human mathe-
matician from the burden of technically di�cult proofs. An example of a proof done with the help
of an automated theorem prover is that of the Robbins conjecture [20].
• Formal software veri�cation � A prover may be used to increase the reliability of a safety-critical
application and reduce the development cost of complex software systems. Many systems for anno-
tating source code with formal parts were created, to allow the veri�cation by a prover of the code
against the model speci�cation. Some examples of projects involving automated theorem proving
are [1, 16].
• Automatic software synthesis � Software components may be used to quickly create reliable pro-
grams. The components are often augmented with speci�cations of their functionality forming
logical theories. To create a program, one tries to prove the existence of such a program in theory,
using the problem domain and the available components. If a proof is found, a program may be
extracted from a combination of the used components. An example of such program creation is the
Amphion NASA project [19].
• Hardware veri�cation � Most visible application of formal methods. Due to the increasingly com-
plexity of electronic circuits, formal methods like model checking and satis�ability checking are

5



6 Chapter 1. Introduction

nowadays routinely used for analysing and verifying hardware designs. First-order logic based spec-
i�cations o�er a more powerful language than the propositional logic for specifying hardware models
and their behaviour. Usage of automated theorem proving for commercial hardware veri�cation is
described for instance in [8].

1.2 Induction-based Proof Techniques
Induction based reasoning is widely used in proving theorems involving unbounded structures, like integers
and lists. There are two most known approaches for it:
• Explicit induction � the induction scheme is explicitly stated in the proof. It consists of the ap-
plication of an inference rule locally in a proof for generating the base and step induction cases.
Therefore, the explicit induction can be easily controlled.
• Implicit induction � the validity of the formulas treated as induction hypotheses in the proof can
only be determined by analysing the whole proof. The induction principle is globally implemented
by all the rules of the inference system.

Both the induction approaches rely on appropriate induction principles, whose soundness is ensured
by the existence of a Noetherian order. De�ned on a non-empty set of elements, it forbids any in�nite
strictly decreasing sequence of elements.

1.2.1 Explicit Induction

The most known induction principle is the Peano induction principle to reason on naturals. It has been
described by Pascal in 1654, but has been used earlier by the ancient Greeks. It can be soundly extended,
under the name of Noetherian principle, for any term structure on which a Noetherian order exists,
since for every element the number of it's predecessors up to the minimal element is �nite, therefore the
unrolled proof is �nite.

To prove a property P (x) on any ordered term structure, it is su�cient to show two properties:
• The base case � Show that the property is valid for the smallest element of the structure (in case
of naturals it is su�cient to prove P (0) ).
• The induction step � Show that the property is valid for any given element, if it is valid for its
predecessor (in the case of naturals: for any natural k show that P (k)⇒ P (k + 1) ).

The induction is referred to as explicit, since in the proof the hypotheses and the conclusions are easily
distinguishable. Many existing theorem provers use explicit induction, e.g. NQTHM [7], PVS [23], Coq
[9].

1.2.2 Implicit Induction

The implicit induction proof technique is an application of the `Descente In�nie' principle, described later
in Chapter 2.

The use of induction in a proof done by implicit induction is global, and the correctness of the formulas
used as induction hypotheses can be veri�ed only after the proof is �nished. The implicit induction also
relies on a Noetherian order, but as opposed to explicit induction, here the order is de�ned on formulas
and not on terms. A given formula can be transformed by an inference rule using induction hypotheses
consisting of smaller (or equal) formulas or instances of formulas from the whole proof.

Some examples of provers that use the implicit induction technique are Spike [6, 29], QuodLibet [17]
and RRL [18].
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1.3 Motivation
Due to the big number of formulas encountered in a proof, �nding which formula from an implicit
induction derivation can be used as an induction hypothesis is often di�cult. This is a reason why such
proofs are not done by hand. Since they are automatic, the generated proofs look sophisticated, and
verifying their correctness is hard for the user for the following reasons:
• the generated proofs are often very long,
• each application of an inference rule has to be veri�ed to respect the 'Descente In�nie' principle.
For some proof steps, the order between di�erent formulas has to be computed, which can be a
rather di�cult task for the user.

The idea is to check such proofs with more expressive and powerful explicit induction based tools, like
Coq [9], known to be able to certify their proofs. On the other hand, a weak point of such tools is their
lack of automatization for sophisticated proofs1.

From a practical point of view, our ultimate goal is to generate sophisticated proofs by Spike that
are certi�ed later by Coq.

1.4 The Proposed Solution
Converting a proof generated by an implicit-induction prover to an explicit induction proof will consist
of the following parts:
• Theoretical description of two existing implicit and explicit induction proof systems, followed by
the description of the translation of the speci�cations and proofs from the implicit induction system
to the explicit induction system..
• Implementation description of a proof translator from Spike to Coq.

1.5 Overview
The rest of the document contains four chapters and one appendix.

Chapter 2 explains the general principle of `Descente In�nie' and one of its applications, the implicit
induction. The prover Spike is presented, together with its inference system.

Chapter 3 describes the Calculus of Inductive Constructions, a theory upon which the prover Coq is
based, the prover itself and a part of its language used further in the translator.

Chapter 4 contains the proposed solution, the theoretical possibilities of translating proofs from im-
plicit induction to explicit induction and a module for Spike that translates the speci�cation and the
generated proof in a form accepted by Coq.

In Chapter 5, a conclusion and proposed extensions to the framework are described.
Some examples of translated proofs are presented in the Appendix A.

1There exist proof techniques (like auto in Coq), which can solve very simple queries, but their application to bigger
proofs is very limited.



Chapter 2

The Principle of `Descente In�nie'

The implicit induction proofs2 are applications of the �Descente In�nie� induction principle invented by
Fermat in 1659 [32]. The principle states that all the formulas from a possibly in�nite set of formulas
P are true, if and only if, for any counterexample from P , it exists a smaller counterexample. In the
following, by counterexample we understand any ground formula (formula with no variables) that is not
true in the logical model.

A �Descente In�nie� proof consists of successive applications of inference rules to a set of conjectures
to prove. It can be considered as a set of transitions between states representing sets of conjectures, here
denoted by E0, E1, . . . :

E0 ` E1 ` E2 ` . . . (2.1)
Every step of the proof is the result of the application of an inference rule. A 'Descente In�nie'

inference system is a collection of such inference rules. It is sound if the minimal counterexamples of all
the conjectures are not eliminated during the proof. Therefore, all the conjectures from a proof are true
if the proof �nishes and no minimal counterexample is detected in its last state.

2.1 The Implicit Induction Proof Technique
To satisfy the condition that no minimal counterexample is in the last state, the implicit induction
proofs �nish with an empty set of conjectures. During the proof, a conjecture is soundly eliminated by an
inference rule if none of its ground instances is a minimal counterexample. One particular case to consider
is when it exists a smaller and logically equivalent formula that do not contain minimal counterexamples.
Such formulas, which can be any conjecture from the proof, play the role of induction hypotheses. To
automatize the process of searching for induction hypotheses, a solution is to keep two sets of formulas
in every proof state:
• E � the set of conjectures, as previously.
• H � the set of premises. The elements of H are ancient conjectures, that do not contain minimal
counterexamples.

In this case, the search for induction hypotheses is limited only to the formulas from the current set
of premises and conjectures.

A proof in the new setting has the form:
(E0, ∅) ` (E1,H1) ` . . . ` (∅,Hn) (2.2)

i.e. it starts with an empty set of premises and �nishes with an empty set of conjectures.
If the inference system that generated such proof is sound, then all the formulas (i.e. conjectures and

premises) used in the whole proof are valid.
2Also other types of proofs, for example saturation based proofs.
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2.2 Application: the Spike Theorem Prover
One of the provers that implement the technique of Implicit Induction is Spike. It was �rst implemented
and described by Adel Bouhoula and Michaël Rusinowitch in [6]. Later, its inference system has been
redesigned by Sorin Stratulat. All the inference steps have been generalized as the instances of the
abstract inference system A described in [29].

Spike speci�cations include axioms, which are �rst-order conditional equations and the conjectures
are equational clauses3. Spike is able to check initial consequence relations in many such theories. The
Noetherian order on clauses is built starting from the order over the constructor and de�ned function
symbols given in the speci�cation.

Spike has been used for the veri�cation of some nontrivial problems, like the validation of an ABR
conformity algorithm [26] and of a JavaCard platform [4].
2.2.1 The Inference System

An integral part of a proof system is the inference system. A comparison of available implicit induction
inference systems has been done by Sorin Stratulat in his Ph.D. thesis [28].

To perform this comparison, he proposes an abstract inference system A, which provides the widest
available induction hypotheses. The A system includes just two rules which take a conjecture, called cur-
rent conjecture, and replaces it with a new (possibly empty) set of conjectures using induction hypotheses
from a content speci�c to each rule:
• AddPremise � adds the current conjecture to the set of premises if it does not contain minimal
counterexamples.
• Simplify � does not add the current conjecture to the set of premises but allows bigger contents.
Each Spike inference rule to be described below is an instance of one of these two abstract rules.

Case Simplify
case simplify is a rule permitting simpli�cation of the processed conjecture, due to application of case
analysis rule (de�ned below):

(E ∪ {C},H) ` (E ∪ E′,H) (2.3)
if E′ = CaseAnalysis(C).

De�nition 1 If C is an equational clause, p a de�ned symbol position in C and ∪n
i=1{Pi ⇒ l1 → ri} a

set of conditional rewrite rules, such that for every i ∈ [1..n], there exists a substitution σi, so that after
substituting variables in li it is identical to s. Then CaseAnalysis(C[s]p) returns the set ∪n

i=1{Piσi ⇒
C[ri]p} if in the initial model the logical sum of all Pi with appropriate substitutions,

∨
i Piσi, is valid.

In the above de�nition we understand the following by:
substitution � a mapping from variables to ground terms (terms without variables).
positions in a term � natural number sequences, that allow to locate in the tree structure of a term or

clause each of its function symbols or variables. C[s]p means that the clause C contains the term
s at the position p.

conditional rewrite rule � an equation over terms characterizing the computation system and having
associated a condition under the form of a conjunction of literals. The rewrite rule will be used to
replace in a term or clause subterms equal to its left-hand side by its right-hand side if the condition
is satis�ed.

3By an equational clause we understand a disjunction of literals ¬n1 ∨ . . . ∨ ¬nk ∨ . . . ∨ p1 ∨ . . . ∨ pj , where the literals
are equations or disequations. Sometimes, it is conveniently represented as an implication between two sets of equations
n1 ∧ . . . ∧ nk ⇒ p1 ∨ . . . ∨ pj .
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Generate
generate is the only instance of AddPremise. It consists of a case analysis on the domain values of
variables subset of the current conjecture C. It takes C and replaces these variables with constructor
terms that de�ne their domain under the form of cover substitutions. All the newly obtained conjectures
are afterwards processed to make sure that C does not contain minimal counterexamples.

Its formal de�nition is:
(E ∪ {C},H) ` (E ∪ {∪σEσ},H ∪ {E}) (2.4)

if for all cover substitution σ of C we have one of the following:
• Cσ is a tautology and Eσ = ∅,
• Cσ can be rewritten to C ′ using axioms, rewrite rules from E that are smaller than C, or smaller
or equal rewrite rules from H. Then Eσ = {C ′}, or

• Eσ = CaseAnalysis(Cσ)

Due to the addition of the current conjecture to the premises, generate may be sometimes simulated
by an explicit induction rule.
Simplify
simplify is the rule that uses inductive rewriting:

(E ∪ {C},H) ` (E ∪ {C ′},H) (2.5)
if C can be rewritten to C ′ using axioms or smaller or equal rewrite rules from H ∪ E.

Subsume
subsume is a rule eliminating redundant conjectures.

(E ∪ {C},H) ` (E,H) (2.6)
if C is subsumed by any axiom or formula from E ∪H.

De�nition 2 If C1 and C2 are two clauses, we de�ne that C1 subsumes C2 if there exists a substitution
σ, such that C1σ is a sub-clause of C2.

Delete Tautology
delete tautology is a rule eliminating trivial conjectures.

(E ∪ {C},H) ` (E,H) (2.7)
if C is a tautology, i.e. an equational clause which contains on the right-hand side of the implication

an equality of the form t = t.
Positive Decomposition
positive decomposition rule applies on a clause having in the the right-hand side of the implication
an equality with the same free constructor symbol heading the both sides.

(E ∪ {f(~s) = f(~t) ∨ r},H) ` (E ∪ (∪n
i=1{si = ti ∨ r}),H) (2.8)

if f is a free constructor symbol.
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Negative Decomposition
negative decomposition rule applies on a clause having in the the left-hand side of the implication an
equality with the same free constructor symbol heading the both sides.

(E ∪ {¬(f(~s) = f(~t)) ∨ r},H) ` (E ∪ (∨n
i=1(¬(si = ti) ∨ r)}),H) (2.9)

if f is a free constructor symbol.
Positive Clash
The positive clash rule eliminates from a clause the equations from the right-hand side of the impli-
cation that have di�erent free constructor symbols heading the both sides.

(E ∪ {f(~s) = g(~t) ∨ r},H) ` (E ∪ {r},H) (2.10)
if f and g are two di�erent free constructor symbols.
Negative Clash
negative clash rule removes the clauses having in the left-hand side of the implication inequations with
the both sides headed by distinct free constructor symbols.

(E ∪ {¬(f(~s) = g(~t)) ∨ r},H) ` (E,H) (2.11)
if f and g are two distinct free constructor symbols.
Eliminate Trivial Equation
eliminate trivial equation removes equations having the same term on both sides.

(E ∪ {¬(s = s) ∨ r},H) ` (E ∪ {r},H) (2.12)
Delete

(E ∪ {
n∨

i=1

¬(xi = ti) ∨ r},H) ` (E,H) (2.13)
If for all i we have: xi /∈ V ar(ti) and rρ is a tautology, where ρ = {xi ← ti|i ∈ [1..n]}.
Autosimpli�cation
The autosimplification rule takes a conjecture having on the left-hand side of the implication an
equation between a variable and a term, and replaces in the rest of the conjecture all the occurrences of
the variable with that term. Example:

(E ∪ {x = b⇒ f [x, b] = g[x, b],H} ` (E ∪ {f [b, b] = g[b, b]},H) (2.14)



Chapter 3

The Calculus of Inductive

Constructions

Calculus of Inductive Constructions (CIC) is a type theory derived from the typed λ-calculus.
λ-calculus is a formal language having an expressive power equivalent to Turing machines and recursive

functions. All λ-calculus terms express some calculations, but the language is inconsistent; moreover,
certain calculations may not �nish for some arguments. To �x this, Curry and Church proposed simple-
typed λ-calculus, where if a term is de�ned to have some type it is known to be correct for this type.
Later Curry and Howard proposed a mechanism verifying the terms and their equivalent types.

The syntax of simply-typed λ-calculus is very simple. Any type U can be either a simple type S, or
a function taking a term of sub-type and returning a term of sub-type. The terms t are either variables
x, application of term to a term, or the explicit speci�cation of the type of a term.

A term is only a pre-term until it is correctly typed. The rules of typing terms have been expressed as
deduction rules. For a set of terms with their types Γ the deduction rules include typing judgements like
Γ ` (t : T ). The Curry-Howard isomorphism is de�ned as a set of deduction rules on such judgements.

The next step towards its implementation in Coq was the proposition by Coquand and Huet of the
Calculus of Constructions [12, 27]. The two newly added concepts are the polymorphic types and the
dependent types.

The syntax of Calculus of Constructions is as follows:
t ::= x | (tt) | [x : U ]t | (tU)

U ::= S | X | [X : U ]U | (UU) | (X : U)U | (Ut)
S ::= Prop | Set | Type | TypeSet

In CIC [10, 11] a syntax for expressing inductive types has been added. This permits operating on
them and removes the necessity of Type and TypeSet in simple types. In CIC every function has to
be a total function. This means that for every recursive de�nition there has to be associated a measure
function, providing a means of ensuring that the calculation will �nish for every input.

The rules for Curry-Howard isomorphism have been extended to deal with the introduced inductive
types, by giving rules for reasoning on inductive types including terms. Therefore, in CIC with every
function or theorem de�nition there is a type associated using the Curry-Howard isomorphism, which
ensures the completeness and soundness.

3.1 The Coq System
Coq [9] is a proof assistant based on CIC. It has been basically designed as a syntax for writing CIC
terms and verifying that they match de�ned types (or calculating those types). It has grown into a big
set of tools allowing interactive theorem proving.

12
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With every Coq de�nition and proof step there exists an associated CIC type term. The core system
veri�es that the element matches the type, which guarantees the totality of all the de�ned functions and
also the soundness of all the proofs.

A proof written in the Coq system is mechanically checked by the kernel of the system, to verify if
its type matches its de�nition. Coq allows a user to de�ne sets and their properties by the means of:
functions (both general recursive functions and functions de�ned by the axioms concerning them) and
theorems.

Coq is an interactive system and allows the user to interactively develop proofs. The system allows
the user to de�ne only objects that are correct in the Calculus of Inductive Constructions, in particular:
• All the functions have to be total, i.e. they have to be de�ned for all the elements of the set upon
which they are de�ned.
• For every recursive function, a measure function has to be provided to assure the system that the
calculation of the function will �nish for all the values of its arguments.
• For every theorem, there should exist an associated proof, which will be veri�ed to be correct w.r.t.
the Curry-Howard isomorphism in CIC.

The Coq system also includes a mechanism for the automatic generation of certi�ed programs from
the proofs of their speci�cations.

But for coqtop, the standard Coq interactive toplevel, various user interfaces have been created to
allow better interaction with the user, e.g. CoqIde (included in the Coq distribution) and ProofGeneral
[2].

The Coq system has been used for the veri�cation of many non-trivial problems, like the JavaCard
bytecode speci�cation [3] or the four colours theorem [14].

3.2 Coq Tactics and Tacticals
The Coq inference system is de�ned by a set of tactics and tacticals (i.e. strategies to apply tactics).
Every tactic is a rule describing how to convert a goal to a new set of goals, that will be easier (hopefully)
to type. In every proof step, a tactic is applied to one of the goals.

Since Coq is a big system, it includes many tactics and tacticals, and the full list is described in [9].
The following subsections describe the ones that will be used in this document or the translator.
3.2.1 The Intro Tactic

This tactic applies to a goal which is a product4.
If the current goal is a dependent product forall x:T, U then intro puts x:T in the local context

and replaces the goal with its subgoal U.
If the goal is a non dependent product of the type T -> U, then the tactic puts in the local context

Hn:T5. The optional index n is such that Hn is a fresh identi�er, and the new subgoal is U.
3.2.2 The Induction Tactic

The induction tactic applies to any goal. The type of the argument term must be a constant of an
inductive type. The tactic generates subgoals, one for each possible form of term, i.e. one for each
constructor of the inductive type.

The induction tactic automatically replaces all the occurrences of term in the conclusion and the
hypotheses of the goal. It automatically adds induction hypotheses (named IHn1) to the context.

There is one particular case, that will have to be treated di�erently in the conversion system. If
term is an identi�er denoting a quanti�ed variable of the conclusion of the goal, then induction ident
behaves like: intros ident; induction ident.

4The Intro tactic also applies to goals which start with a let binder, but they will not be used in this work.
5It works di�erent, if T is a Type, it will not be used in this document.
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3.2.3 The Destruct Tactic

The destruct tactic is used to perform case analysis without recursion. It applies to any goal and
the type of term must be an inductive type. Its behaviour is similar to induction, but no induction
hypothesis is generated.

If term is an identi�er denoting a quanti�ed variable of the conclusion of the goal, destruct behaves
like induction, which is: intros ident; destruct ident.

3.2.4 The Double Induction Tactic

The double induction id1 id2 tactic applies to any goal. If variables id1 and id2 of the goal have
an inductive type, then this tactic performs induction on both of these variables. This rule stores two
induction hypotheses, one as the initial goal, and one for the intermediate cases.

A double induction rule will be used, if in a Spike generated proof, there is a generate rule applied
to two variables.

For instance, if the current goal is forall n m:nat, P n m then, double induction n m will gen-
erate all the four cases with their respective inductive hypotheses.

3.2.5 The Rewrite Tactic

The rewrite tactic applies to any goal. The type of term must have the form:
(x1 : A1) . . . (xn : An)term1 = term2. (3.1)

Then rewrite term replaces all the occurrences of term1 by term2 in the goal. If during the process
of unifying the terms term1 and term2 there are variables xi that are instantiated, then certain types
A1, . . . , An become new subgoals.

There exist many variants of rewrite, the only nonstandard used by the translator is: rewrite <-
term, which employs the equality term1 = term2 from right to left. In certain cases it is used to rewrite
a goal by applying an induction hypothesis saved by Coq in the 'left to right' format.

The rewrite tactic is one of the mostly used in the proofs generated by the translator, that employs
axioms, already proved lemmas and induction hypotheses.

3.2.6 The Apply Tactic

The apply tactic applies to any goal. It tries to match the current goal against the conclusion of the
type of term. If it succeeds, then the tactic returns as many subgoals as the number of non-dependent
premises of the type of the term. The apply tactic relies on �rst-order pattern-matching with dependent
types.

If a second-order pattern-matching problem is involved, in order to use the apply tactic, the problem
has to be transformed into a �rst-order one using the pattern tactic.

3.2.7 The Trivial Tactic

The trivial tactic applies to any goal. It tries to check if the goal is in the current assumptions and if
not, it tries to match the list of tactics with the head of the goal, and apply these tactics.

It is typically used to solve trivial equalities, like X = X6.

3.2.8 The Tauto Tactic

This tactic implements a decision procedure for propositional calculus based on the calculi LJT∗ of Roy
Dyckho� [15]. tauto unfolds negations and logical equivalences but does not unfold any other de�nitions.

6trivial is a special variant of Prolog-like resolution provided by auto tactic, but applied with maximal depth 0.
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3.2.9 The Symmetry Tactic

The symmetry tactic applies to any equality.
It replaces a goal of the form:

P = Q (3.2)
with:

Q = P (3.3)
3.2.10 The Discrimination Tactic

The discriminate tactic proves any goal from an absurd hypothesis stating that two structurally di�erent
terms of an inductive set are equal. For example, from the hypothesis (S (S O))=(S O) we can derive by
absurdity any proposition. Assume that the argument is a hypothesis of type term1 = term2 in the local
context, term1 and term2 being elements of an inductive set. To build the proof, the tactic traverses the
normal forms of term1 and term2 looking for a couple of subterms u and w, placed at the same positions
and whose head symbols are two di�erent constructors. If such a couple of subterms is found, then the
proof of the current goal succeeds, otherwise the tactic fails.
3.2.11 The Omega Tactic

There are many additional tactics, that have been written for Coq, one of which is omega, written by
Pierre Crégut [24].

omega solves a goal in Presburger arithmetic, i.e. universally quanti�ed formulas made of equations
and inequations. Equations may be speci�ed either on the built-in types nat of natural numbers or on
the type Z of binary-encoded integer numbers. Formulas on nat are automatically injected into Z. The
procedure may use any hypothesis of the current proof session to solve the goal.

omega handles multiplication, but only the goals having at least one of the two factors of the products
as a constant are solvable. This restriction is meant in Presburger arithmetic.

Since most of Spike reasoning modules �nd inconsistencies on naturals, therefore the omega tactic
will be used to solve in Coq the goals that were proved to be inconsistent by these reasoning modules.
3.2.12 The Try Tactical

The try tactical applies the tactic given as the argument and if it doesn't succeed it doesn't produce
any error. Since the Spike version of the translated tactic does not implement this, it may be sometimes
applied a number of times consecutively. To omit this error, all the translations of such rules will use the
try tactical before the tactic.

The try tactical will be most often used, when translating a rewrite or normalization of Spike terms
using a number of rewrites applied to the same goal. Storing the last rewrite is not su�cient, since
the order of using rewrite rules is sometimes not subsequent. It may be so, in case where rule A is
used earlier by Spike than rule B, but B may allow rewriting using rule A. In such case the generated
rewrites may appear in order: Ei `A Ei+1 `B Ei+2 `A Ei+3 and the last translated rewrite may be
already performed by the �rst one.



Chapter 4

The Proposed Solution

4.1 Translating the Inference System
Any given instance of the abstract inference system includes rules as instances of the abstract inference
rules. As the translation problem in general is di�cult (see the next subsection for an example), we have
restricted to consider only the following particular but rather common case.

The translation of rules being instances of Simplify corresponding to deductive reasoning are rela-
tively simple. Therefore, since it does not use any inductive hypothesis, its local logical meaning in the
proof is the same as in an explicit induction proof. Assuming that the language of the prover to which the
proof is translated is powerful enough (as it is the case of Spike and Coq), it can be directly rewritten
to the language of the other prover. Instances of Simplify using induction hypotheses are treated only
when the induction hypotheses can be represented by an explicit induction schema.

The rules being instances of AddPermise rule are expected to introduce induction hypotheses which
will later be used by the rules of both types. The �rst step of recreating a proof in explicit induction is
the �nding of hypotheses that have been �nally used in the proof. The locations in the proof where those
hypotheses were introduced and �nally used will be examined.

If a hypothesis is introduced in implicit induction for just one of the conjectures, it can be used
afterwards by the subproofs of all of them. First we will show how to translate a proof, where all the
hypotheses introduced by instances of AddPermise are used in the proof only by the processed conjecture.

If a hypothesis is introduced using a Spike-like generate rule it can be directly translated into an
explicit induction schema on the term which was subject to case analysis. If the rule does not concern
case analysis, then the rewrite rule using this rule is unidirectional, so the proof will never return to the
same clause, unless a case analysis will be made. In the latter case we can convert this case analysis to
an explicit induction step and, therefore, obtain the induction hypothesis in the place where it will be
used.
4.1.1 Non-translatable Proofs

Sometimes, the translation is impossible if the hypothesis is used in the proofs of other conjectures. A
very simple example of a proof that is not translatable (the rewrites after generate steps and a number
of steps between the two generates have been omitted to increase its readability):

({C[x, y]}, ∅) `
({C[0, y], C[S(x), y]}, {C[x, y]} ` . . . `

({C[0, y], C[S(x), 0], C[S(x), S(y)]} {C[x, y], C[S(x), y]}

The closest translation of this proof to explicit induction might be (here the base steps, rewrites and
a number of steps of proof have been omitted):

16
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C[x, y] `
C[x, y]⇒ C[S(x), y] ` . . . `

(C[x, y]⇒ C[S(x), y])⇒ (C[x, S(y)]⇒ C[S(x), S(y)])

The proof cannot be continued, since when proving C[S(x), S(y)] we cannot use the hypothesis C[x, y],
whereas in the implicit version we can.

If there would be no inference steps between the two generates, the proof would be simply convertible
to a translatable one. Such proofs are normally a single generate on many variables, and are translatable
like above (the exact translation is described in Subsection 4.3.3) since we can use one induction step,
and therefore the hypothesis is applied to the conjecture for which it has been de�ned.

4.2 Implementation
The solution has been implemented as a new module in Spike. This way the parser built into the prover is
used to parse the speci�cation. Also the Spike internal representations of clauses are used for translating
and outputting them to Coq speci�cations.

When a proof in Spike is completed in the internal representation there is no history recorded.
Therefore, the implementation has to record all the operations that succeeded.

Some operations in Spike represent a number of simple operations. For example, a normalize
operation consists of many rewrite operations applied to a conjecture and one generate consists of an
induction and rewrite operations.

A new option -coq has been added to the Spike prover that, if activated, stores all the proof steps
and after the proof has been completed, outputs the complete Coq speci�cation and proof script to a
�le.

4.2.1 De�ning Types

All the inductive types are de�ned using the Variable instruction. The constructors of all the types
containing constructors are collected together and are output together in the Coq speci�cation as one
Inductive.

The only exception is the boolean type, which in Spike is de�ned as having two constructors true
and false, whereas in the corresponding Coq speci�cation it has to be de�ned twice:
• Once as a normal inductive type sp_bool which is a Set containing the two appropriate construc-
tors.
• Once as a Prop to be further able to use Coq rules which operate on clause negation, like the
Classical reasoning module.

4.2.2 De�ning Lemmas and Conjectures

All the lemmas listed in a Spike speci�cation, as well as the goal of all the conjectures to prove, are
rewritten to Coq by taking into consideration the type of the expression upon which the clause is de�ned:
• If a clause is de�ned on boolean clauses and includes equations of the type P (x) = true it has to
be rewritten to only include the proposition P (x).

• If a clause is de�ned on boolean clauses and includes equations of the type P (x) = false it has to
be rewritten to only include the proposition ¬P (x).

• If a clause is de�ned on clauses of other types, the equations are preserved.
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4.3 The Implemented Rules
4.3.1 Conditional Rewrite

After performing a conditional rewrite operation, the current clause is normalized. The Spike normalizing
module tries to match available rewrite rules both from the axioms, lemmas, and the content associated
to each inference rule. For every successful rewrite operation the translator remembers the used rules
which are output in the Coq proof script.

The rewrite rules using axioms and lemmas are rewritten using the Coq rewrite, while the rules, with
which the rewrite rules used as induction hypotheses are used, will be described further.

4.3.2 generate on One Variable

The generate rule, in its most simple variant, instantiates only one variable of the current clause.
In the generatedCoq proof this is obtained using induction on the variable, upon which the induction

is based in case of it being an inductive type.
The Coq induction tactic requires that the variable, upon which we want to call the induction, has to

be free of quanti�ers. That is why before calling the induction all the variables existing in the proposition
are freed using the intro tactic.

Since the Spike generate has to assure that at the end all the obtained clauses are lesser than the
original w.r.t. the order on clauses, the generate rule includes rewriting of all the clauses and succeeds
only if rewriting of all the clauses is possible.

Therefore, the translator should add new rewrite operations, as described in 4.3.1.

4.3.3 generate on More Variables

If a generate rule is called on two variables, and all the constructors of both those variables are used, the
translation module utilizes the double induction Coq tactic. To obtain the same induction hypotheses
as Spike stores in the set of premises, the order of the variables passed to the tactic is opposite from
the order de�ned in the Spike speci�cation. The intro tactic has to be called both before and after the
double induction tactic for speci�ed variables. At the end, each the newly obtained clauses has to be
rewritten, as in the generate rule.

Translating a generate on more than two variables to Coq is possible in an analogical way, using
the general Functional Scheme command, but since it is very rare, it has not been implemented in the
translator.

4.3.4 Total Case Rewriting

A total case rewriting analyzes a de�ned function symbol in a conjecture. It looks for the axioms
de�ning this symbol, that are able to perform rewrite operations with conditional rules.

The translation in Coq of this rule has to include the veri�cation of the disjunction of the conditions
of these rules, which is not veri�ed in Spike7, but provided in the speci�cation. The basic step of such
translation includes a cut using a logical sum of all the possible cases.

In Coq this tactic creates as many goals as all the possible cases and a goal, which states that a
possible case has to be true.

To delete the last added goal, an application of the Coq NNPP theorem from Classical module has to
be used, which proves a clause using double negation. Next, to prove that a negation of all the possible
cases is impossible, it is su�cient to apply tauto.

For all the obtained clauses we need to move the single logical statement from the goal part to
assumptions, to further divide it. To do it, �rst intros All is used, just to do elim All. Then the
goal clause is replaced with all the goal clauses and the possible cases are moved back from hypotheses
to goals.

7thanks to the strongly su�cient completeness property of Spike speci�cations.
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Now, since all the rewrites required some constraints, we move those constraints into assumptions
using intros Constraint for every of the new clauses. Spike now performed a rewrite on each new
conjecture, and in the Coq proof we now translate them to appropriate rewrites as previously. After
a rewriting is completed on a conjecture, a new goal is produced, which requires the veri�cation of the
correctness of the constraint. To delete all the new additional goals, an apply Constraint tactic is used.

4.3.5 generate with Total Case Rewriting

Often the generate rule uses a case analysis rule (see the de�nition of generate) where for a given
variable of some type, not only all the constructors of this type are considered, but also some other
constraints given on the variable are also considered in order to perform a rewrite.

In such a case, a more complicated proof, including the veri�cation that all the given constructions
�ll out all the possible cases, has to be made in Coq. In order to achieve this, after the usual intros
and induction, the following two di�erent approaches are considered:
• For the cases generated by constructors of inductive types: a simple rewrite or apply is used (like
for the simple inductive type based induction)
• For the cases generated by adding constraints to inductive types: every clause has to be processed
like in Subsection 4.3.4 to generate all the possible cases. The rewrite rule applied by Spike has to
be applied as the rewrite rule used in the translation of total case rewriting.

4.3.6 Negative Decomposition

A negative decomposition is a rule which transforms a conjecture having an disequation of the same
free constructor symbol on both sides in the assumptions, and disassembles those free constructor to
disequations of its subterms.

A translation of negative decomposition is done, by introducing the rule as a Coq hypothesis, by
using intro, then calling discriminate on the hypothesis to disassemble and move it back to the goal
part.

4.3.7 Negative Clash

negative clash rule eliminates the clauses having distinct free constructor symbols heading the both
sides of an equation from the left-hand side of the implication.

A translation of negative clash is done by separating a conjecture of above type from the ones to
be proved with applying the discriminate tactic to the equation.

4.3.8 Auto Simpli�cation

This rule is translated by �rstly introducing the equation between a variable and a term in the hypotheses
part by using intro rule, then by rewriting the clause using this rule that replaces the variable by the
term, and �nally by removing the equation from the hypotheses set.

4.3.9 Positive Decomposition

The positive decomposition rule removes the identical constructors heading the both sides of an
equation.

The translator ignores positive decomposition rules; therefore, the rewrite rules will operate on
more complicated equalities and the trivial tactic will remove a more complicated tautology.

4.3.10 Tautology Delete

Every tautology delete rule is rewritten as a trivial tactic.
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4.3.11 Delete Subsumption

The delete subsumption rule is treated in two possible di�erent ways:
• The clause which was removed form the proof is subsumed by one of the lemmas. In this case it
is replaced by an application of this lemma (rewrite followed by trivial or apply, as described
further).
• The clause is subsumed by a clause from the content of the rule. In the latter case it is translated
to an application of the hypothesis.

An application of a given rewrite rule depends on the state of this rewrite rule:
• If this rule is an equivalence then it can be rewritten using the Coq rewrite tactic. Afterwards
we get a clause containing a tautology, so we eliminate it with trivial.
• If the rule is a logical rule, then apply can be used to remove it from the set of goals.

4.4 Reasoning Modules
The reasoning modules implemented in Spike that have been tested as part of this research are the ones
reasoning on naturals.

Theomega tactic, which solves automatically all the goals in Presburger arithmetic, has been used to
solve all the goals solved by the arithmetic reasoning module of Spike.

4.5 Implementation Issues
4.5.1 Clause Numbering

In Coq, the goals are numbered with positive integers that are unique. In Spike, the clauses are
numbered w.r.t. the order they are generated, therefore, a part of the proof translation tool must be a
module renumbering clauses.

Each time a new clause is produced by Spike, the clause renumbering routine is called in the translator.

4.6 Other Inference Systems
The following 'Descente In�nie' inference system has been proposed in [30]. It has the particularity that
the premises are not added by a generate-like rule (here denoted by expand) but by the rewrite rules:
• Delete identity

(E ∪ {t = t},H) `P (E,H)

• Rewrite
(E ∪ {e},H) `P (E ∪ {φ},H ∪ {e})
where φ is a conjecture obtained from e by rewriting.
• Expand

(E ∪ {C},H) `P (E ∪ Φ,H)
where Φ={Cσ | σ is a cover substitution of C}.

Contrary to Spike, the Expand is an instance of Simplify, and Rewrite is an instance of AddPremise.
Starting from the speci�cation that de�nes the addition over the naturals:
• 0 + x→ x

• S(x) + y → S(x + y)
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a possible proof of x + 0 = x could be:

({x + 0 = x}, ∅) `P
Ex

({0 + 0 = 0, S(x′) + 0 = S(x′)}, ∅) `P
R (twice)

({0 = 0, S(x′ + 0) = S(x′)}, {0 + 0 = 0, S(x′) + 0 = S(x′)}) `P
D

({S(x′ + 0) = S(x′)}, {0 + 0 = 0, S(x′) + 0 = S(x′)}) `P
Ex

({S(0 + 0) = S(0), S(S(x′′) + 0) = S(S(x′′))}, {0 + 0 = 0, S(x′) + 0 = S(x′)}) `P
R

({S(0) = S(0), S(S(x′′) + 0) = S(S(x′′))}, {. . . , S(x′) + 0 = S(x′)}) `P
R

({S(0) = S(0), S(S(x′′)) = S(S(x′′))}, {. . .}) `P
D (twice)

(∅, {. . .})

To translate it into a Coq proof script, it is su�cient to check which induction hypotheses from the
premises have been used. In this proof the only clause that has been used is S(x′)+0 = S(x′). Therefore,
the expand of this rule has to be translated as induction, whereas the expand of x + 0 = x can be
translated to a destruct.

Since at the time of writing this report, this inference system was not yet implemented, the proof has
been done manually. A translated version of it has been included in the Appendix.

4.7 Related Works
Judicaël Courant describes in [13] a system that allows to verify an implicit induction proof by Coq,
by specifying the order on clauses and translating the generated proof using the de�ned induction. The
proof translation presented there does not use explicit induction; instead, it de�nes the order on clauses
in Coq and gives a Coq speci�cation with the exact proof in implicit induction as generated by Spike.
The approach di�ers from the one presented here also by treating only the inference system of Spike (in
a version as it was by Bouhoula [6]) and not the abstract inference system A.

In his Ph.D. thesis and the following publications [22, 21], Nguyen Quang Huy describes a framework
for integrating the Coq rewriting with a rewriting-based programming environement ELAN. He presents
a translation mechanism from an ELAN proof to a veri�ed proof in Coq.
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Conclusions and Future Works

A translation mechanism from implicit to explicit induction proofs has been described. The implicit
induction prover Spike has integrated a working module for translating its speci�cations and proofs into
Coq speci�cations and proof scripts, respectively.

We expect that the translator work for many speci�cations; even if it is limited to speci�cations
where the hypotheses are used only in the proofs of the conjectures for which they have been introduced,
we believe that this is not a serious restriction since other types of proofs are rare. For example, the
translator is not yet able to handle proofs of theorems concerning mutually recursive functions. If the
inductions concerning two such functions can be joined, than it is possible to use only one induction and
afterwards separate the proofs back again.

The translator could be extended by implementing other Spike inference rules, like congruence
closure. The translation of some rules can be improved. For example, the translation of generate
can be extended to work for more than two variables, using more general schemes than induction and
double induction.

As mentioned before, there exist proofs done by Spike which may manipulate hundreds of thousands
of clauses (like those concerning the JavaCard Platform veri�cation [4]). In the future, we expect to
translate such important proofs into Coq scripts. The current implementation of the translator is limited
by: �rstly, the lack of ability to work with parametrized speci�cations, and secondly, the fact that the
translator has to memorize all the processed clauses and the places where a used induction hypothesis
has been generated. Therefore, the used memory space becomes important; after about 30 minutes of
processing the Gilbreath Card Trick proof [5] with the current translator, the prover used about 500MB
of memory and the garbage collector started to use the most of the computing time. There is still place
for improvements: one solution is to implement the translator as a two-pass process; �rstly storing the
hypotheses and afterwards memorizing the place where they have been created.

The �nal goal of the theoretical research would be to show that any proof generated by any instance
of the AddPermise and Simplify abstract inference rules can be translated into an explicit induction
proof.
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Appendix A

Some Translation Examples

A.1 add.spike
The Spike speci�cation:

sorts : nat ;
constructors :
0 : -> nat;
S_ : nat -> nat;

defined functions:
_+_ : nat nat -> nat;

axioms:
0 + x = x;
S(x) + y = S(x+y);

is translated to:
Inductive sp_nat : Set :=
| sp_0 : sp_nat
| sp_S : sp_nat -> sp_nat

.
Variable sp_plus : sp_nat -> sp_nat -> sp_nat.
Axiom sp_axiom_2 : forall u1 : sp_nat, (sp_plus sp_0 u1) = u1.
Axiom sp_axiom_3 : forall u2 u1 : sp_nat, (sp_plus (sp_S u1) u2) = (sp_S (sp_plus u1 u2)).

The proofs of all the conjectures included in Spike speci�cation are automatically translated8 to the
following Coq speci�cation:

Lemma sp_lemma_4 : forall u1 : sp_nat, (sp_plus u1 sp_0) = u1.
intros.
induction u1.
1:try rewrite sp_axiom_2.
2:try rewrite sp_axiom_3.
1:trivial.
1:rewrite IHu1.
1:trivial.

Qed.
Lemma sp_lemma_5 : forall u2 u1 : sp_nat, (sp_plus u2 (sp_S u1)) = (sp_S (sp_plus u2 u1)).
intros.
induction u2.

8The above is a cut and paste from the generated proof, only line breaks for the too long lines have been added manually.
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1:try rewrite sp_axiom_2.
2:try rewrite sp_axiom_3.
1:try rewrite sp_axiom_2.
1:trivial.
1:rewrite IHu2.
1:try rewrite sp_axiom_3.
1:trivial.

Qed.
Lemma sp_lemma_6 : forall u2 u1 : sp_nat, (sp_plus u1 u2) = (sp_plus u2 u1).
double induction u2 u1.
1:intros.2:intros.3:intros.4:intros.
1:try rewrite sp_axiom_2.
2:try rewrite sp_axiom_2.
3:try rewrite sp_axiom_3.
4:try rewrite sp_axiom_3.
1:try rewrite sp_axiom_2.
1:trivial.
1:try rewrite sp_axiom_3.
1:try rewrite sp_lemma_4.
1:trivial.
1:try rewrite sp_lemma_4.
1:try rewrite sp_axiom_2.
1:trivial.
1:try rewrite sp_lemma_5.
1:try rewrite sp_axiom_3.
1:try rewrite sp_lemma_5.
rewrite H0.
trivial.

Qed.
Lemma sp_lemma_7 : forall u3 u2 u1 : sp_nat,

(sp_plus (sp_plus u1 u2) u3) = (sp_plus (sp_plus u3 u2) u1).
intros.
induction u1.
1:try rewrite sp_axiom_2.
2:try rewrite sp_axiom_3.
1:try rewrite sp_lemma_4.
2:try rewrite sp_axiom_3.
2:try rewrite sp_lemma_5.
rewrite sp_lemma_6.
trivial.
rewrite IHu1.
trivial.

Qed.
The whole above speci�cation is veri�ed by Coq.

A.2 Translating the Proof from Section 4.6
Inductive mnat : Set :=
| Ms : mnat -> mnat
| Mo : mnat

.
Variable mplus : mnat -> mnat -> mnat.
Axiom M1 : forall x : mnat, mplus Mo x = x.
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Axiom M2 : forall x y : mnat, mplus (Ms x) y = Ms (mplus x y).
Lemma L1 : forall x : mnat, mplus x Mo = x.

destruct x.
induction x.
rewrite M2.
rewrite IHx.
trivial.
rewrite M2.
rewrite M1.
trivial.
rewrite M1.
trivial.

Qed.


