
Automating side conditions in formalized partial
functions

Cezary Kaliszyk

cek@cs.ru.nl

Institute for Computing and Information Sciences,
Radboud University Nijmegen, the Netherlands

Abstract. Assumptions about the domains of partial functions are nec-
essary in state-of-the-art proof assistants. On the other hand when math-
ematicians write about partial functions they tend not to explicitly write
the side conditions. We present an approach to formalizing partiality in
real and complex analysis in total frameworks that allows keeping the
side conditions hidden from the user as long as they can be computed and
simplified automatically. This framework simplifies defining and operat-
ing on partial functions in formalized real analysis in HOL LIGHT. Our
framework allows simplifying expressions under partiality conditions in
a proof assistant in a manner that resembles computer algebra systems.

1 Introduction

1.1 Motivation

When mathematicians write partial function they tend not to explicitly write
assumptions about their domains. It is common for mathematical texts to include
expressions like:

. . .
1
x
. . .

without specifying the type of the variable x and without giving any assumptions
about it.

On the other hand these assumptions are necessary in proof assistants. Since
most proof assistants are total frameworks, a similar formula expressed there
looks like:

∀x ∈ C.x 6= 0⇒ . . .
1
x
. . .

The assumptions about the domain are obvious for any mathematician, in fact
they can be generated by an algorithm. All names that have not been defined pre-
viously are considered to be universally quantified variables and all applications
of partial functions give raise to conditions about their arguments. Inferring the
types of variables is something that proof assistants are already good at. Giving
the type of just one of the terms in an expression is often enough for a proof
assistant to infer the types of the other. Mathematicians often work in a par-
ticular setting, where arithmetic operations and constants are assumed to be of

2 Cezary Kaliszyk

particular types. Some proof assistants have mechanisms that allow to achieve
a similar effect, eg. prioritizing a type in HOL LIGHT or using a local scope in
Coq [5].

There are many examples of statements in libraries of theorems for proof
assistants that include assumptions which are often omitted in mathematical
practice. In particular the HOL LIGHT library part concerning real analysis in-
cludes statements like EXP LN:

∀x.0 < x⇒ exp(ln(x)) = x

Here the type of x is inferred automatically as real from the type of applied
functions (the complex versions of the exponent and logarithm functions have
different names in the library), but the domain conditions are not taken care
of. The real logarithm is defined only for positive numbers, but the positivity
assumption is not only in the statement of the theorems that include it, but also
appears many times in the proofs that use this fact.

Computer algebra systems allow applying partial functions to terms and some
of them have assumptions about variables computed automatically. This might
be one of the reasons why for mathematicians computer algebra systems are usu-
ally more appealing than proof assistants. Unfortunately the way assumptions
are handled in those systems is often approximate, and this is one of the rea-
sons computer algebra systems sometimes give erroneous answers [2]. Therefore
handling assumptions cannot be done in the same way in theorem proving.

In [11] we show, that it is possible to implement a prototype computer algebra
system in HOL LIGHT and that proof assistants are already able to perform many
simplification operations that one would expect from computer algebra. The
prototype is able to perform many computations that involve total functions1,
but even simplest operations that require understanding partiality fail, since
HOL LIGHT is a total framework:

In1 := diff (diff (\x. &3 * sin (&2 * x) + &7 + exp (exp x)))

Out1 := \x. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

-- &12 * sin (&2 * x)

In2 := diff (\x. &1 / x)

Out2 := diff (\x. &1 / x)

The problem with the above example is that the function 1
x is mathematically

a partial function that is not defined in zero. Still computer algebra systems
asked for the derivative of it reply with − 1

x2 . This answer is correct since the
original function is differentiable on the whole domain where it is defined, and its
derivative has the same domain. The proposed approach will let the framework
correctly compute this kind of expressions.

We would also like to check whether approach for handling partiality in an
automated way can be useful not only in formalizing partiality but might gener-
alize to formalizing functions that operate on more complicated data structures,
like when formalizing multivaluedness.
1 The & operator is the coercion from natural numbers

Automating side conditions in formalized partial functions 3

1.2 Approach

The domain of the function can be often inferred from the function itself. For
example the domain of 1 + 1

x can be computed to be λx.x 6= 0. In such circum-
stances the domain can be represented by the function itself relieving the user
from typing unnecessary expressions. This is not always the case. For example if
the function λx. 1x −

1
x is simplified to λx.0 deriving the domain λx.x 6= 0 is not

possible. When a singularity point is not removed from the domain, the domain
can be recomputed from the expression itself. Expressions in which singularity
points are removed occur rarely in practical examples.

When we apply an operation in a CAS system2 to a function f in a domain
D, a function f ′ and its domain D′ are returned. If the system can prove that
D′ represents the same domain as the one which we can compute from f ′ we
can discard D′. We will be able to recompute it whenever it will be needed.

Our approach is to let the user input the partial functions as values from
and to the option type and show them to the user as such, but to perform all
operations on a total function of the underlying proof assistant with keeping
the domain predicate alongside with the function. To do this we have two rep-
resentations for functions and convert between them. The first representation
is functions that operate on values in the option type and the second is pairs
of total functions and domain predicates. We show how higher order functions
(differentiation) can be defined in this framework and how terms involving it
can be treated automatically.

1.3 Related work

There are multiple approaches and frameworks for formalizing partial recursive
functions. Ana Bove and Venanzio Capretta [4] introduce an approach to for-
malizing partial recursive functions and show how to apply it in the Coq proof
assistant. Normally recursive functions are defined directly using Fixpoint, but
that allows only primitive recursion. They propose to create an inductive defini-
tion that has a constructor for every recursive definition and create a Fixpoint
that recurses over this definition. Alexander Krauss [12] has developed a frame-
work for defining partial recursive functions in Isabelle/Hol, that formally
proves termination by searching for lexicographic combinations of size measures.
William Farmer [9] proposes a scheme for defining partial recursive functions and
implements it in IMPS. The main difference is that those approaches and frame-
works compute the domains of partial recursive functions whereas we concentrate
on functions in analysis which cannot be obtained by recursion and where the
domain is limited because there are no values of the functions that would match
their intuitive definition or that would allow properties like continuity.

The existing libraries for proof assistants contain formalized properties of
functions in real and complex analysis. There are common approaches to par-
tiality in existing libraries. It is common to define every function total. This is

2 We refer to the computer algebra functionality embedded in HOL as the CAS system

4 Cezary Kaliszyk

the case for the HOL LIGHT [10] library. Division is defined to return zero when
dividing by zero. The resulting theory is consistent, but to make some standard
theorems true assumptions are required. For example REAL DIV REFL:

∀x.x 6= 0⇒ x

x
= 1.

Another common approach is to require proofs that arguments applied to
partial functions are in their domains. This is the case for the CoRN library
[7] of formalized real and complex analysis for Coq. There division takes three
arguments, the third one is a proof that the second argument is different from
zero.

There are approaches to include partiality in the logic of the proof assistant.
Those unfortunately complicate the logic and are already complicated for first
order logics [16]. Some proof assistants are based on logics that support partial
functions. An example is PVS [15] where partial functions are obtained by sub-
typing and IMPS [8] where there is a built-in notion of definedness of objects in
the logic.

Olaf Müller and Konrad Slind [14] present an approach for lifting functions
with the option monad that is closest to the one presented here. Their approach
is aimed at partial recursive functions where computation of the domains of
functions is not possible. Our approach is similar to applying the option monad
to the real and complex values, but since particular functions need to have their
domains reduced, we explicitly compute and keep the domains of functions and
be able to transform these values back to original ones.

Finally computer algebra systems have their own approaches to partiality,
eg “provisos” [6]. The main difference is they are intended to obtain maximum
usability, sometimes at the cost of correctness. This is why those approaches
cannot be used in a theorem proving environment.

1.4 Contents

This paper is organized as follows: in Section 2 we give the basic definitions of
the two representations of partial functions and we define the operations used to
convert between those representations. We also show a simplified example of a
computation with partial functions. In Section 3 we present the design decisions
and the details of our formalization. We show how does the automation work and
show its limitations. Finally in Section 4 we present a conclusion and possible
future work.

2 Proposed Approach

2.1 Basic definitions

Our approach involves two representations of partial functions. The first repre-
sentation is: as pair of a total extension of the original function and a domain

Automating side conditions in formalized partial functions 5

predicate. The second representation is: a function from an option type to an
option type. The first representation will be used in all automated calculations
and the latter will be used in the user input and if possible in the output since
it resembles better mathematical notation.

An option type is a type built on another type. The option type has two
constructors. One denoting that the variable has a value and one used for no
value. In proof assistants they are usually written as SOME α and NONE. We will
denote those with α and −. To simplify reading of the types, variables of the
option type will be denoted as z and real variables as x both in the paper and in
the shown examples from the system. The approach works for partial values of
different types, but since HOL LIGHT does not have dependent types we cannot
generalize over types, so we present our approach for a single type of partial
values. We chose real numbers and not complex numbers since there are more
decision procedures available in HOL LIGHT for real numbers and we make use
of them.

We define two operations to convert between the two representations. Creat-
ing operations that work on the option type from the operations on the under-
lying proof assistant type is similar to applying the option monad operations
bind composed with return to the functions in the proof assistant. In fact this
is equivalent to the presented approach for functions that are really total. For
functions that are undefined on a part of their original domain we additionally
require the desired domain predicate so we create an operation that will addi-
tionally require the domain predicate and check it in the definition. We define
@ that converts functions from the pair representation to the option representa-
tion (written as papp in the HOL LIGHT formalization) and @−1 that converts
a function in the option type to a pair (punapp in HOL LIGHT). The definition
of @ is straightforward:

(f,D)@z =
{
fx if z = x ∧D(x)
− otherwise

The inverse operation can be defined using the Hilbert operator (which we
will denote as ε). This operator takes a property and returns an element that
satisfies this property if such an element exists. It returns an undefined value
when applied to a property that is not satisfied for any element. The inverse
operation is defined as:

@−1f = (λx.εv.f(x) = v, λx.∃v.f(x) = v)

The @−1 function is the left inverse of @, (in fact we prove this in our
formalization that for any F , D and z)3:

@−1(λz.(f,D)@z) = (f,D)

3 The @−1 function is not the right inverse of @. This would require that for any
function f and any z, (@−1f)@z = f(z). But this equality is not true for z = NONE
and f(NONE) = SOME(0).

6 Cezary Kaliszyk

With the two operations definitions of the translations of the standard arith-
metic operations are simple. The @ operator will check that the arguments ap-
plied to plus are defined. Note that in HOL LIGHT the syntax and semantics
of expressions are very close, namely when syntactic expressions are applied to
values they can be reduced to its syntax. This is why we will not distinguish
between syntax and semantics in the paper:

a+ b =def @(λxy.(x+ y), λxy.>)

We can also define higher order functions that operate on partial functions
by embedding the existing higher order operators from the proof assistant, first
in the pair representation:

(f,D)′ =def (f ′, λx.D(x) ∧ f is differentiable in x)
f ′(z) =def (@−1(f)′)@z

2.2 Example in mathematical notation

With the definitions from the previous section it is possible to automatically
simplify the side conditions in partial functions, we will first show it in the
example and then show the full HOL LIGHT definitions and the algorithm for
simplification in Section 3.2.

We will show a simplified example of automatically computing a derivative of
a partial function in our framework. We will denote the derivative of a function
f(x) as f(x)′. The user types an expression:

(λz.πz2 + cz +
2
z

)′

The expression that the user sees is written with standard mathematical
operators. All the operator symbols are overloaded, and they are understood
as the operations on partial functions, that is functions of type (R)option →
(R)option → . . . → (R)option. In the above expression z is the only variable of
the (R)option type. All the other constants and expressions are their translations
from the underlying total functions or constants. The only functions that are
really partial (that is undefined on a part of the proof assistant domain) are
division and differentiation and they are defined by providing their domain. The
system unfolds the translation of all operators and constants, and computes a
total function and its domain4:

(λz.〈λx.πx2 + cx+
2
x
, λx.x 6= 0〉@z)′

We finally translate the derivative. For the obtained function we add the
requirement that the derivative of the original function exists in the given point,
4 In some proof assistants all computation is really simplification done by rewrite rules.

This is the case in HOL LIGHT in which we will be formalizing this example, but we
will refer to those simplifications as computation in the text.

Automating side conditions in formalized partial functions 7

otherwise a function defined in one point would always be differentiable there.
This domain condition will be often combined with the assumptions about the
domain of the original function:

λz.(〈(λx.πx2 + cx+
2
x

)′, λx.x 6= 0∧ (λx.πx2 + cx+
2
x

) is differentiable in x)〉@z)

We can then apply the decision procedure for computing derivatives of total
functions in the underlying proof assistant. It was not possible earlier, since the
result of the procedure is a predicate with additional assumptions. It is possible
with the use of the papp operator, since its definition ensures that the result
does not depend on the function outside its desired domain. Since we also know
the set on which the reciprocal is differentiable the domain can be simplified:

λz.(〈(λx.2πx+ c− 2
x2

), λx.x 6= 0〉@z)

Finally we try to return to the partial representation. This is done by recon-
structing a partial function with the same symbols and recomputing its domain.

λz.2πz + c− 2
z2

= λz.(〈(λx.2πx+ c− 2
x2

), λx.x 6= 0〉@z)

Since the domains agree we can convert back and display the left hand side of
the above equation as the final result to the user.

Returning from the representation of the function as a total function and its
domain to the option type representation is not always possible, since a partial
expression does not need to have an original form (can be expressed in the option
representation). On the other hand the simplification is often possible and when
it is possible it is desirable since it allows for greater readability. An example
where it is not possible is:

λz.
1
z
− 1
z

= λz.(〈λx.0, λx.x 6= 0〉@z)

The value is not equal to the constant function zero, since the expression does
not have a value when x is zero. Furthermore for values of the option type even
the term z−z is not equal to zero if z = NULL, therefore even after simplification
to zero its value will depend on the variable z.

There are two approaches of treating this kind of terms. One can either
simplify it to zero while leave the domain condition or not simplify the expression
at all. We currently do not simplify expressions for which we cannot find a
valid partial representation to return to. This is to avoid showing the user the
complicated representation with the domain conditions. A possible approach that
allows those simplifications and displays results in the option representation will
be mentioned in Section 4.1.

8 Cezary Kaliszyk

3 The implementation

3.1 Design decisions

For our formalization we chose HOL LIGHT. The factors that influenced our
choice were: a good library of real and complex analysis, as well as the possi-
bility to write conversions in the same language as the language of the prover
itself. HOL LIGHT is written in OCaml and is provided as an extension of it.
This is very convenient for developing since it allows generating definitions and
simplification rules by a programs and immediately using them in the prover.

In the representation with option types we use the vector type Rn → R in-
stead of the curried types R → R → . . . → R to represent functions. One can
convert between these two representations and the latter representation is often
preferred since it allows partial application. The reason why we chose to work
with the vector representation is that HOL LIGHT does not have general depen-
dent types. Instead it has a bit less powerful mechanism that only allows proving
theorems that reason about An for any n. We will use this to prove theorems
about n-ary functions. With this approach some definitions (papp mentioned be-
low and its properties) will have to be defined for multiple arities. On the other
hand the theorems that are hard to prove will be only be needed to be proved
once. Otherwise they would be needed for all versions of curried functions.

3.2 HOL LIGHT implementation details

In this section we will give the formalization details. To understand them knowl-
edge of HOL LIGHT [10] is required. We will show an example of automatically
computing the derivative of the partial function

f(z) = πz2 + cz +
2
z
.

When the user inputs this function in the correct syntax in the main loop of the
CAS, the system responds with the correct answer:

In1 := pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z)
Out1 := \z. & 2 * SOME pi * z + SOME c + --& 2 / (z * z)

The system computed this derivative automatically, but we will look at the
conversions performed step by step. First lets examine the types in the en-
tered expression. The variable z used in the function definitions is of the type
(real)option. We overload all the standard arithmetic operators to their ver-
sions that take arguments of the (real)option type and produce results of this
type. The coercion from naturals operator & creates values of this type. We de-
cided not to overload the & operator to the coercion from real numbers (SOME),
since this would lead to typing ambiguity and would require some types to be
explicitly given in expressions.

The semantics of the standard arithmetic operations is to return a value if
all arguments have a value and NONE if any of the arguments is NONE. For real

Automating side conditions in formalized partial functions 9

partial functions we define an operation (called papp) that will create a partial
function of type (real)option → (real)option → . . .→ (real)option from
a pair of a HOL LIGHT total function realn → real and a predicate expressing
its domain realn → bool. We show below the definitions of papp for one and
two variables. In the formalization we see them as papp1, papp2, . . . , but in the
text we will refer to all those definitions together as papp:

new_definition ‘(papp1 (f, d) (SOME x) = if (d (lambda i.x)) then

(SOME (f (lambda i.x))) else NONE) /\

(papp1 ((f:A^1->A), (d:A^1->bool)) NONE = NONE)‘

new_definition ‘(papp2 ((f:A^2->A), (d:A^2->bool)) (SOME x) (SOME y) =

if (d (lambda i.if i = 1 then x else y)) then

(SOME (f (lambda i.if i = 1 then x else y))) else NONE) /\

(papp2 (f, d) NONE v = NONE) /\ (papp2 (f, d) v NONE = NONE)‘;;

In the above definitions we see the usage of lambda and below we see the usage
of $. Those are used to create vectors and refer to vector elements. The reasons
for using the vector types instead of curried type for functions was discussed in
Section 3.1.

The total binary operations can be defined by applying a common operator,
that defines binary operators in terms of papp for two variables. The types of all
defined binary operations is (real)option → (real)option → (real)option.
We show only the definition of addition on partial values:

new_definition ‘pbinop (f:A->A->A) x y =

papp2 ((\x:A^2. (f:A->A->A) (x$1) (x$2)),(\x:A^2.T)) x y‘;;

new_definition ‘padd = pbinop real_add‘;;

The first partial function is division defined in terms of the reciprocal.

new_definition ‘pinv = papp1 (partial ((\x:real^1. inv (x$1)),

\x:real^1. ~((x$1) = &0)))‘;;

new_definition ‘pdiv x y = pmul x (pinv y)‘;;

pdiff is the unary differentiation operator. It takes partial functions of the
type (real)option→(real)option and returns functions of the same type.
Since the derivative may not always exist it is defined using the Hilbert opera-
tor. Given a (partial) function it returns a partial function being a derivative of
the given one on the intersection of its domain and the set on which it is differ-
entiable. We will again define it in terms of papp applied to a total function and
its domain. Since we are given a function and need to find its underlying total
function and domain to apply the original differentiation predicate we will define
punapp that returns this pair. For our definition it returns a pair of real→real
and real→bool:

10 Cezary Kaliszyk

new_definition ‘punapp1 f = ((\x:real^1. @v:real. (f(SOME (x$1))) =

(SOME v)), (\x:real^1. ?v. (f (SOME (x$1))) = (SOME v)))‘;;

new_definition ‘pdiff_proto (f:real^1->real, d:real^1->bool) =

((\x:real^1. if d x /\ ?v. ((\x. f (lambda i. x)) diffl v) (x$1)

then @v. ((\x. f (lambda i. x)) diffl v) (x$1) else &0) ,

(\x:real^1. d x /\ ?v. ((\x. f (lambda i. x)) diffl v) (x$1)))‘;;

new_definition ‘pdiff f = papp1 (pdiff_proto (punapp1 f))‘;;

The partial differentiation
conversion pdiff_conv

Other Simplif ications

Unfolding partial
definit ions
and facts

Applying
DIFF_CONV

and pdiff facts

Simplifying the
function and
its domain

Recurse on
CAS conversion

with different DB

Recurse on
CAS conversion

Try to reconstruct
an original

part ial function

CAS conversion

Recurse on
CAS conversion

with different DB on
guessed function

Fig. 1. A schematic view of the simplification performed by the partial differentiation
conversion.

The simplification of the term will be performed by a partial differentiation
conversion pdiff_conv (Fig. 1). This conversion is a part of the knowledge base
of the CAS and will be called by the CAS framework when the term has a
pdiff term in it. To simplify the implementation of the partial differentiation
conversion it will recursively call the CAS conversion with a modified database
to simplify terms. The first step is a simplification performed by the main CAS
conversion with the database of theorems for extended to include the above
definitions of the partial operators and some basic facts, that will be described
below. The conversion proves:

|- pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z) =

papp1 ((\x. @v. ((\x. x pow 2 * pi + c * x + &2 * inv x) diffl v) (x$1)),

(\x. ~(x$1 = &0) /\ (?v. ((\x. if ~(x = &0)

then x pow 2 * pi + c * x + &2 * inv x else @v. F) diffl v) (x$1))))

Automating side conditions in formalized partial functions 11

All the partial operators and the pdiff operator were unfolded to their def-
initions. We notice that the partiality included in division (reciprocal) and dif-
ferentiation have been propagated to the term. All occurrences of variables are
pulled inside the papp terms and consecutive papp applications are combined
by a set of reduction rules. This set includes a number of theorems, for the
categories we give only single examples for one variable:

– rewrite rules that reduce the number of papp applications for SOME terms for
arbitrary numbers of variables. An example for the second of two variables:

papp2_beta_right;;

val it : thm = |- papp2 (f, d) (a:(A)option) (SOME b) =

papp1 ((\x. f (lambda i. if i = 1 then x$1 else b)),

(\x. d (lambda i. if i = 1 then x$1 else b))) a

– rewrite rules that combine multiple occurrences of the same variable:

papp2_same;;

val it : thm =

|- papp2 (f, d) x x = papp1 ((\x:real^1. f ((lambda i. x$1):real^2)),

\x:real^1. d ((lambda i. x$1):real^2)) x

– rewrite rules that combine consecutive applications of papp possibly with
different numbers of abstracted variables:

papp1_papp1;;

val it : thm = |- papp1 (f1, d1) (papp1 (f2, d2) (x:(A)option)) =

papp1 ((\x. f1 (lambda i.(f2 x))),

(\x. d2 x /\ d1 (lambda i.(f2 x)))) x

The next step performed by the partial differentiation conversion extracts
the function to which the diffl term is applied. The HOL LIGHT DIFF_CONV is
applied to this term. For total functions it produces a diffl theorem with no
additional assumptions. For partial functions DIFF_CONV produces conditional
theorems that have additional assumptions about the domain. For our example:

DIFF_CONV ‘(\x. x pow 2 * pi + x * &c + &2 * inv x)‘;;

val it : thm = |- !x. ~(x = &0) ==>

((\x. x pow 2 * pi + x * &c + &2 * inv x) diffl

(((&2 * x pow (2 - 1)) * &1) * pi + &0 * x pow 2) +

(&1 * &c + &0 * x) + &0 * inv x + --(&1 / x pow 2) * &2) x

Our formalization includes certain theorems about derivatives of partial func-
tions where the derivative exists depending on some condition. For the example
case the used theorem is about derivatives of functions that are not differentiable
in a single point. We provide some similar theorems for inequalities which may
arise in differentiating more complicated functions. The exact statement of the
theorem used here is:

12 Cezary Kaliszyk

pdiff_but_for_point;;

val it : thm = |- (!x. ~(x = w) ==> (f diffl (g x)) x) ==>

papp1((\(x:real^1). @v. ((\x:real. f x) diffl v) (x$1)),

(\(x:real^1). (~(x$1 = w) /\ d (x$1)) /\

?v. ((\x:real. if ~(x = w) then f x else @v. F) diffl v) (x$1))) =

papp1((\(x:real^1). g (x$1)), \(x:real^1). ~(x$1 = w) /\ d (x$1))

The partial differentiation conversion combines the above facts to prove:

|- pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z) =

papp1 ((\x. (((&2 * x$1 pow (2 - 1)) * &1) * pi + &0 * x$1 pow 2) +

(&0 * x$1 + &1 * c) + &0 * inv (x$1) + --(&1 / x$1 pow 2) * &2),

(\x. ~(x$1 = &0)))

The above function can be easily simplified, and this simplification is per-
formed by recursively calling the CAS conversion both on the function and on
the domain. For our example only the function can be reduced. For the recur-
sive call to the CAS conversion we do not include the facts about partiality to
prevent looping. The conversion proves:

|- pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z) =

papp1 ((\x. &2 * pi * x$1 + c + -- &2 * inv (x$1 * x$1)),

(\x. ~(x$1 = &0)))

The last part of pdiff_conv tries to convert the term back to the original
representation. As described is Section 3.1 this is not always possible, but it will
be possible in our case. The algorithm for computing the original form examines
the tree structure of the total function and reconstructs a partial function with
the same structure. In our case:

pconvert ‘(&2 * pi * (x:real^1)$1 + c + -- &2 * inv (x$1 * x$1))‘;;

val it : term = ‘& 2 * SOME pi * x + SOME c + --& 2 * pinv (x * x)‘

We now check if the domain of the guessed partial function is the same as
the original real one. To do this we apply the CAS conversion to the guessed
term with the partial function definitions and facts about them again:

cas_conv it;;

val it : thm = |- & 2 * SOME pi * z + SOME c + --& 2 * pinv (z * z) =

papp1 ((\x. &2 * pi * x$1 + c + -- &2 * inv (x$1 pow 2)),

(\x. ~(x$1 pow 2 = &0))) z

The domain of the converted function is the same as the domain of the
function we that was computed by differentiation5. Therefore we can compose
this theorem with the previous result arriving at the final proved theorem:
5 The two domains can be expressed in a slightly different way, thus there may be

some theorem proving involved to show that they are equal. In our implementation
the only thing performed is the CAS conversion, that internally tries HOL LIGHT

decision procedures for reals and tautology solving.

Automating side conditions in formalized partial functions 13

|- pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z) =

(\z. & 2 * SOME pi * z + SOME c + --& 2 / (z * z))

And the user is presented with the right hand side of the equation.

3.3 How to extend the system

In this section we will show examples that the system cannot handle automati-
cally. We will then show how the user can add theorems to the knowledge base to
add automation for simplification of those terms. Consider adding a new partial
function being the real square root:

new_definition ‘psqrt = papp1 ((\x. sqrt (x$1)), (\x. (x$1) >= &0))‘;;

The original HOL LIGHT differentiation conversion DIFF_CONV is able to dif-
ferentiate the real square root producing a differentiation predicate with a con-
dition:

DIFF_CONV ‘\x. sqrt x‘;;

val it : thm =

|- !x. &0 < x ==> ((\x. sqrt x) diffl inv (&2 * sqrt x) * &1) x

The partial differentiation conversion can not simplify the derivative of the
partial square root automatically without additional facts in its knowledge base.
This is because the result of the original differentiation conversion is only a con-
dition for the function to be differentiable. It does not prove that the function is
not differentiable elsewhere (namely in zero). To be able to simplify this function
the user needs to prove an additional theorem that would show that the function
is differentiable if and only if the variable is greater than zero. Namely:

|- (?v. ((\x. if x >= &0 then sqrt x else @v. F) diffl v) ((x:real^1)$1))

= x$1 > &0

Adding this to the knowledge base allows the partial differentiation conver-
sion to handle automatically the partial square root function.

4 Conclusion

The presented approach and formalized framework allow the automation of side-
conditions. Simple expressions with partial functions can be simplified transpar-
ently to the user. More complicated partiality conditions still appear in the
expressions.

The approach allows mathematical expressions in proof assistants to resemble
those seen in computer algebra. The language for writing equations and for
calculations (rewriting in HOL LIGHT) becomes simpler.

It can be useful for formalizing partial functions that we encounter in engi-
neering books, for example in Abramowitz and Stegun [1] or in the NIST DLMF
project [13].

14 Cezary Kaliszyk

4.1 Future Work

Our primary goal is to check how easily our approach can be extended to more
complicated partial operations. For example with integration it is hard to check
whether the objects are defined. Of course even then our approach gives a re-
sponse, but the existential expression in the result may be hard to simplify.

It is important to note, that the standard HOL LIGHT equality does not take
into account the option type, so any objects that do not exist will be equal.
Defining an equality that is not true for NONE is possible, and this is what has
been done in IMPS. On the other hand it leads to two separate notions of
equality, which makes the expressions more complicated.

We would like to add more automation. All the simplifications that we per-
form can be done with functions of arbitrary number of variables. Those can
be proved on the fly by special conversions. Our formalization currently has all
simplifications rules proved for functions with at most two optional variables.
Also the papp definitions for more variables and facts about them are analogous
to their simpler version and their definitions can be created automatically by a
ML function that calls HOL LIGHT’s definition primitives.

We are looking for a policy for simplifying expressions. Currently when an
expression is simplified in the total representation, but we cannot find an original
partial representation, the whole conversion fails and the expression is returned
unchanged. The same conversions would succeed with assumptions about the
domains of variables present in the CAS environment. It would be therefore
desirable to suggest assumptions about variables that would allow further sim-
plification of terms [3].

It would be most interesting to see if the presented approach can be extended
to address multivaluedness. Multivalued functions are rarely treated in proof
assistants. On the other hand multivalued expressions tend to be one of the
common sources of mistakes performed by computer algebra systems. There are
not too many theorems in prover libraries that concern multivalued functions.
The representation of multivalued functions could be done in a similar way as
partiality is done in our approach.

References

1. Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical Func-
tions With Formulas, Graphs, and Mathematical Tables, volume 55 of National
Bureau of Standards Applied Mathematics Series. United States Department of
Commerce, Washington, D.C., June 1964. 9th Printing, November 1970, with
corrections.

2. H. Aslaksen. Multiple-valued complex functions and computer algebra. SIGSAM
Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation),
30(2):12–20, June 1996.

3. Michael Beeson. Using nonstandard analysis to ensure the correctness of symbolic
computations. Int. J. Found. Comput. Sci., 6(3):299–338, 1995.

4. Ana Bove and Venanzio Capretta. Modelling general recursion in type theory.
Mathematical Structures in Computer Science, 15(4):671–708, 2005.

Automating side conditions in formalized partial functions 15

5. Coq Development Team. The Coq Proof Assistant Reference Manual Version 8.1.
INRIA-Rocquencourt, 2006.

6. Robert M. Corless and David J. Jeffrey. Well . . . it isn’t quite that simple. SIGSAM
Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation),
26(3):2–6, 1992.

7. Lúıs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN, the constructive
Coq repository at Nijmegen. In Andrea Asperti, Grzegorz Bancerek, and Andrzej
Trybulec, editors, MKM, volume 3119 of Lecture Notes in Computer Science, pages
88–103. Springer, 2004.

8. W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: An Interactive Mathemat-
ical Proof System (system abstract). In M. E. Stickel, editor, 10th International
Conference on Automated Deduction, volume 449 of Lecture Notes in Computer
Science, pages 653–654. Springer-Verlag, 1990.

9. William M. Farmer. A scheme for defining partial higher-order functions by recur-
sion. In Andrew Butterfield and Klemens Haegele, editors, IWFM, Workshops in
Computing. BCS, 1999.

10. John Harrison. HOL light: A tutorial introduction. In Mandayam Srivas and
Albert Camilleri, editors, Proceedings of the First International Conference on
Formal Methods in Computer-Aided Design (FMCAD’96), volume 1166 of LNCS,
pages 265–269. Springer-Verlag, 1996.

11. Cezary Kaliszyk and Freek Wiedijk. Certified computer algebra on top of an
interactive theorem prover. In Manuel Kauers, Manfred Kerber, Robert Miner,
and Wolfgang Windsteiger, editors, Calculemus/MKM, volume 4573 of Lecture
Notes in Computer Science, pages 94–105. Springer, 2007.

12. Alexander Krauss. Partial recursive functions in higher-order logic. In Ulrich
Furbach and Natarajan Shankar, editors, IJCAR, volume 4130 of Lecture Notes in
Computer Science, pages 589–603. Springer, 2006.

13. Daniel W. Lozier. Nist digital library of mathematical functions. Ann. Math. Artif.
Intell., 38(1-3):105–119, 2003.

14. Olaf Müller and Konrad Slind. Treating partiality in a logic of total functions.
Comput. J., 40(10):640–652, 1997.

15. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of LNAI, pages 748–752, Berlin, Heidelberg, New York, 1992. Springer-
Verlag.

16. Freek Wiedijk and Jan Zwanenburg. First order logic with domain conditions. In
David A. Basin and Burkhart Wolff, editors, TPHOLs, volume 2758 of Lecture
Notes in Computer Science, pages 221–237. Springer, 2003.

