
Merging procedural and declarative proof

Cezary Kaliszyk and Freek Wiedijk

{cek,freek}@cs.ru.nl
Institute for Computing and Information Sciences,

Radboud University Nijmegen, the Netherlands

Abstract. There are two different styles for writing natural deduction
proofs: the ‘Gentzen’ style in which a proof is a tree with the conclusion
at the root and the assumptions at the leaves, and the ‘Fitch’ style (also
called ‘flag’ style) in which a proof consists of lines that are grouped
together in nested boxes.
In the world of proof assistants these two kinds of natural deduction
correspond to procedural proofs (tactic scripts that work on one or more
subgoals, like those of the Coq, HOL and PVS systems), and declarative
proofs (like those of the Mizar and Isabelle/Isar languages).
In this paper we give an algorithm for converting tree style proofs to flag
style proofs. We then present a rewrite system that simplifies the results.
This algorithm can be used to convert arbitrary procedural proofs to
declarative proofs. It does not work on the level of the proof terms (the
basic inferences of the system), but on the level of the statements that
the user sees in the goals when constructing the proof.
The algorithm from this paper has been implemented in the ProofWeb
interface to Coq. In ProofWeb a proof that is given as a Coq proof script
(even with arbitrary Coq tactics) can be displayed both as a tree style
and as a flag style proof.

1 Introduction

Proof assistants are computer programs for constructing and checking proofs.
In these systems one can distinguish between two quite different kind of entities
that both might be considered the ‘proofs’ that are being checked:

– First there are the low level proofs of the logic of the system. In type the-
oretical systems these are the proof terms. In other systems they are built
from tiny proof steps called basic inferences. Generally such proof objects
are huge and constructed from a small number of basic elements.

– Then there also are the high level proof texts that the user of the system
works with. Often these texts are scripts of commands from the user to the
proof assistant. These texts are of a size comparable to traditional mathe-
matical texts, and contain a much larger variety of proof steps. For instance
both the Coq and HOL systems have dozens of tactics that can occur in this
kind of proof.

2 Cezary Kaliszyk and Freek Wiedijk

The proof assistant does two things for the user. First it translates high level
proofs into low level proofs, and secondly it checks the low level proofs obtained
in this way with respect to the rules of the logic of the system.

As an example, the following ‘high level’ Coq proof script:

Lemma example : forall n : nat, n <= n.

intros.

omega.

Qed.

is translated to the following ‘low level’ proof term:

fun n : nat => Decidable.dec_not_not (n <= n) (dec_le n n) (fun H : ~ n <= n =>
ex_ind (fun (Zvar1 : Z) (Omega5 : Z_of_nat n = Zvar1 / (0 <= Zvar1 * 1 + 0)%Z) =>

and_ind (fun (Omega3 : Z_of_nat n = Zvar1) (_ : (0 <= Zvar1 * 1 + 0)%Z) =>
let H0 := eq_ind_r (fun x : Z => (0 <= x + -1 + - Z_of_nat n)%Z -> False)
(eq_ind_r (fun x : Z => (0 <= Zvar1 + -1 + - x)%Z -> False)
(fast_Zopp_eq_mult_neg_1 Zvar1 (fun x : Z => (0 <= Zvar1 + -1 + x)%Z -> False)
(fast_Zplus_comm (Zvar1 + -1) (Zvar1 * -1) (fun x : Z => (0 <= x)%Z -> False)
(fast_Zplus_assoc (Zvar1 * -1) Zvar1 (-1) (fun x : Z => (0 <= x)%Z -> False)
(fast_Zred_factor3 Zvar1 (-1) (fun x : Z => (0 <= x + -1)%Z -> False)
(fast_Zred_factor5 Zvar1 (-1) (fun x : Z => (0 <= x)%Z -> False)
(fun Omega4 : (0 <= -1)%Z => Omega4 (refl_equal Gt))))))) Omega3) Omega3 in

H0 (Zgt_left (Z_of_nat n) (Z_of_nat n) (inj_gt n n (not_le n n H))))
Omega5) (intro_Z n))

which then is type checked and found to be correct.
A good proof assistant should hide low level proofs from the user of the system

as much as possible. Just like a user of a high level programming language should
not need to be aware that the program internally is translated into machine
code or bytecode, the user of a proof assistant should not have to be aware that
internally a low level proof is being constructed.

It depends much on the specific proof assistant what the high level proofs
look like. There are two basic groups of systems, as first introduced in [7]:

The procedural systems such as Coq, HOL and PVS. These systems gener-
ally are descendants of the LCF system. The proofs of a procedural system
consist of tactics operating on goals. This leads to proofs that can natu-
rally be represented as tree shaped derivations in the style of Gentzen. For
instance, the example Coq proof then looks like:

 ────────────── omega

 n:nat ⊢ n <= n

──────────────── intros

⊢ ∀n:nat, n <= n

The above is a screenshot from the display of our ProofWeb system. In
practice it is more useful to have ProofWeb display the tree without contexts:

 ────── omega

 n <= n

────────────── intros

∀n:nat, n <= n

Merging procedural and declarative proof 3

The declarative systems. The main two systems of this kind are Mizar and
Isabelle (when used with its declarative proof language Isar), but also au-
tomated theorem provers like ACL2 and Theorema can be considered to
be declarative. There are experimental declarative proof languages, like the
ones by Pierre Corbineau for Coq and by John Harrison for HOL Light.
The proofs of a declarative system are block structured. They basically consist
of a list of statements, where each statement follows from the previous ones,
with the system being responsible for automatically constructing the low
level proof that shows this to be the case. Apart from these basic steps
declarative proofs have other steps, like the assume step which introduces an
assumption.
In declarative systems these proof steps are grouped into a hierarchical struc-
ture of blocks, just like in block structured programming languages. In declar-
ative proofs these blocks are delimited by keywords like proof and qed.

Some systems might be considered not to be fully declarative in the sense
that they still require the user to indicate how a statement follows from
earlier statements. For instance this holds for Isabelle, where the user can
(and sometimes must) give explicit inference rules. Indeed, it is common
among the users of Isabelle to refer to the Isar proofs not as ‘declarative’
but ‘structured’. However, for the purposes of this paper this distinction
does not matter. In fact, the declarative proofs that we generate with our
ProofWeb system also have the property that they contain an explicit tactic
at each step in the proof.

Mathematicians generally think of their proofs in a declarative way. Declarative
proofs are similar (although more precise and, with current technology, much
more fine-grained) to the language that one finds in mathematical articles and
textbooks.

The contribution of this paper is a generic method for converting a procedural
proof to a declarative proof. For Coq this method has been implemented in
the ProofWeb system. ProofWeb can display a high level Coq proof as a block
structured list of statements. Here is how it will display the example proof:

1 n: nat assumption

2 n <= n omega

3 ∀n:nat, n <= n intros 1-2

The rest of the paper details the algorithms used for this.
In 2006–2008 we ran a project called Web deduction for education in formal

thinking, in which we built a system for logic education. Our system allows
students to practice natural deduction proofs. It has the following design choices:

– Our system runs on a web server. This means that students do not need to
install anything, can access their work from anywhere (as long as they have
Internet access), and that teachers can easily keep track of the progress of
their students. Our ProofWeb server is at http://proofweb.cs.ru.nl/. It can
be tried using the guest login, with no registration.

4 Cezary Kaliszyk and Freek Wiedijk

– The system uses the Coq proof assistant, and the Coq proof language is not
hidden from the user. Students are typing actual Coq proof scripts that use
a restricted set of custom tactics to make their proofs correspond exactly
to the proofs from their textbook. The use of Coq makes ProofWeb espe-
cially attractive for teachers who want their students to work on non-trivial
examples.

– The system allows the students to both work in Gentzen style as well as in
Fitch style. Proofs are displayed in (almost) exactly the same way that they
are shown in the textbook. We decided to have our system be compatible
with a popular logic textbook by Michael Huth and Mark Ryan [8].

The ProofWeb system can present the tree shaped proof that corresponds to the
Coq proof script as a Fitch style proof. This means that it converts a procedural
proof (the Coq script) to a declarative proof (the Fitch display). The method
that it uses to do this is generic. It will work for converting any procedural
proof to any declarative proof text, independent of the specific proof assistants
involved or their logical foundations.1

We decided against presenting the conversion method that we used gener-
ically. In this paper we present just the method for the very specific situation
of natural deduction proofs for first order predicate logic with equality. How-
ever, the method is perfectly generic. Also, our implementation already is not
restricted to the small set of tactics that the users of ProofWeb are supposed to
use. It will work with any Coq proof, providing a block structured Fitch style
display of that proof.

The specifics of the first order logics that ProofWeb uses can be found in the
ProofWeb manual [9]. We here just show an example for both logics in Figure
1. In ProofWeb flags are rendered as boxes (like in Huth and Ryan), with the
right hand border of the boxes omitted to conserve space.

Declarative proofs are much more robust than procedural proofs, and for
this reason can be expected to have a longer useful lifetime than procedural
proofs. For this reason, development of the technology presented here might
mean current formalizations get a longer useful lifetime. A current version of the
procedural system can be used to export a formalisation declaratively. Keeping
the declarative proof instead of the procedural one gives a much higher chance
of the proof being accepted by future versions of the proof assistant.

The conversion algorithm presented here also works on proofs that have not
been completed yet. In that case one gets a declarative proof with gaps. For
instance in ProofWeb, the Fitch style display of the proof before the omega tactic
is executed will be:

1 The proof might contain some statements that have no good equivalent in the target
system, and the automation of the target system might not always be able to bridge
the gaps between the steps, but apart from those issues, a good starting point for a
formalization in the target system can always be generated.

Merging procedural and declarative proof 5

[∃x(P (x) ∨ ¬Q(a))]
H1

[P (b) ∨ ¬Q(a)]
H3

[P (b)]
H4

∃xP (x)
∃i

[¬Q(a)]
H5

[Q(a)]
H2

⊥
¬e

∃xP (x)
⊥e

∃xP (x)
∨e [H4, H5]

∃xP (x)
∃e [H3]

Q(a) → ∃xP (x)
→i [H2]

∃x(P (x) ∨ ¬Q(a)) → Q(a) → ∃xP (x)
→i [H1]

1 ∃x(P (x) ∨ ¬Q(a))

2 Q(a)

3 b P (b) ∨ ¬Q(a)

4 P (b)

5 ∃xP (x) ∃i 4

6 ¬Q(a)

7 ⊥ ¬e 6,2

8 ∃xP (x) ⊥e 7

9 ∃xP (x) ∨e 3,4–5,6–8

10 ∃xP (x) ∃e 1,3–9

11 Q(a) → ∃xP (x) →i 2–10

12 ∃x(P (x) ∨ ¬Q(a)) → Q(a) → ∃xP (x) →i 1–11

Fig. 1. Example derivation in Gentzen’s and Fitch’s systems.

1 n: nat assumption

 ...

2 n <= n

3 ∀n:nat, n <= n intros 1-2

ProofWeb users often use the system through this feature. They do not look
at the Coq proof state (which is also available to them), but just think in terms
of the incomplete Fitch style proof.

This leads us to propose a new kind of prover interface. We call it a luxury
declarative proof assistant (after a suggestion by Henk Barendregt). In a luxury
system, the user does not see goals, but works on an incomplete declarative
proof. This proof then can be modified in two ways:

– Either the user just edits the text, the common way to work in a declarative
proof assistant. This is flexible but gives the user no help in writing the
proof.

6 Cezary Kaliszyk and Freek Wiedijk

– Alternatively the user executes a tactic at a step in the proof that has not
been sufficiently justified yet, i.e., for which the system has not yet generated
a low level proof. The ‘goal’ that this tactic sees has the statement of this
step as the conclusion, and all the statements before it that are in scope as
the assumptions. The tactic then will generate subgoals, which will be added
to the proof text as new steps in, if needed, new sub-blocks.
Modifying a proof in this style (by executing a tactic at a not yet justi-
fied step), needs exactly the same algorithms that the conversion from a
procedural proof to a declarative proof needs.
If one ‘grows’ a declarative proof in such a way, it basically will consist of a
merged version of all the subgoals that the proof would have gone through
in the procedural system.

It is important that in a luxury system both ways of working are available si-
multaneously. It should not be required to use tactics to modify a proof.

A simple version of this luxury concept is the following. In a declarative
prover the user has to formulate the appropriate assume steps himself, while in
a procedural prover he just can type intros. However in a luxury prover, the
intros command will be available, which then will generate all the needed assume

steps automatically. Similarly, appropriate statements in the case of an induction
or application of a lemma can be generated automatically by the system.

The conversion from a tree style proof to a block structured proof is straight-
forward. It consists of two phases:

– First the tree is converted to a series of nested blocks in a naive way. This
is trivial. However, it does not lead to a proof that a user will want to see,
as there are many duplicate lines and boxes that are not necessary.

– The second phase is to reduce the proof. We use a rewrite system for this
that eliminates various unwanted structures from the proof:
• If a subproof has no new assumptions nor new variables, the block for it

is not needed and can be flattened into the main proof.
• Lines that are copies of earlier lines can generally be removed, as refer-

ences to those lines can be replaced by references to the earlier lines.
• ‘Cuts’ also can be removed from the proofs, as the declarative proofs

really have a cut (in the Gentzen sense) at every line.

Below we will give the details of this rewrite system for proofs for the specific
case of first order logic. We prove it to be terminating and confluent.

Our method is designed to convert proofs preserving the level of detail present
in the original proof. When building a proof using automated tactics (decision
procedures), the user might be curious after the proof that those tactics con-
structed internally. This is analogous to the rare occasion that a compiler user
wants to see the machine code that was generated by the compiler. Our method
does not work well for obtaining information on this level. However, Coq allows
decomposition of tactics into smaller tactics using the info prefix, which means
that getting such information is possible even when using our approach.

Merging procedural and declarative proof 7

There have been various projects for translating proofs from a procedural
proof assistant into a declarative presentation, most notably the HELM system
by Asperti et al., which was further developed in the MoWGLI project [1, 2].
However, those systems almost always work on the level of proof terms and not
on the level of tactics. For this reason the declarative proofs that these systems
produced tend to be too convoluted for human consumption.

An exception is the system by Guilhot, Naciri and Pottier where Coq proofs
are considered on the level of the tactics, by converting Coq proof trees just
like we do [6]. However in this work the generated text is only considered a
presentation – they call it an explanation – and not a proof in a formal system
like Fitch-style natural deduction in its own right.

Geuvers and Nederpelt [4] define a translation of natural deductions in Fitch
style to simply typed λ-terms (i.e., their translation goes the opposite way from
ours). They present reduction relations for Fitch-style deductions that allow
simpler λ-terms to be obtained. These reductions remove unnecessary subproofs,
remove repeats and unshare shared subproofs. They prove that Fitch deductions
are mapped to the same λ-term if and only if they are equal under these relations;
which shows that there is an isomorphism between these classes.

Proof nets [5] allow representing proofs in a geometrical way where the or-
der of the application of rules as well as irrelevant features of regular natural
deduction proofs can be eliminated. Geuvers and Loeb [3] show the correspon-
dence between deduction graphs and proof nets and give translations from min-
imal propositional logic to proof nets via context nets. They also shows how
an operation of cut elimination in deduction graphs can be performed after the
translation to a context net.

2 Translating minimal logic tree style proofs to flag style
proofs

We first will restrict ourselves to minimal propositional logic. We introduce a
translation operation (7→) that translates a tree style proof G of a proposition
A to a flag style proof F. An example of such a translation is:

∅ :
[A]x

B → A
→i[y]

A→ B → A
→i[x] 7→

1 A

2 B

3 A copy 1

4 B → A →i 2–3

5 A→ B → A →i 1–4

This operation always preserves the conclusion, and the conclusion will be most
often the part of the proof that we match, so we write it explicitly:

8 Cezary Kaliszyk and Freek Wiedijk

Γ, [A]x : [A]x 7→ A copy x

Γ, [A]x :

...G
B 7→

...F

B

Γ :

([A]x)

...G
B

A→ B
→i[x]

7→

x A
...F

n B

A→ B →i x–n

Γ :

...G1

A→ B 7→
...F1

A→ B
Γ :

...G2

A 7→
...F2

A

Γ :

...G1

A→ B

...G2

A

B
→e
7→

...F1

i A→ B
...F2

j A

B →e i, j

Fig. 2. The translation rules for minimal propositional logic.

Γ : (

...G
A
7→

...F

A
)

The translation operates in a context Γ . This context is a list of assumptions
accompanied by labels that can be used in the proofs G and F. The assump-
tions that are discharged in the proof are no longer in the context. Sometimes
for clarity we will mark assumptions available in particular branches of proofs
and discharged after by additional brackets. Below we give an example of a
translation of proof styles in a non-empty context:

[A]x, [B]y :
[A]x [B]y

A ∧B
∧i 7→ A ∧B ∧i x, y

Merging procedural and declarative proof 9

We define the translation operation inductively via the translation rules in Figure
2. The translation rules match the conclusion and the rule used and give a
rule to build the flag style proof. All new labels introduced by the translation
operation are fresh identifiers. The usual presentation of flag style proofs is with
line numbers and rules that reference those numbers, but in our translation
we will use identifiers. An implementation may render such proofs with lines
numbered in the customary way, and we do indeed provide this in our ProofWeb
implementation as described in Section 6.

The first rule translates the use of an assumption. We replace the use of an
assumption with a copy line, and label this line with the name of the assumption
variable.

If the derivation ends with implication introduction we translate it to the
implication introduction rule in the flag style. We use the name of the introduced
assumption in the tree style as the label of assumption line in the flag style. The
assumption [A] is not in the context since it is discharged, but for readability
we mark it in brackets in the tree style proof. This means that the proof G can
use this assumption. We provide fresh identifiers for new lines.

Implication elimination is analogous. We do not need to introduce a flag for
the subtree of the tree style proof. This is what makes the depth of flag proofs
much lower then the depth of tree style proofs.

3 Translating proofs in more complicated logical systems

To translate a proof in tree style of an arbitrary deduction system we will first
translate it to a non-optimized proof.

We often need to open a number of flags depending on a list of assumptions.
This is why we introduce a shorthand notation. We will write flags with a list
above the assumption line to denote opening a number of flags. The last flag is
opened with the rule provided in the shorthand notation, while all other flags
are introduced one by one using implication introduction:

i A1, A2, . . . , An

...F

j B

C R i–j

This stands for:

10 Cezary Kaliszyk and Freek Wiedijk

i A1

j A2

. . .

k An

...F

l B

An → B →i k–l

m . . .

n A2 → A3 → . . .→ An → B →i j–m

C R i–n

For a list with just one assumption this is equivalent to opening one flag with
just the given rule. For a flag with an empty list of assumptions no flags need to
be opened:

i ∅
...F

j B

C R i–j

stands for:

...F

i B

C R i

We show the translation of a given tree style proof in terms of a general schema.
This schema will be instantiated for every rule of the logic. Given a rule R
that proves the formula B from the tree style proofs G1, G2, . . . , Gn that have
conclusions A1, A2, . . . , An, which discharge assumption lists (possibly empty)
S1, S2, . . . , Sn we recursively translate all subproofs to generate the final flag
style proof (Figure 3). The subproofs A1, . . . , An can use the assumptions from
their appropriate lists and this is marked in the schema by brackets. An example
of instantiation of the schema for a rule for is given in Figure 4.

4 Simplification of obtained proofs

We can remove many of the copy lines by ‘path compression’, i.e., if a copy line
is not the last line under a flag, the copy line can be removed and all further
references should be renumbered to refer to the line that was copied:

Merging procedural and declarative proof 11

Γ
,S

1
:

. . .G
1

A
1
7→

. . .F
1

A
1

Γ
,S

2
:

. . .G
2

A
2
7→

. . .F
2

A
2

..
.
Γ
,S

n
:

. . .G
n

A
n
7→

. . .F
n

A
n

Γ
:

([
S

1
])

. . .G
1

A
1

([
S

2
])

. . .G
2

A
2

..
.

([
S

n
])

. . .G
n

A
n

B
R

[S
1
∪
..
.
∪

S
n
]

7→

i 1
S

1 . . .F
1

j 1
A

1

i 2
S

2 . . .F
2

j 2
A

2

. . .
i n

S
n . . .F
n

j n
A

n

B
R
i 1

–
j 1
,i

2
–
j 2
,.
..
,i

n
–
j n

Fig. 3. The general schema for translating a rule of the logic.

12 Cezary Kaliszyk and Freek Wiedijk

Γ :

...G1

A ∨B 7→
...F1

A ∨B
Γ,A :

...G2

C 7→
...F2

C
Γ,B :

...G3

C 7→
...F3

C

Γ :

...G1

A ∨B

([A]x)

...G2

C

([B]y)

...G3

C

C
∨e[x, y]

7→

...F1

i A ∨B

j A
...F2

k C

l B
...F3

m C

C ∨e 1,2–3,4–5

Fig. 4. Example of the general schema instantiated for ∨-elimination.

i A
...

j A copy i
...
... . . . j

�

i A
...
...
... . . . i

If the copy line is the only line under a flag and is the copy of the assumption
introduced under this flag, the copy line can be removed. This creates proofs
that resemble customary Fitch deduction drawing style:

i A

A copy i
� A

Theorem 1. The use of the translation followed by performing the above sim-
plifications on a correct Gentzen style natural deduction proof results in a flag
style proof that is a correct Fitch style natural deduction proof with the same
conclusion and the same rules.

Proof (Sketch). The conclusion and the rules are preserved by all steps of trans-
lation and simplification. The simplifications do not change any of the rules or
lines they operate on. The translation of any correct Gentzen rule is a correct
Fitch rule. The proof proceeds by verifying the correctness of the translation of
all natural deduction rules from [9]. ut

Merging procedural and declarative proof 13

5 Simplification of forward proofs

One of the main advantages of flag style proofs over tree style proofs, is that
the flag proof is typically almost linear, with very little nesting and therefore
much easier to present on paper. For completed natural deduction derivation the
proof that we obtain by translation is mostly flat, with nesting introduced only
for assumptions. Our translation is also able to work with incomplete proofs. For
incomplete proofs done in a backwards manner (starting from the conclusion)
the tree style proof corresponds naturally to the flag style proof. This is not the
case for forward proofs. For example in tree style:

i A

j B

k A ∧B ∧i i, j
...

C

The line labeled k is obtained by ∧-introduction from lines i and j. To represent
this proof in Gentzen style natural deduction we need a cut with a branch where
A ∧B is an assumption:

[A] [B]
A ∧B

∧i

([A ∧B]x)
...
C

A ∧B → C
→i[x]

C
→e

The cut in the above proof cannot be eliminated until the proof is completed.
However, this is not the case for flag style proofs, where this kind of cut can be
eliminated without influence on the rest of the proof (assuming the rest of the
proof is translated as well).

We want to give a mechanism that allows translating the above tree style
proof with a cut to a flag style proof without a cut. The use of cut is a general
technique; it is often used for inserting a subgoal that can be used further in
the proof. This is why we will eliminate all the implication cuts that could have
been obtained in this way. To do this we present the rewrite rule in Figure 5,
which can be applied only if line l is not used further in the proof.

Theorem 2. The rewrite system including the above rewrite rule terminates.

Proof (Sketch). By induction on the number of flags. ut

Theorem 3. The rewrite system including the above rewrite rule is confluent.

14 Cezary Kaliszyk and Freek Wiedijk

...
i A

j A
...

k B

l A→ B →i j–k

B →e i, l

�

...
i A . . .

...
B . . .

Fig. 5. Rewrite rule for eliminating explicit cuts from a Fitch deduction.

 ...

 ───────

 ∃x, P x [∀x, ∃y, (P x ∨ P y)]F

──────────────────────────── →i[F1] ────────────────────── ∀e

(∃y, (P x0 ∨ P y)) → ∃x, P x ∃y, (P x0 ∨ P y)

── →e

 ∃x, P x

── →i[F]

 ∀x, ∃y, (P x ∨ P y) → ∃x, P x

1 F: ∀x, ∃y, (P x ∨ P y) assumption

2 F1: ∃y, (P x0 ∨ P y) ∀e 1

 ...

3 ∃x, P x

4 ∀x, ∃y, (P x ∨ P y) → ∃x, P x →i 1-3

Fig. 6. An incomplete proof in Gentzen natural deduction and its translation to a Fitch
deduction, as rendered by the implementation.

Proof (Sketch). If it is possible to apply a rule at two places in a proof, the two
places are associated with two flags. Either one of the flags is under the other or
they are in separate parts of the proof and thus independent. If one of the flags
is under the other, it has to be inside the incomplete proof part of the rewrite
rule. In that case the rewrite only moves the whole incomplete proof and thus
the rewrites also are independent. ut

We see in Figure 6, how the application of this rewrite rule makes the translation
of a Coq proof from a Gentzen tree style proof into a flag style proof with a small
number of nested flags.

Merging procedural and declarative proof 15

6 Implementation for Coq proofs

The implementation of Coq keeps a proof tree. This is a recursive OCaml struc-
ture, that holds a goal, a rule to obtain this goal from the subgoals, and the
subgoals themselves. It is not just a tree structure, since a rule can be a com-
pound rule that contains other proof states. Tactics and tacticals modify the
proof state. Coq includes commands for inspecting the proof state. Show Tree
shows the succession of conclusions, hypotheses and tactics used to obtain the
current goal and Show Proof displays the CIC term (possibly with holes). The
output of these commands was not sufficient to transform the proof state in
other formats. We added a new command Dump Tree to Coq that allows export-
ing the whole proof state in an XML format. An example of the output of the
Dump Tree command for the Coq example from Section 1 is:

<tree><goal><concl type="forall n : nat, n <= n"/></goal>

<cmpdrule><tactic cmd="intros"/>

<tree><goal><concl type="forall n : nat, n <= n"/></goal>

<cmpdrule><tactic cmd="intros"/>

<tree><goal><concl type="forall n : nat, n <= n"/></goal>

<rule text="intro n"/>

<tree><goal><concl type="n <= n"/><hyp id="n" type="nat"/>

</goal></tree></tree></cmpdrule>

<tree><goal><concl type="n <= n"/><hyp id="n" type="nat"/>

</goal></tree></tree>

</cmpdrule><tree><goal><concl type="n <= n"/><hyp id="n" type="nat"/>

</goal></tree></tree>

This is the proof tree that corresponds to the incomplete Fitch proof on page 4.
The communication between ProofWeb and Coq is very narrow. The Dump

Tree command is all that had to be added to Coq to allow our system to convert
proofs, and its implementation only took a small amount of OCaml code. This
code has now been integrated into the Coq code base, which means that the
Dump Tree command will be standardly available in Coq from version 8.2.

Our system is intended to be used with simple tactics that correspond to the
inference rules of first order logic, so currently we forget the information gener-
ated by automated tactics (the content of compound rules). We first transform
the tree to a non-optimized flag proof. For every node of the Coq tree we create
a new flag. This flag first contains all the assumptions. The notation presented
in the previous sections where a flag is allowed to have an arbitrary number of
assumptions is also used in the implementation; at a later step this gets trans-
lated according to the meaning of the notation. Then if a tree has subgoals, the
transformed subgoals are attached. Otherwise, if the goal is not proved ellipses
are attached. Finally the flag contains a line for the conclusion of the Coq node.

When rendering a flag style proof that was translated from a tree style proof
done with the Coq tactics, the tactic names are printed in a special way. For tac-
tics that match natural deduction rules, the names are changed to their natural
deduction names. Furthermore we add the consecutive line numbers on the left

16 Cezary Kaliszyk and Freek Wiedijk

of assumption lines and conclusion lines. We then replace references to labels
with the appropriate numbers.

As an example of a flag style version of a serious Coq proof, consider the
following proof from the Coq standard library:

Lemma leb_complete : forall m n:nat, leb m n = true -> m <= n.

Proof.

induction m. trivial with arith.

destruct n. intro H. discriminate H.

auto with arith.

Qed.

This proof is rendered by ProofWeb as:

7 Conclusion

The future work of this paper is to develop a luxury proof interface, as described
in Section 1, for a serious proof assistant. The main difference with the ProofWeb
system will then be that the system can also input a declarative proof. The
declarative proofs then becomes the text that the user works on.

We implemented a rough prototype of a luxury proof language for the HOL
Light system, and the approach seems to work quite well there. Currently we are
redoing this system in a more systematic and structured manner. This experi-
ment shows that our approach for converting procedural proofs into declarative
proofs is not tied to any Coq specifics. It works just as well, and in exactly the
same way, in a HOL environment.

A difference with ProofWeb will be to have one further rewrite rule for proofs.
In the declarative language of the Mizar system there exists the consider state-
ment that is used for existential elimination. If one knows that there exists an x
that satisfies P [x], one can write:

proof

. . . 1

consider x being A such that P [x] by . . . 2;

. . . 3

thus Q by . . . 4;

end;

This can be seen as a condensed version of

Merging procedural and declarative proof 17

proof

. . . 1

proof

let x be A;
assume P [x];
. . . 3

thus Q by . . . 4;

end;

thus Q by . . . 2;

end;

In the case of the ProofWeb system we did not want the system to rewrite the
latter to get the structure the former, as it would not leave Fitch-style proofs
the way that student users would expect them to be. However, in a system for
significant formalizations, an optimization like this will be essential.

We claim that a luxury proof interface – that is, an interface in which the user
edits a declarative proof, but also can ask the system to extend that proof by
executing tactics – combines the best of the procedural and declarative worlds.
We expect that it will be straight-forward to implement such an interface using
the methodology presented in this paper.

References

1. A. Asperti, L. Padovani, C. Sacerdoti Coen, F. Guidi, and I. Schena. Mathematical
Knowledge Management in HELM. Annals of Mathematics and Artificial Intelli-
gence, Special Issue on Mathematical Knowledge Management, 38:1–3, 2003.

2. A. Asperti and B. Wegner. MOWGLI – A New Approach for the Content Descrip-
tion in Digital Documents. In Proceedings of the Nineth International Conference
on Electronic Resources and the Social Role of Libraries in the Future, volume 1,
2002.

3. H. Geuvers and I. Loeb. From Deduction Graphs to Proof Nets: Boxes and Sharing
in the Graphical Presentation of Deductions. In R. Kralovic and P. Urzyczyn,
editors, MFCS, volume 4162 of LNCS, pages 39–57. Springer, 2006.

4. H. Geuvers and R. Nederpelt. Rewriting for Fitch Style Natural Deductions. In
V. van Oostrom, editor, RTA, volume 3091 of LNCS, pages 134–154. Springer, 2004.

5. J.Y. Girard. Linear Logic. Theor. Comput. Sci., 50:1–102, 1987.
6. F. Guilhot, H. Naciri, and L. Pottier. Proof explanations: using natural language

and graph view, 2003. Slides for a talk at a MoWGLI presentation.
7. J.R. Harrison. Proof Style. In E. Giménez and C. Paulin-Möhring, editors, Types for

Proofs and Programs: International Workshop TYPES’96, volume 1512 of LNCS,
pages 154–172, Aussois, France, 1996. Springer-Verlag.

8. M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2nd edition, 2004.

9. C. Kaliszyk, F. van Raamsdonk, F. Wiedijk, H. Wupper, M. Hendriks, and R. de
Vrijer. Deduction using the ProofWeb system. Technical Report ICIS–R08016,
Radboud University Nijmegen, September 2008.

