
Cooperative repositories for formal proofs?

A wiki-based solution

Pierre Corbineau and Cezary Kaliszyk

{corbinea,cek}@cs.ru.nl
Institute for Computing and Information Science

Radboud University Nijmegen, Postbus 9010
6500GL Nijmegen, The Netherlands

Abstract. We present a new framework for the online development of
formalized mathematics. This framework allows wiki-style collaboration
while providing users with a rendered and browsable version of their
work. We describe a prototype based on Coq, its web interface as imple-
mented by the second author, and a modified version of the MediaWiki
code-base. We discuss open issues such as dependencies and repository
consistency. We explain limitations of the current prototype and we give
a perspective towards a more robust solution.

1 Introduction

1.1 Motivations

Proof assistants are software tools used for expressing properties and check-
ing proofs of those properties, be it about mathematical concepts or models of
computer systems or software. Nowadays, most proof assistants follow the inter-
active paradigm: the user enters the statement of a theorem; the system checks
the well-formedness of the statement. The user then enters a proof commands
and the systems responds by validating the command and giving the remaining
facts to be proven. This process is then iterated until the proof is complete.
Thus, the resulting sequence of commands, called proof script, has barely any
meaning without the succession of proof states it yields. However, most formal
developments only consist of the bare proof script, maybe with some comments.

Two solutions are available for people who want to understand the proofs
better: HTML rendering and local execution. With web rendering, the proof
scripts are processed by a documentation tool that turns the files into HTML
documents and provides some facilities such as hyperlinks from symbols to their
definition, indexes of symbols and searching. Some even provide pretty-printing
of comments, rendering of mathematical formulae.

But to understand the proof script itself, one has to first locate and download
the files containing the proofs, then install the proof assistant, and finally run
? This work was funded by NWO Bricks/Focus Project 642.000.501 (Advancing the

Real use of Proof Assistants) and partially funded by NWO FEAR Project



the proof assistant on the file to inspect the sequence of proof states. When
doing this, one loses the ability to browse the code using hyperlinks, and it can
sometimes be complicated to get the proof assistant to run on one’s computer
in the first place.

Recent work by Kaliszyk[1] shows that the Asynchronous DOM Modification
web technology (sometimes referred to as AJAX or Asynchronous Javascript
and XML [2]) can be used to build a web interface for interactive proof assis-
tants: ProofWeb. This means that users can use their favorite web browser
to run proof assistants sessions, so they can perform themselves the checking of
the formal proof. However this work still lacks essential features: it is not de-
signed to support multi-file developments properly, no proper HTML rendering
is implemented and there are no tools to store and retrieve multiple versions of
files.

A popular web architecture supporting all those features is called wiki. The
wiki concept actually covers many implementations, but all are aimed toward
a cooperative authoring of knowledge repositories. The key feature of a wiki
system is the ability to follow an ‘edit’ link and be able to immediately modify
and publish a new version of the page being viewed.

The popularity of wiki based solutions made us think of integrating the web
interface for proof assistants within a wiki repository: the web interface would
be used as the viewing and editing window for files containing proof scripts. The
main difference between our work and common wiki usage is that our framework
handles formal content that requires a consistent environment (i.e. file dependen-
cies) to run interactive sessions. Thus (semi-)automated maintaining of cross-file
consistency is crucial.

1.2 Related Work

Most proof assistants already have a more or less user-friendly way of rendering
formalisations as a set of interlinked web pages. Some provide a standalone tool
that allows users to render their own files: this is the case for Isabelle[3] and
Coq[4]. Isabelle also provides a way to navigate the dependency graph of multi-
file developments.

The Mizar[5] system has a proof repository called the MML (Mizar Math-
ematical Library) [6]. This repository is modified by human editors: duplicates
are eliminated, results are moved to appropriate sections, new sections are cre-
ated. This gives the MML a monolithic and consistent look[7]: it is handled as
an encyclopedia, where new content is added with many authors but one central
editing comitee. However, the rendering tool is not available for the common
user to work with his local development. The MML (and its associated journal
JML) is the de facto standard way to publish a Mizar proof.

The Logiweb System[8] provides a way to submit and retrieve articles from
a network of distributed repositories. It allows reliable cross-references to fixed
versions of already published articles. However it still relies on a locally installed
checker to verify articles before submitting them.



The HELM[9] (Hypertextual Electronic Library of Mathematics) and the
Whelp[10] search engine give users a good rendering of distributed formal li-
braries along with a powerful search engine. The Matita[11] proof assistant offers
native support for queries and browsing of these libraries.

The Logosphere[12] project aims at presenting developments from different
proof assistants (Nuprl, PVS, . . . ) using a unified framework.

The Mizar and Coq proof assistants already have wiki web sites for their doc-
umentation. The Mizar wiki[13] is an official, general purpose web site whereas
the Coq wiki, called Cocorico[14], is a community website more dedicated to the
sharing of specific knowledge about Coq usage, hints and tips, dirty tricks . . .

1.3 The future of proof interfaces

The aim of this new web-based cooperative proof environment is to provide — as
an IT marketing representatives would say — a complete solution for the devel-
opment of formalized mathematics or software verification. It brings together the
availability of a web-interface with the accessibility of a web-rendered archive.

The unique feature of this environment is that, beyond the separation be-
tween the raw editable and rendered read-only versions of the files (a character-
istic of wiki environments), both of those versions can be processed by the proof
assistant at the request of the user, giving him more information as to how the
proof script works. Where standard online formal libraries tend to treat proof
scripts as minor, here their contents can give the user insights on how the proof
was made: the proof script is not write-only anymore.

Therefore, this environment provides a useful tool for specialists to commu-
nicate about proofs with a broader audience: non-specialists, general audience.
It provides a simple way for article writers to give referees easy access to their
formal development.

The repository is also a convenient way for proof authors to work from ev-
erywhere simply using a network access, and to learn from others’ proof idiosyn-
crasies.

The repository can also be used for education about proof assistants and
formal logics. A permissions system can allow students to cooperate on multi-
files projects and their supervisor to provide guidance.

1.4 Document contents

In the rest of the paper we present the technologies relevant for creating a wiki
for proof assistants (Section 2), and the components that are used. Then we
present the global architecture of our system and discuss our library consistency
policy (Section 3). We describe our current prototype (Section 4) and discuss
performance and security issues. Finally, we give our road map towards a more
stable system and present our conclusion (Section 5).



2 Web Technologies

2.1 Asynchronous DOM Modification

With the growing usage of the Internet, more technologies are available for de-
signers of web services. Recently asynchronous DOM modification technology
has allowed the creation of interfaces that are completely available in a web
browser, but have similar functionality and responsiveness to local ones.

The asynchronous DOM modification technology (sometimes referred to as
AJAX [2] or Web Application) is a combination of three commonly available
web technologies. JavaScript is a scripting programming language interpreted
by the web browsers. Document Object Model (DOM ) is a way of referring to
sub elements of a web page, allowing to modify it on the fly to create dynamic
elements. XmlHttp is an API available to client side scripts, that allows sending
requests to the web server without reloading the page.

The asynchronous DOM modification technique consists in creating web
pages that capture events and processes without reloading the page. Events that
can be processed locally modify the web page in place. For actions that require
interaction with the server, the data is sent using an asynchronous XmlHttp
transaction and the page is modified by the script when receiving the answer,
therefore making the interface as responsive as an application run locally. For a
more detailed description see [1].

One application of this technology is an architecture for the creation of web
interfaces for proof assistants, that are completely available in a web browser,
but resemble and behave as local ones [1]. ProofWeb, an implementation of
this architecture, keeps a prover session for every user on the server (Fig. 1). It
allows similar interaction as ProofGeneral [15] does, but using a web browser.

2.2 Wikis

Wikis are dynamic web sites that behave as static ones: they contain a number
of fixed pages that can link to each other. The unique feature of wikis is that
each of those pages includes an ‘edit’ link that displays the contents of the
page in an editable textbox (or in a more fancy WYSIWYG box in advanced
implementations). This page allows the user to actually modify the contents of
the box and publish the new version on the web site, simply using a web browser.

This is what makes wikis dynamic: this online edition feature requires files
to be served in a more fancy way than just static HTML files. Usually they are
stored in a database system rather than in a filesystem. Unfortunately, current
proof assistants do not include the functionality to access such databases.

The wiki technology is now very popular, especially for documentation of soft-
ware tools: it allows to start with a very small, general (and somewhat imprecise)
documentation which is then improved by visitors when finding inconsistencies,
errors and missing items. The most famous wiki is obviously the Wikipedia web
site, which aims at being an online encyclopedia where information is added
by visitors. In each of the 14 most popular languages on Wikipedia, more than



Fig. 1. ProofWeb architecture.

100,000 articles are available. This shows that the wiki architecture can support
large amounts of data and heavy activity.

The file format used by wikis is usually a simplified markup and formatting
language, tailored to make references to other pages simple to add. Wikis usually
have a permissions system to forbid reading or writing for particular users. Most
of them also allow modification by unregistered users. In that case the IP address
of the client is used as an identifier.

Wikis also offer the possibility to explore the history of any article: what was
modified, when. They allow renaming of pages, and provide indexes of available
pages. They usually include tools that allow searching the page database.

Those features match our requirements for a content management system to
be usable with the ProofWeb framework.

3 Architecture

3.1 Main Components

The system we propose uses proof assistants with some of their companion util-
ities and some web serving utilities. The first element we need is the interactive
toplevel of a prover. It is required on the server side to be able to verify the



input of the user in an incremental manner and to go to particular positions in
them.

For efficiency reasons some provers allow compilation of their input files. Such
files can then be quickly reused, without verifying all proofs contained in them
again. For such provers we want to use the compiler on the server to generate a
compiled version of proofs that are saved.

Many provers include documentation generators, that process raw prover in-
put files and generate rendered output. The output of a documentation generator
is usually HTML or PDF format. Links between files are created, different con-
ceptual elements of the prover input are colored in different color, and sometimes
mathematical formulas are rendered in a graphical way.

We need to keep a history of versions for every prover file. Usually, collabo-
rative developments are done using version control systems. The source files are
kept in the repository and each user has to build compiled or rendered versions
him/herself.

Not only would we like the source prover files to be stored for all versions, but
also the rendered and the compiled files (for provers that include this concept).
This way users can see a rendered version of older versions of files. Referring to
older versions of compiled files will be discussed in section 3.3.

Wikis already include some kind of versioning of the files they contain. Gen-
erally file versions are numbered in sequence. The user that made every change
is stored with the file, and viewing changes is possible. The history mechanism
is more limited than the ones provided by file versioning systems, but the sim-
plicity can also be an advantage: in particular wikis do not include branches,
tags, etc and the casual user does may not have a good understanding of it.

A wiki infrastructure will be used for tracking changes done by users and
allowing them to see the history of files and changes. It needs to store files in a
way that is accessible by the prover toplevel. The wiki should allow generating
indexes and searching for terms. Most wikis generate text indexes and allow
searching for text only, whereas prover scripts are highly contextual.

Finally we need a web part that allows interactive edition of a proof script in
a way that resembles local work, to allows efficient work. Additionally we would
like to be able to step interactively over the proof regardless of whether we are in
view or edit mode. The ProofWeb framework can be modified to allow those
two modes.

3.2 Global Design

Our architecture is composed of a web server running a modified version of a
wiki that redirects some requests to a ProofWeb server (Fig. 2).

Editors of most wikis are standard HTML textboxes, and the flat text in-
cludes special markup for marking links and elements that should be formatted
in a special way in the read-only version. Recent wikis allow WYSIWYG editing
in an editable IFrame. The HTML formatting introduced by user’s browsers is
combined with wiki links to create the read-only version. In our architecture we
embed the ProofWeb editor as the editor of the wiki. This way, the user can



Fig. 2. Our architecture.

edit the script in an interactive way seeing the output of the prover. Addition-
ally we include a readonly version of the ProofWeb interface for the read-only
version to allow examining the prover state at any point in the buffer.

The next necessary change is the way the wiki stores users files. For every
saved file the wiki tries to compile it and to make a rendered version of it. The
rendered version should be linked with the original, and is therefore stored in
the same way the wiki stores the original in its database. Whenever the user
requests the file for viewing or editing one of those two versions is used. The
compiled version is stored as a standard file in the filesystem in order to make
it available to the compiler and to the toplevel used in prover sessions on files
that refer to this compiled file.

This change in the wiki behavior should not prevent users from storing and
editing standard wiki pages in the repository. Those would include textual de-
scription of the formal content, discussions, tutorials with hyper-links to formal
content.

The documentation generators of provers have to be able to generate a wiki
compatible output. The format that a wiki displays is usually very close to
HTML which many prover documentation generators already support. The im-
portant difference with respect to HTML is that since we will process the ren-
dered version of the script we need to be able to distinguish active parts of the
file from comments.



3.3 Consistency Issues

In usual wikis links to nonexistent pages lead to a new editable page. This is per-
fectly acceptable for the usual informal content but not for a formal development
referring to another: think of it as a program missing libraries.

Moreover, we need to make sure that dependencies are always consistent.
Files in the database can depend on each other, sometimes in an indirect (tran-
sitive) way. First of all, we want to require all saved files to be valid (compilable);
they can still contain incomplete proofs terminated with the Coq Admitted key-
word or its equivalents for other provers. For a valid saved file we want to ensure
that the current version remains valid after changes to the files it relies on. Some
provers already include compatibility verification mechanisms. Coq stores the
checksums of files to ensure binary compatibility between compiled proofs. To
solve the problem, we have to consider the static and the dynamic approach.

The dynamic approach is the convention that a file always refers to the latest
versions of other files. It means that saving any change to a file will induce a
costly recompilation of all files it depends on. Another problem is that changing
definitions deep inside a library will make many developments incompatible and
thus correct files will stop working. Saving only valid files does not solve this
problem since the objects they contain (their interface) might be modified too.
This approach also makes older versions of existing files immediately obsolete.

The opposite approach is static linking, where a saved file always refers to
the same version of other files. In other words, we never change a file, but rather
add a new version of that file, with a fresh name. This means that the user
will have to manually update the version number of files that are referred to if
newer versions of those become available. The main advantage of this approach
is that of integrity: provided you can safely assign new version numbers, you can
enable concurrent access. Moreover, changing a file will never break another file.
However, when changing a file deep in the library, one has to manually modify
all the files in the dependency chain between that file and the files in which the
changes should be reflected, which can sometimes be quite heavy.

3.4 Towards a hybrid approach

We believe that the static approach is a more adequate way to store older (his-
torical) versions of a given file, whereas up-to-date files should use the dynamic
approach towards dependency. This way, older versions of files still make sense by
statically referring to older versions of files they depend on. The latest versions
can remain up-to-date with their immediate dependencies by being dynamically
linked to them, i.e. recompiled when new versions of those files are saved. It
might happen that such a file might not be valid anymore because of changes
made to its dependencies: to keep validity we have to make it link statically to
the suitable previous version.

To help with this version compatibility issue, we propose a three-colour
scheme:



– A file is labelled as red (i.e outdated) if it depends statically on an older-
than-latest version of another file.

– A file is labelled as yellow (i.e tainted) if it depends only on the latest versions
of other files, and one or more of those files have a yellow or red status. Yellow
status thus tracks the files which are indirectly lagging behind.

– A file is labelled as green (i.e. up-to-date) if it depends only on the latest
versions of other files, and all those files are also labelled as up-to-date (green
status).

The separation between the yellow and red files comes from the fact that red
files have to be manually updated to become green again (i.e. by creating a new
version of them), whereas yellow files might be fixed by updating the red files
that taint them.

The switching to red status can be automated by rewriting Require state-
ments on-the-fly to make them refer statically to the last suitable version of the
file depended on. This means that fixing a red file can give red status to yellow
files that it was tainting, thus pushing the problem upwards in the dependency
tree.

If the user wants to export a file together with its dependencies from the
repository, a mechanism can be used to convert long file names (with version
number) to short ones. The case might arise where a file would refer, directly or
by transitivity, to an old version of itself. We can either forbid this or generate
fresh file names using standard suffixing techniques.

The procedure of updating the prover itself, although intended to be rare,
will be critical. Here a decision will have to be made whether to port all possible
versions or only the newest versions of each files and their dependencies. The
current system is clearly not yet designed to enable such updates without putting
it offline and porting files manually, but such a feature should definitely be
designed and implemented.

4 Prototype

4.1 Implementation

To experiment with our idea, we have created a prototype implementation based
on off-the-shelf components as much as possible. We chose Coq as our target
proof assistant. We used the MediaWiki code-base, the coqdoc documentation
generator for Coq and ProofWeb for Coq (Fig. 3). The coqdoc tool was mod-
ified to generate wiki format rendered pages.

When the user opens a page of our wiki, he/she is presented with a viewing
page where the usual contents area is replaced by three subframes. One frame
shows the rendered version of the current document, the second one shows the
current proof state and the third one displays the Coq error messages.

The user may press the ’up’ and ’down’ buttons to step over the proof and
examine both the proof state and Coq messages. A background coloring scheme
allows the user to keep track of the part of the script that was already processed.



The proof is rendered, that is identifiers are colored and linked to their defi-
nition, mathematical LATEX comments are rendered, links to internal wiki pages
lead to those wiki pages and links to Coq standard library objects lead to the
documentation on the Coq website (Fig. 4).

.v Coq source file

.vo Coq compiled proof

.dep File dependencies

.wiki Rendered proof

Fig. 3. Data flow diagram for our prototype wiki

The page also includes standard wiki elements, one of which is the ’edit’
button. When the user starts editing the page, a similar page is presented, but
with the raw proof script (no rendering) in a modifiable text box. The user may
modify the script and use the ’up’ and ’down’ buttons to step over the proof in
a similar way as in the view mode (Fig. 5). The processed part of the buffer is
frozen.

When satisfied with his work, the user can save the proof. The contents of
the buffer are processed in three ways:

– The raw script is saved in the database, to be used by following edits.
– The file is compiled and the corresponding .vo file is stored in the filesystem

for processing of files that would include it using Require statements.
– A rendered version is generated by coqdoc and saved in the database to be

displayed in view mode.

The user can see the history of any page as well as display the differences
between the sources of any versions, using built-in MediaWiki routines. The
textual search mechanism allows to query the source Coq files for any terms.



Fig. 4. Screenshot of the prototype showing the rendered version of a a Coq file. The
verified part of the edit buffer is colored. The state buffer shows the state of the prover,
there are no Coq warnings.

Fig. 5. Screenshot of the prototype showing the editing of the corresponding source
file. The verified part of the edit buffer is colored and frozen.



4.2 Security and Efficiency

The security and efficiency of the server are crucial since unavailability of the
proof wiki would make the users not only unable to work, but also unable to
access their own files. The security and efficiency of the architecture relies on
the security of ProofWeb, the underlying wiki, the compilation and rendering
processes and the communication mechanism.

The security and efficiency of ProofWeb are described in detail in [1], we
remind here the most important issues. The solution adopted is sandboxing : the
ProofWeb server process is run in a chrooted environment as a non privileged
user without network access. The permissions include only reading server files
and executing prover toplevels. Provers are run as different users with a modified
scheduling policy and have rights to read only the prover libraries and to write in
designated subdirectories. For provers that are based on programming language
toplevels issuing toplevel commands can be disabled. Finally to disallow storing
overly large amounts of data filesystem quota is used.

The sandboxing which is a part of the ProofWeb architecture makes it rea-
sonably safe. The efficiency is divided by the number of users, but it is straight-
forward to distribute prover sessions over a set of machines. We are additionally
running a Coq dependency generator, compiler and renderer. We run these pro-
cesses in the same sandbox as the prover toplevel, so we expect them to be
comparably secure. However for big formalizations performing the compilation
can be costly. Specially when many files depend on each other, modification of
one of them may require recompiling numerous proofs. We expect this to be the
main bottleneck of a wiki for proofs. Although this can also happen with local
proof interfaces, here multiple parallel sessions might overload the system for a
longer period.

The proof text verification that ProofWeb does is independent from page
serving performed by the web server and MediaWiki, so we can analyse the lat-
ter separately. Wikis are quite secure and efficient. At the time we are writing
this article, Wikipedia provides servers that have more than 3 million users and
1.6 million articles without significant efficiency issues. An issue that is often
a problem in wikis is vandalism. Disallowing edition by particular users or IP
addresses is a common practice, and is already supported in MediaWiki. Dis-
covering vandalism in our framework may sometimes be easier than in standard
wikis, since incorrect proofs no longer compile.

The data that is being transferred to and from the wiki is usually public, still
the communication mechanism can be secured by configuring the web server that
serves the wiki to use HTTPS.

If the wiki is secured properly we do not expect crackers to be an important
issue. However the efficiency seems to be quite fragile, in particular it seems that
our architecture is quite vulnerable to denial-of-service attacks.

4.3 How to integrate other provers

Although our prototype has been implemented for Coq, we do not rely on any
specific Coq feature. We think that extending the wiki to other provers is feasible



provided the following functionalities are available: wiki compatible documen-
tation renderer, dependency generator, ProofWeb support and optionally an
index generator.

The renderer does not need to be sophisticated, the only mandatory feature
of the renderer is distinction between active proof script from comments. Other
features like syntax highlighting and links are not necessary, although they allow
a more wiki-like interaction.

The wiki needs to know how to call the dependency generator of the prover,
to know what files need to be updated if a particular file is modified. If the
prover has a compiler, the wiki needs to know how to compile proofs. The wiki
also needs to be able to identify statements that refer to other files during the
interactive session.

An optional element is an index generating utility. It is needed for the wiki
to distinguish concepts from the new prover’s language. This allows not only
nice index pages in the wiki, but also searching for particular prover objects, like
only definitions or theorems.

Finally ProofWeb needs to be able to interact with the prover. It already
supports some provers. To extend it to a new one, the client part needs to know
how to find the ends of complete prover commands and the server part needs to
know how to interface with the prover process, in particular it needs to know
how to check if commands succeed and how to undo. The details of extending
ProofWeb to a new prover are described in [1].

5 Conclusion & Future Work

5.1 Future Work

The current architecture of the prototype is not satisfying since it relies on a
double storage of files: in the database, and on the disk. We are also limited by
the way MediaWiki handles its name space. If we adopt the static system where
files are never modified, it can be worthwhile to consider moving all the data to
the file system, and adopting an architecture where we can have a better control
of the name space.

The static naming will require to implement a versioning system for the
substitution of Require statements and the distributed generation of version
numbers, then the three colour scheme will be added. A mechanism for importing
and exporting parts of the library will also be necessary, to allow users to have
a local copy on which to work without Internet access.

A milestone in this development will be the ability to actually import the Coq
standard library and official users contributions to our repository. Only then will
we be able to get user feedback and report on the suitability of the repository
for Coq users.

The coqdoc tool is able to generate index files that contain all constants
occurring in the library. We could use such a a feature to generate such wiki
pages.



The basic textual search is very limited and proof assistants users often need
query types that are far beyond the scope of textual search: find theorems about
a given object or do pattern matching on theorem statements. This might be
achieved by adapting the Whelp search engine to search our database: it will
require a customisation of the indexing technology.

We could also experiment with more advanced rendering tools such as Helm
and consider using MathML instead of (currently) HTML with LATEXimages.

5.2 Conclusion

Although our prototype is still at a very early stage of development, our idea
of combining a wiki web site with the ProofWeb interface looks definitely
promising. Surprisingly, we could achieve the current result without many mod-
ifications neither to the wiki code-base, nor to ProofWeb. Most of the work
was devoted to database modification and rendering.

We believe that formalising mathematics in a wiki system will foster more co-
operation both within prover specific communities and between users of different
provers, especially if we can make several provers coexist in the same repository.
We also believe that such a project can act as a display of the work on formal
proofs for a wider audience.

References

1. Kaliszyk, C.: Web interfaces for proof assistants. In Autexier, S., Benzmüller, C.,
eds.: Proceedings of the FLoCs Workshop on User Interfaces for Theorem Provers
(UITP-06), Seattle. (2006) 53–64 To be published in ENTCS.

2. Paulson, L.D.: Building rich web applications with ajax. Computer 38(10) (2005)
14–17

3. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Volume 2283 of Lecture Notes in Computer Science. Springer
(2002)

4. Coq Development Team: The Coq Proof Assistant Reference Manual Version 8.0.
INRIA-Rocquencourt. (January 2005)
URL: http://coq.inria.fr/doc-eng.html.

5. Muzalewski, M.: An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels
(1993)

6. Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: MKM ’03: Proceed-
ings of the Second International Conference on Mathematical Knowledge Manage-
ment, London, UK, Springer-Verlag (2003) 119–132

7. Rudnicki, P., Trybulec, A.: On the integrity of a repository of formalized math-
ematics. In: MKM ’03: Proceedings of the Second International Conference on
Mathematical Knowledge Management, London, UK, Springer-Verlag (2003) 162–
174

8. Grue, K.: Logiweb - a system for web publication of mathematics. In Iglesias, A.,
Takayama, N., eds.: ICMS. Volume 4151 of Lecture Notes in Computer Science.,
Springer (2006) 343–353



9. Asperti, A., Padovani, L., Coen, C.S., Schena, I.: Helm and the semantic math-
web. In Boulton, R.J., Jackson, P.B., eds.: TPHOLs. Volume 2152 of Lecture Notes
in Computer Science., Springer (2001) 59–74
URL: http://helm.cs.unibo.it/smweb.ps.gz.

10. Asperti, A., Guidi, F., Coen, C.S., Tassi, E., Zacchiroli, S.: A content based math-
ematical search engine: Whelp. In Filliâtre, J.C., Paulin-Mohring, C., Werner, B.,
eds.: TYPES. Volume 3839 of Lecture Notes in Computer Science., Springer (2004)
17–32
URL: http://www.bononia.it/~zack/stuff/whelp.pdf.

11. A. Asperti, C. Sacerdoti Coen, E.T., Zacchiroli, S.: User interaction with the
Matita proof assistant. Journal of Automated Reasoning (2007) To appear.

12. Schurmann, C., Pfenning, F., Kohlhase, M., Shankar, N., Owre, S.: Logosphere. A
Formal Digital Library Logosphere homepage: http://www.logosphere.org.

13. Mizar Development Team: Mizar wiki (2006)
URL: http://wiki.mizar.org.

14. Niqui, M.: Cocorico: a Coq wiki (2005)
URL: http://cocorico.cs.ru.nl/coqwiki.

15. Aspinall, D.: Proof General: A generic tool for proof development. In Graf, S.,
Schwartzbach, M.I., eds.: TACAS. Volume 1785 of Lecture Notes in Computer
Science., Springer (2000) 38–42


