
CTP-based programming languages ?
Considerations about an experimental design

Florian Haftmann Cezary Kaliszyk
TU München - Software & Systems Engineering
{haftmann,kaliszyk}@informatik.tu-muenchen.de

Walther Neuper
TU Graz - Institute for Software Technology

neuper@ist.tugraz.at

Abstract
This paper discusses plans for joint work in order to gain early
feedback from the community.

Three lines of work pursued independently so far shall be
joined: (1) narrowing the gap between declarative program spec-
ification and program generation already working in Isabelle,
(2) reusing work, which embedded an input-response-loop re-
sembling Computer Algebra Systems (CAS) into HOL Light, and
(3) reconstructing an experimental language for applied mathe-
matics by exploiting established as well as emerging features of
Isabelle/Isar.

These plans have to be seen as part of a variety of highly ac-
tive research areas — on “integration of the deduction and the
computational power” of Computer Theorem Proving (CTP) and
CAS respectively (Calculemus), on “innovative theoretical and
technological solutions for content-based systems” (MKM), on
“Programming Languages for Mechanized Mathematics Systems”
(PLMMS), just to cite from some related interest groups.

Facing the abundant variety of approaches, of intermediate re-
sults and of ongoing developments, and taking under considera-
tion the many difficulties in integrating such approaches, we pursue
pragmatic goals:

Design a component indispensable for working engineers, a
programming language for engineering applications. Use Isabelle
for an experimental embedding of the language, which is useful at
least in engineering education as soon as possible.

Categories and Subject Descriptors G [4]: Verification

General Terms Languages, Verification, Reliability, Design

Keywords computer theorem proving, programming language,
computer algebra, integration, interactive specification, real num-
bers

1. Introduction
We take the term “computer theorem proving” as introduced in [13]
comprising both, automated and interactive theorem proving. Both
aspects of theorem proving are relevant for our approach.The ab-
breviation “CTP” for “computer theorem proving” shall indicate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLMMS-2010 8th July 2010, Paris.
Copyright c© 2010 ACM . . . $10.00

analogies to “CAS”, a widely used abbreviation for “computer al-
gebra (systems)” 1.

Our motivation is simple: transfer the success from program-
ming languages based on Computer Algebra Systems (called CAS-
based languages) to the domain of Computer Theorem Proving
(CTP), overcome deficiencies found basically and essentially in
in all CAS and improve safety and reliability of software by use
of concepts and technologies from CTP. What is called a success
of CAS-based languages is the fact 2 that a major and quickly in-
creasing part of software for electrical engineering, for structural
engineering and the like is built using such languages.

Our approach is pragmatic: we start from three lines of work
pursued independently so far and discuss a merge of these. The
three lines are: (1) narrowing the gap between declarative program
specification and program generation already working in Isabelle
(Sect.2.1), (2) reusing work on a CAS-like input-response-loop em-
bedded into HOL Light (Sect.2.2), and (3) reconstructing an exper-
imental language for applied mathematics (Sect.2.3) in the ISAC-
prototype by exploiting the emerging features of Isabelle/Isar. And
we confine our approach to the Isabelle framework.

Turning the idea for merging into a concrete research plan
faces considerable issues: the idea is intimately interrelated with
a variety of highly active research — with the “integration of
the deduction and the computational power” of CTP and CAS
respectively, with “innovative theoretical and technological solu-
tions for content-based systems”, with “Programming Languages
for Mechanized Mathematics Systems” (just to cite from some in-
terest groups).

So, this paper does not give a comprehensive survey; only the
most important concepts involved in the merge are addressed. And
the paper goes into technical details only if it seems necessary for
comprehension. Furthermore we do not feel ready to give a con-
cise specification of the language envisaged. Rather, we pursue the
above motivation and describe a future workplace of an engineer
who constructs software of the kind presently covered by CAS-
based languages in Sect.3. Continuing the pragmatic approach re-
quires to mention practical aspects like the workflow at the future
workplace, which necessarily remains speculative.

The paper is organized as follows: Sect.2 describes each of the
three approaches and work already accomplished. Sect.3 tries an
outlook to an engineers electronic workbench in the future in or-
der to present, how the merge of the three approaches might come
to bear. Sect.4 discusses novel research set on stage by the merge
of the three approaches. Sect.5 relates the language under consid-

1 Both terms, CTP and CAS, will be used to designate two different things:
the respective software products and the respective underlying concepts and
technologies.
2 The most successful software house building engineering software on
demand is Wolfram Research, see http://www.wolfram.com/solutions.

eration with existing languages of proof assistants and mentions
related work on the integration of reasoning and computation and
on improving reliability of calculation with reals. Sect.6 gives a
summary and an outlook to continuation of the presented work.

2. Three approaches and straightforward merges
The three lines of work have been pursued independently so far.
They are presented with respect to possibilities for mutual merges
together with advantages, which seem straight forward and which
do not necessarily require remarkable R&D.

2.1 Integration of deductive and algorithmic components
Integration of deduction and calculation is being promoted from
several sides (see Sect.5), from the side of programming languages,
from symbolic computation and from the side of CTP. This paper
takes the latter approach, based on Isabelle.

Isabelle [32] has been recognized as a logical framework [36]
for a long time. With programming in mind one recognizes, that
Isabelle provides generic numerals [35] and also floating point
numbers [14]. Presently Isabelle/Isar’s logical infrastructure seems
to develop towards a “logical operating system” [39] for various
applications. The CTP-based language under consideration is one
of such applications.

Bringing together specification and implementation. Recently
the well-known relationship between higher-order logic and func-
tional programming has been exploited [11]. The central idea is that
a suitable set of equational theorems of the form f x = t is inter-
preted as a functional program which can be translated to suitable
languages like Haskell or ML. Given a function symbol f with a
specification Pf , the implementation of f is constructed by deriv-
ing suitable equations f x = t describing f from Pf . Figuratively
spoken, an implementation is a coagulation of equational theorems
from the logic.

This approach allows to express refinement directly within the
logic: e.g., imagine a function symbol bsort :: α list ⇒ α list
with corresponding equational theorems implementing bubble sort
and a function symbol msort :: α list ⇒ α list with cor-
responding equational theorems implementing merge sort. Then
bsort = msort can be proven, which allows to replace bsort
by msort in implementations. It would even be possible to
specify sorting involving a choice operator, e.g. sort xs =
THE ys. multiset xs = multiset ys ∧ sorted ys, where
multiset turns a list into the corresponding multiset. From this
definition sort = msort (and sort = bsort) can be proven, hence
the abstract sort can be implemented by a concrete algorithm.

There are examples of engineering problems (for instance the
one in Sect.2.3 on p.3) on which the above method seems to be
applicable. In software development automated or semi-automated
code generation is an appealing offer; in the application domain
under consideration the major benefit might be in support for han-
dling types in highly complex mathematical structures (rather than
automated coding of complicated algorithms).

2.2 Approach towards CAS-like functionality
Before considering “CAS-like functionality” for CTP-based pro-
gramming languages, we need to mention the deficiencies of main-
stream CAS in order to be clear, what shall be improved when ad-
vancing to a CTP-based language.

Mainstream CAS, for instance Mathematica and Maple, are
very weakly founded ([13] even calls them “ill-defined”). There
are various reasons for the mistakes found in mainstream CAS sys-
tems: assumptions can be lost, types of expressions can be forgotten
or algorithms of the system themselves may contain implementa-
tion errors [18]. Simple mistakes have been found and fixed over

the years. However mistakes made when performing more compli-
cated computations are still found. So improvements are urgently
required, and our work already tackled some of them.

We have built a prototype CAS-like input-response-loop inside
HOL Light, with the user interface designed close to the interfaces
of popular computer algebra systems. In Figure 1 we show exam-
ples of simplifications that it can perform automatically: basic vec-
tor arithmetic, symbolic computation, numeric approximations and
basic handling of assumptions.

In1 := vector [&2; &2] - vector [&1; &0] + vec 1
Out1 := vector [&2; &3]
In2 := diff (diff (λx. &3 * sin (&2 * x) +

&7 + exp (exp x)))
Out2 := λx. exp x pow 2 * exp (exp x) +

exp x * exp (exp x) + -- &12 * sin (&2 * x)
In3 := N (exp (&1)) 10

Out3 := #2.7182818284 + ... (exp (&1)) 10 F
In4 := x + &1 - x / &1 + &7 * (y + x) pow 2

Out4 := &7 * x pow 2 + &14 * x * y + &7 * y pow 2 + &1
In5 := sum (0,5) (λx. &x * &x)

Out5 := &30
In6 := sqrt (x * x) assuming x > &1

Out6 := x

Figure 1. Example interaction with the prototype CAS-like input-
response loop. For the user input given in the In lines, the system
produces the output in Out lines together with HOL Light theorems
that state the equality between the input and the output.

By this prototype we have demonstrated in that it is possible
to build a computer algebra system in a proof assistant [18]. Such
architecture guarantees that the system will make no mistakes. All
expressions in the system have precise semantics and the proof
assistant checks the correctness of all simplifications according to
this semantics. The envisaged language shall be based on such a
system; also CAS-like interaction as shown in Figure 1 shall be
available for the user.

There are issues, which are still open in the prototype. First
the syntax includes many coercions. In the presented example the
symbol & marks coercions to real numbers. HOL Light’s type
prioritization is used to decide to which type the variables and
operators (plus, . . .) should belong; but the overloading there is
not strong enough, although we are able to show quite some type
information. In Sect.4.1 we describe how this can be solved using
Isabelle’s proper parsing and syntax translation mechanisms.

Partiality: The prototype provides a simple mechanism for han-
dling assumptions. In the example we have seen the construct
assuming that allows the system to simplify

√
x2, by deriving that

x is non-negative. And extension of this for handling partiality with
functions is presented in [17]. This lets the prototype compute the
derivative of 1

x
knowing that x 6= 0.

The assumptions are stored in two lists. A list that stores as-
sumptions about variable types and a list of properties. The first of
those lists is given to the parser, while the second one is used to
fulfill the assumptions of conditional rewrite rules. This means that
the approach is built on top of the proof assistant. However, the in-
tegration is not perfect, since the decision procedures present in the
proof assistant cannot make use of the assumptions. In Sect.4.1 we
describe how Isabelle contexts can be used to combine the assump-
tions with the whole of the proof assistant.

The mechanism described above seems appropriate also for pro-
grams executing some application of mathematics. For this pur-
pose this mechanism has to be integrated with mechanisms from
Isabelle, see Sect.4.1. There are features indispensable in CAS like
numerals discussed as well.

2.3 A functional language with guards
The third approach contributing to the envisaged joint work dates
back to a language implementation [30] 3 for educational purposes
in the ISAC-prototype 4. Over the years this language revealed
potential for generalization. The following features of the language
are relevant for the envisaged joint work:

1. The language is based on Isabelle/HOL with IF, LET, IN and
functions on lists like HD, TL, LAST etc 5. Straight forward
extensions provide for access to Isabelle’s matching and rewrit-
ing. The language is purely functional (without input and output
statements) and inherit major features from SML [29]: strict
evaluation, high-order functions, abstract datatypes, compile-
time type checking and type inference; it might be stati-
cally nested with other functions. In comparison to SML it
comes without a module system, without pattern matching for
datatypes and without exception handling.

2. Functions (and also functions nested within other functions) are
guarded with a formal specification, i.e with typed input- and
output-items, precondition and postcondition. If the precondi-
tion, instantiated with the input-items’ values, holds, then the
guard allows to start program execution. Patterns of specifica-
tions are given in a tree, and traversing the tree while match-
ing the patterns with the input-items and evaluating the precon-
dition allows to determine the most appropriate specification.
This kind of “problem refinement” has successfully been used
to model a simple equation solver [21] and to make other CAS-
like functionality transparent.

3. The language comes along with an interpreter, which operates
on the parse tree created by Isabelle’s parser. The initial purpose
of the interpreter was to provide user guidance for the tutoring
system: switched into a single-stepping mode the interpreter
hands over control to a dialog module at certain steps and the
dialog handles interaction with the learner.
With respect to the joint work envisaged here, the interpreter
is relevant for another reason: it works on the constructs of
the programming language on the same level of abstraction, as
Isabelle’s prover works on constructs of the specification, i.e on
terms and predicates.

These three points shall contribute to the design of the CTP-based
programming language. The above Pt.2 will be extended to an
essential feature of future workplaces for engineering in Sect.3.
Further details of the language are up to discussion and to re-
design. Let us look at some of the details.

An example program written in the present language gives an
algorithm solving a problem in structural engineering, which will
serve again as an example in Sect.3.

01 Script bendingLine
02 (l ::real) (q ::real) (v ::real) (b ::real=>real) (rb ::bool list) =
03 (LET
04 (funs :: bool list) =
05 (SubProblem (Bendingline,[bendingline,integrate],
06 [bendingline,integrate])
07 [real q , real real b , real v]);
08 (equs ::bool list) =
09 (SubProblem (Bendingline,[bendingline,setConstraints],

3 The essential design ideas were provided by Peter Lucas, one of the
pioneers in compiler construction and formal methods [23–25].
4 http://www.ist.tugraz.at/projects/isac
5 These functions are renamed with uppercase letters in order to distinguish
them from the object language, these functions are operating on as part of
the programming language. This avoids confusing the interpreter.

10 [bendingline,setConstraints])
11 [bools funs , bools rb , real l]);
12 (sols ::bool list) =
13 (SubProblem (Real,[equation,system,linear],[])
14 [bools equs , reals [c,c 2,c 3,c 4]]);
15 B = Take (LAST funs);
16 B = ((Substitute sols) @@
17 (Rewrite Set Inst [(bdv, v)] make ratpoly in)) B
18 IN B)

The identifiers with ending underscores avoid type clashes with
identifiers in the object language of formulas; the function con-
stants real , bools , reals bring the arguments’ types into line for
the list of arguments.

Most noticeable are the bulky function calls designated with
SubProblem. These relate the descriptive and algorithmic aspect:
the list of the functions’ arguments is preceded by a triple: #1
points to the respective theory (Bendingline or Real), #2 points to
the (pattern of, see Pt.2 above) specification and #3 points to the
algorithm refining the specification. Specifications and algorithms
are addressed by paths into a tree.

Now let us look at the program code line by line:
01..02 is the program header with the arguments. Note that the
output-item b is also an argument, because all identifiers have been
determined in the specification preceding the start of the program.
03 LET is as defined in Isabelle/HOL, which requires semicolons
as delimiters except after the last line before IN in 18.
04..07 designates a subproblem which #1 takes vocabulary from
theory Bendingline, #2 relies on a specification addressed by [bend-
ingline,integrate] and #3 a method addressed by the same path (into
the other tree of methods), because apparently there is only one
method necessary for this problem.
08..11 designates a similar subproblem (for the meaning of the
program see Sect.3 p.4).
12..14 calls a CAS function solving a system of equations. The
method in #3 is empty, since the system is considered smart enough
to find the appropriate algorithm in this case.
15 takes the last element of the list funs ; LAST is renamed as part
of the programming language in order to allow programs to operate
on formulas with last without confusing the interpreter.
16..17 shows forward chaining @@ of CAS functions, substitu-
tion and rewriting with a term rewriting system named make ratpoly in;
rewriting is optimized for this univariate function with bound vari-
able v .

There are immediately effective advantages from merging with
the other lines of work:

Make all deductive components available within the program-
ming language. So far, only matching and simplification can be ac-
cessed by the language primitives. In addition, decision procedures
are useful for rewriting with conditional rewrite rules, provers could
provide more powerful assistance in proving the preconditions of
guards mentioned in Pt.2.

Further use of provers will be discussed in Sect.4.3.

Reuse Isar/ML/Scala integration: Presently Isabelle/Isar’s extra-
logical infrastructure is evolving [39] towards open interoperability
with front-ends. Some of the GUI front-ends under consideration
for the Isar proof language are also appropriate as front-ends for
programming and debugging. Also the communication between
GUIs and the back-ends is similar in proof development and in
program development. Thus Isabelle/Isar’s Scala API will serve
both, proofs and programs, as shown in Figure 2.

The uniform architecture provides optimal prerequisites for an
integrated workflow constructing algorithms and proofs in parallel.
Since Scala runs on the JVM platform, the system is open for
widespread use.

Figure 2. Reuse of Isabelle/Isar’s Scala API.

3. An engineer’s future workplace
All together, the work described above covers just a tiny part of
the research contributing to an engineer’s future workplace. So
many questions are open, that already strategic aspects are being
addressed, for instance in [1].

However, we believe that a merge of the three lines of work
will already establish notable advances without further research (re-
spective questions open for research are discussed in Sect.4). With
the motivation in mind to replace CAS-based programming with
CTP-based programming, it seems appropriate to discuss these ad-
vances with respect to a practice oriented setting. We are keen
enough to describe a future workplace of an engineer who programs
some application for electrical engineering, mechanical engineer-
ing or the like.

A standard problem from a textbook on structural engineering
might serve as an example for discussing details at the engineer’s
future workplace:

Determine the bending line of a beam of length L, which con-
sists of homogeneous material, which is clamped on one side and
which is under constant line load q0; see Figure 3.
Hint: Use the constraints on the shear force V (0) = q0 · L, on
the bending moment Mb(L) = 0 and on the expected bending line
y(0) = 0 and y′(0) = 0.

Figure 3. A balcony under load.

A specification of the problem in the traditional form with the
input-items in, the precondition pre, the output-item(s) out and the
postcondition post finally might look like this in notation used by
engineers:

in : function q0, length L

pre : q0 is integrable in x ∧ L > 0

out : function y(x)

post : y(0) = 0 ∧ y′(0) = 0 ∧ V (0) = q0.L ∧ Mb(L) = 0

where V and Mb are constant function symbols in this theory
of “bending lines”. function and length are functions fixing the
arguments’ types; q0 is a constant function with type R→ R.

A program refining the specification has been listed already in
Sect.2.3. The program’s algorithm is a straightforward refinement
of the postcondition: the theory of bending lines is simple in this
case, saying that the bending line’s y(x) fourth derivative y(x)′v

is (almost) the load function q0(x), y(x)′v = c · q0(x). Thus the
first subproblem (program lines 04..07) integrates the load function
(q0(x) with identifier q) four times and returns for functions funs
with four respective constants of integration, c, c1, c2, c3.

The second subproblem (lines 08..11) substitutes the con-
straints, given by the program’s argument rb into the four func-
tions funs and returns four equations equs containing c, c1, c2, c3.

The third subproblem is a classical CAS problem solving the
(linear, uniquely solvable) system of four equations in c, c1, c2, c3

yielding the normal form of four equations in sols .
Finally there are elementary CAS tasks, substituting the solu-

tions sols into the last function from the list of four function funs ,
which is the bending line y(x), and simplify this function.

Before entering description and discussion of the workplace we
note, that the description necessarily is speculative. In particular
one prerequisite for efficient work at such a workplace, domain
specific knowledge, is not yet present (and a discussion how to
create such knowledge is out of scope of this paper).

Domain specific knowledge is supposed to undergo formaliza-
tion and mechanisation more and more, in order to improve profes-
sionality of software development [4].

The differentiation of such knowledge is already prepared by
the distinction between the two established notions, quality of de-
sign and quality of conformance. The former concerns the relation
between “reality” and an abstract model, the latter the relation be-
tween the abstract model and an implementation. Both relations
are increasingly investigated and tackled with mathematical meth-
ods. One of the strongest method is proof; thus one might predict
increasing importance of mathematical proof in this part software
technology.

Domain engineering is expected to create and mechanise do-
main specific knowledge [4], i.e. appropriate notions (for instance
beam, bending line in the above example), concise abstractions like
domain specific predicates (for instance homogeneous, clamped in
the above example) and models, which will develop from kinds
of abstract datatypes to algebraic structures with specific axioms,
definitions, lemmas and theorems. So one might predict increasing
importance of mathematical proof also in this part software tech-
nology.

Domain specific knowledge is already being at the beginning
of mechanization in software engineering 6. But the mechanization
of knowledge in other domains like electrical, mechanical or struc-
tural engineering has not yet begun. [5, 7, 12] describe some initial
attempts.

In spite of the non-existence of such knowledge we are keen
enough to predict some details, because these are already antici-
pated in the language as described in Sect.2.3:

Three aspects of knowledge are expected to be distinguished in
the sequel; this distinction has not yet been established. For in-
stance, Isabelle’s mechanisms for handling knowledge [38] are
highly elaborated and show several levels of granularity: theories,

6 In Isabelle’s “Archive of Formal Proofs” there are collections like
on “Computer Science >> Security” with growing lists like “SIFPL,
VolpanoSmith, HotelKeyCards, RSAPSS, InformationFlowSlicing”, see
http://afp.sourceforge.net/topics.shtml

local theories, locales, theory contexts, generic contexts, local con-
texts — all allow SML code inline to the code defining logical enti-
ties and antiquotations within the inline SML code referring to the
logical entities, and all packed into theories without explicit struc-
turing so far.

There are initial ideas of how to structure knowledge [9]; here
we just want to distinguish three general aspects of knowledge, the
deductive, the applicative and the algorithmic aspect of knowledge:

1. Deductive knowledge is that kind of knowledge which tradi-
tionally is represented in so-called theories, for instance Is-
abelle’s theories.

2. Applicative knowledge is represented by specifications in the
simplest case; for each method from Pt.3 below there should
be a specification, but there might be more than one method
refining one and the same specification. We shall call this kind
of knowledge problems.

3. Algorithmic knowledge comprises specific algorithms solving
problems specified in Pt.2 above; we shall call this kind of
knowledge methods. This knowledge represents the bridge to
algorithmic mathematics and classical programming.

Many questions about these three points are open, for instance, how
to separate them, where to place respective parts of code. Also the
structure seems only settled for theories (an directed acyclic graph),
while the structure assembling methods and problems is open.

In order to make things more precise in the sequel, we simply
assume methods and problems assembled in two separated trees.

Discussion of a futuristic workflow is speculative, as already
mentioned. With respect to the above paragraph we expect the en-
gineer being an software expert in the domain of structural engi-
neering. And we can assume, that the problem of calculating the
bending line is part of a larger problem, probably requiring the cal-
culation of many bending lines for many structural components.
What might this engineer do? We assume an iterative approach to-
wards a final result using these steps:

Looking up the knowledge available at his or her electronic work-
place will be the first step. The theories will be scanned, probably
because some details have been forgotten (e.g. where the matter
constants come in: y′′(x) = −Mb(x)

EI
for the bending line y(x)), or

because decisions are required whether to work with univariate or
multivariate functions, whether to take a continuous or an approxi-
mating discrete model, etc.

The most interesting question will be, if there is already a
solution for the given problem in the system; this requires searching
problems (specifications) and algorithms (methods). If the input-
items are already determined, a mechanical problem refinement is
possible as described in Sect.2.3.Pt.2; if also a postcondition has
been formulated, the search will be even more precise.

Let us assume, that there is still no appropriate solution in the
system, and that the engineer decides to go towards the solution
already presented in Sect.2.3.

Interactively assembling the parts of the code required will be the
next step. First the problem will be specified — not for academic
reasons, but because the solution for the problem will serve within
a larger system, which requires specification for components. The
formulation of the specification is supported by domain specific
predicates (which has not yet been developed in our example).

According to the assumption, that no ready-made solution is
available, we also may assume, that the first two subproblems (lines
04..07 and 08..11) are not available. So the engineer has to develop
respective specifications and methods; probably this would be done
iteratively; first the specification, then the algorithm; quick testing

of preliminary code sequences in an input-response-loop is helpful,
as already described in Sect.2.2.

For other parts solutions are ready-made, in our example this
will be solving the system of equations (lines 12..14). In general,
an appropriate method has to be selected from a variety of algo-
rithms for systems of linear equations, depending on the system’s
dimension etc.

Proving correctness of the program is not an additional exercise
during or after development, rather it is enforced by the system
— which poses a considerable challenge to the usability of that
system: restrictive discipline must get counterbalance by noticeable
advantages!

One advantage is mechanized code generation as mentioned in
Sect.2.1. Another advantage is flexible support in assembling soft-
ware components and decisive support in proving correctness of the
development. Usually the number of proof obligations increases
dramatically when tackling more complex problems. Even in our
simple example lots of effort is required to prove that the program’s
arguments and the results of subproblems fulfill the preconditions
for a subsequent subproblem.

Further advantages will be proper handling of approximations
by reals, i.e. by floating point numbers; Sect.2.2 already mentioned
this issue, Sect.4.2 will discuss further ideas.

4. Research questions raised from merging
Recalling what has been said in the introduction, we do not claim
to address the most essential issues in the design of CTP-based pro-
gramming languages. We rather discuss in the sequel, how merging
the three lines of work described in Sect.2 leads to novel chances
for advancements. However, we claim that we address such ad-
vancements which are well into reach of R&D. And the aim re-
mains a pragmatic one: a language which balances demands and
benefits such that engineers like to use it for their programming
tasks, preliminarily at least in engineering education.

4.1 Traceability of mathematics applications
Engineers are responsible for what they deliver; this is an issue with
respect to the growing complexity of the tools engineers use at their
workplace. With respect to software tools specifications improve
manageability, as already discussed. Another means is, to make
software transparent such that the engineer has the chance to trace
what is going on internally; this is an additional support for taking
over responsibility in engineering.

Traceability poses research issues, some of which are already in
reach to be accomplished by available concepts and technologies:

Manage partiality conditions such that an engineer can trace
down where singularities come from, where solutions of equations
might have disappeared etc.

Sect.2.2 presented what already has been achieved for CAS
functions if evaluated in an input-response-loop. Embedding CAS
functions in arbitrary complex software reinforces the issue for the
design of respective programming languages.

Looking at the concept of “context” and the respective mech-
anisms, Isabelle/Isar seems to provide much of the logical infras-
tructure necessary to cope with handling partiality conditions dy-
namically during program execution: The context has to be initial-
ized with the input-items and the preconditions of the specification
at beginning the execution of a function; in case a partial function
causes some additional assumption, this assumption can be added
to the context. The dynamic scoping of contexts can follow the
block structure of nested function calls.

Detailed design of the language has to consider means to make
the dynamic expansion of contexts traceable in engineering prac-

tice. Nearby possibilities for such means are extensions of debug-
gers, another means could be dedicated tracing facilities.

Interactive decomposition of terms is another approach to im-
prove traceability of programs which apply mathematics; this ap-
proach exploits the power of type systems.

Many proof assistants already include parsing mechanisms that
allow type inference and disambiguation of overloaded notations.
This mechanism can not only be adapted to allow the user to type
mathematical formulas in a CAS way, but also to trace the actual
definitions of symbols in an expression. In a typical interaction with
a proof assistant, definitions and properties have to be given explicit
types unless the types can be automatically inferred. This can be
done in many cases. For example given the expression 2 ∗ π ∗ r, a
proof assistant knows that π is a real number. Then type inference
and overloading can infer that r is a real number free variable, that 2
is a real constant and ∗ is the real number multiplication. Also proof
assistants have mechanisms for finding out definitions of the given
symbols. In the example above it is possible to find the associated
definition of π and real number multiplication.

So, the principle seems clear: a typed term contains all infor-
mation necessary to ensure correct manipulations in programs, and
this information shall be made available to the user — in principle.
However, the question is open, how to make this information ac-
cessible in interaction on formulas, such that it is really useful in
engineering practice.

4.2 Two steps in a never ending story
Two of the most challenging problems in making mathematics soft-
ware safe and reliable are multivaluedness of CAS-functions and
the handling of floating-point number constants (in principle indef-
inite, if of type real) in (finite!) computers. Since these problems
are urgent as well, even little steps towards accomplishment like
the following ones might be valuable.

Multivaluedness: The main motivation for developing the cer-
tified CAS prototype (described in Sect.2.2) was to provide the
users with a system that is guaranteed to never make mistakes. One
source of mistakes is multivaluedness; systems still get confused
between branches of ‘multi-valued’ functions [16].

The description of the certified CAS prototype also shows a mis-
take that Maple makes when dealing with a complex function with
multiple branches, however the certified system is not able to deal
with it formally at all. A first workaround may be to define multi-
valued functions in a similar way to the partial functions [17]. Such
approach would guarantee no mistakes, but would allow only com-
putations which reside entirely within one branch of a multivalued
function. For performing computations that cross branches, a for-
malization of Riemann surfaces is necessary. The libraries of the
proof assistants contain very few theorems that talk about multi-
valued functions, so such a theory needs to be developed together
with certified decision procedures for this domain.

Real numbers are one of the basic features of a system for an en-
gineer. Therefore major CAS systems include efficient algorithms
for dealing with real number computations and approximations.
Numeric methods (e.g. interval arithmetic) are used to provide cor-
rectness of these approximations. Many proof assistants include
formalizations of real numbers that provide mechanisms for com-
puting approximations. The certified CAS prototype described in
Sect. 2.2 uses the Boehm-style calculations already present in HOL
Light standard library. Unfortunately, the approximations done by
inferences are quite inefficient.

O’Connor’s work [33] allows working with infinite precision
real numbers in Coq effectively. The proofs can be used for com-
putation inside the proof assistant (with the help of reflection and
the Coq bytecode engine), as well as in the extracted programs.

Additionally the programs extracted from constructive proofs are
naturally functional and therefore can be easily parallelized, which
makes them even more efficient. However the approach requires
constructive proofs. It is possible to extract proof from classical
proofs (e.g. with A-translation), but this has not yet been experi-
mented with in the setting of real numbers.

4.3 Generalization of manipulated objects
This paper assumes the development of programs comprising for-
mal specification, coding algorithms and proving properties of pro-
grams — all these development activities operate on formulas: but
that does not mean, that also programs operate on formulas. This is
not even true for mathematics: mathematical theories comprise, be-
sides formulas, geometric objects like points, circles, straight lines
and the like; they comprise graphs of various kinds, and probably
several other kinds of objects.

So, when considering design issues of a CTP-based program-
ming language, considerations about mathematical domains be-
yond predicate calculus seem appropriate. Here the domain of ge-
ometry is considered.

Formalizing geometry theorems in proof assistants is quite chal-
lenging. As shown in [26] the non-degeneracy conditions and the
amount of incidence relations induce many technical lemmas and
side conditions leading to technical proofs. This is why quite often
special approaches are used in particular formalizations.

On the other hand, the language of a CAS can be used to
talk about geometric constructions. The transformation of prop-
erties of the constructions with the help of symbolic computation
and the general algorithms present in a system (Cylindrical alge-
braic decomposition, Gröbner bases) allows showing properties of
those constructions even in non-standard geometric relations [15].
Specifying such constructions in a computer-algebra like language
with strong semantics would allow building real computer verified
proofs of properties entailed by geometric constructions.

So, if considering the design of a CTP-based programming
language, it seems worth the effort to extend the scope of the
language; the relation between deduction and programming comes
into a broader view, which might well lead to novel details in
design.

5. Related work
The union of the three lines of work merged in this paper relates to
a wide range of research topics; so we select only the most relevant
work.

Languages of proof assistants are different from the language
envisaged, and we did not tackle the question of integrating the dif-
ferent kinds of languages. In particular in the case of Isabelle, the
proof language is Isar [31]. Isar is presented to end-users as a lan-
guage for human-readable proofs, i.e. proofs as close as possible
to traditional notation for mathematical proofs. Algorithmic lan-
guage elements are accessible, but appear as an impurity (imagine
Sect.2.3 programming bending lines in Isar).

Since languages of proof assistants have algorithmic language
elements, and the envisaged language also comprises deductive el-
ements, the question about integration arises; this questions seems
very interesting, but is out of scope of this paper.

Integration of deduction and programming has found a mathe-
matical foundation in the refinement calculus [2], a theory of refin-
ing specifications to programs. The same author develops software
supporting this kind of refinement [3] for imperative programs;
however, for programming applications in mathematics we prefer
functional programming, which concerns a subset of the above the-
ory.

The Focalize system 7 is close to the language proposed here.
Much can be learned, in design details and in usability, from
“design by contract” [28] and respective systems [8], from work
done in the Kestrel Institute 8, from the B-Method 9. Another sys-
tem combining specification, proof and other engineering tasks is
PVS [34]. Albeit not being a typed system, also ACL2 10 provides
integration of deduction and programming.

Computer Algebra and Proof Assistants have coexisted for a
many years so there is much research trying to bridge the gap
between these approaches from both sides.

First, many proof assistants already have CAS-like functional-
ity, especially for domains like arithmetic. They provide the user
with conversions, tactics or decision procedures that solve prob-
lems in a particular domain. Such decision procedures present in
the standard library of HOL Light are used inside the prototype
described in Sect.2.2 for arithmetic’s, symbolic differentiation and
others.

Similarly some CAS systems provide environments that allow
logical reasoning and proving properties within the system. Such
environments are provided either as logical extensions (e.g. [37])
or are implemented within a CAS using its language [6].

There are numerous architectures for information exchange be-
tween CAS and CTP with different levels of degree of trust between
the prover and the CAS. In certain approaches the prover uses the
algorithms present in the CAS without checking their correctness,
i.e. as an oracle, whereas in other approaches the prover takes the
output of a CAS and then tries to build a verified theorem out of it.
A longer list of frameworks for information exchange and bridges
between systems can be found in [18].

There are many approaches to defining partial functions in proof
assistants. Since we would like the user to define functions without
being exposed to the underlying logic of the proof assistant we only
mention some automated mechanisms for defining partial functions
in the logic of a proof assistant. Krauss [20] has developed a
framework for defining partial recursive functions in Isabelle/HOL,
which formally proves termination by searching for lexicographic
combinations of size measures. Farmer [10] implements a scheme
for defining partial recursive functions in IMPS.

Real Number theories together with accompanying decision pro-
cedures already exist in many proof assistants. Melquiond has cre-
ated a Coq tactic that can solve some linear inequalities over real
number expressions using interval arithmetic and bisection [27].
Obua developed a computing library for Isabelle , which uses com-
putation rather than deduction to obtain bounds on real number
expressions. HOL Light constructed real numbers are described
in [13]. A mechanism for approximation of real number present in
the standard library uses the fact that HOL Light terms are transpar-
ent and decomposes a term or goal into subterms, looking for un-
derlying real number operations or constants. Lester implemented
approximation of real number expressions in PVS [22], which uses
fast converging Cauchy sequences to obtain effective evaluation in-
side PVS.

6. Summary and future work
This paper was set off by a simple question: What about proceeding
from the successful CAS-based programming languages to a more
powerful basis provided by CTP ? The question immediately makes
clear that answers are embedded in an apparently never ending (but

7 http://focalize.inria.fr/
8 http://www.kestrel.edu/
9 http://www.bmethod.com/
10 http://userweb.cs.utexas.edu/ moore/acl2/

still topical) story, in the integration of deduction and computation.
In order to not get lost in this story we choose a concrete and prag-
matic approach.

Our approach is concrete in that it starts design considerations
from three lines of work pursued independently so far: (1) narrow-
ing the gap between declarative program specification and program
generation already working in Isabelle, (2) reusing work on a CAS-
like input-response-loop embedded into HOL Light, and (3) recon-
structing an experimental language for applied mathematics based
on Isabelle/HOL. Sect.2 presents these three lines together with im-
mediate advantages from respective merges: code generation and
relief from typing problems in programming on complex mathe-
matical structures, handling partiality of CAS-functions as a sound
basis for execution of mathematics applications in programs, avail-
ability of provers in a programming language checking the condi-
tions in guards and reuse of Isabelle’s ML-Scala integration.

Sect.4 deals with advantages of merging the three lines of work,
which are not so obvious but definitely within reach of actual R&D.
Sect.4.1 argues that specifications guarding programs enhances
soundness of implementation; but this seems not sufficient: in or-
der to support interactivity in integrating work on specifications
and on algorithms, novel means for tracing system behavior are
required. Tracing down details in type-definitions into (sub-)terms
and tracing partiality conditions are discussed. Sect.4.2 proposes
steps towards accomplishing two challenging problems for math-
ematics software, multivaluedness of CAS-functions and floating
point numbers of type real. Sect.4.3 tries to open up the scope for
the design of CAS-based programming languages, and also dis-
cusses some specific requirements for constructive geometry.

Our approach is pragmatic in that it envisages design decisions
towards usefulness in engineering practice. Sect.3 discusses two
activities at an engineers electronic workbench, which seem indis-
pensable in the future: domain engineering and proving. For do-
main specific knowledge the distinction of three aspects is sug-
gested: the deductive, the applicative and the algorithmic aspect.

The authors are aware, that only prototyping can explore us-
ability of the features. Nevertheless the authors are convinced that
in the novel features of CTP-based programming languages can
balance demands and benefits such that such systems will be used
in the future.

Future work, if going towards more detailed design of a pro-
gramming language and towards an experimental implementation,
will require expertise from the disciplines of compiler construction
and of symbolic computation. A decision has to be made whether
the features of SML (module system, abstract datatypes and re-
spective pattern matching, exception handling) should be lifted
into a language in Isabelle/HOL (like the experimental language
described in Sect.2.3), or whether the high-level constructs of Is-
abelle/HOL can be traced/pushed down to the implementation lan-
guage SML. In the latter case traceability (Sect.4.1) could emerge
from adaption of the SML debugger.

References
[1] Deduction as an engineering science. Electronic Notes in Theoretical

Computer Science, 86(1):1 – 8, 2003. ISSN 1571-0661. doi: DOI:
10.1016/S1571-0661(04)80648-0. FTP’2003, 4th International Work-
shop on First-Order Theorem Proving (in connection with RDP’03,
Federated Conference on Rewriting, Deduction and Programming).

[2] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998. Graduate Texts in Computer
Science.

[3] R.-J. Back, J. Eriksson, and M. Myreen. Testing and verifying invari-
ant based programs in the socos environment. In Tests And Proofs
(First International Conference, TAP 2007, Zurich, Switzerland), vol-
ume 4454 of LNCS, pages 61–78, Zrich, Switzerland, Feb 2007.
Springer. Accepted for publication.

[4] D. Bjørner. Software Engineering, volume 3 of Texts in Theoretical
Computer Science. Springer, Berlin, Heidelberg, 2006.

[5] D. Bjørner. Domain Engineering. Technology Management, Research
and Engineering, volume 4 of COE Research Monograph Series.
JAIST Press, Nomi, Japan, Feb 2009.

[6] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa,
D. Vasaru, and W. Windsteiger. The Theorema Project: A Progress
Report. In M. Kerber and M. Kohlhase, editors, Symbolic Computa-
tion and Automated Reasoning (Proceedings of CALCULEMUS 2000,
Symposium on the Integration of Symbolic Computation and Mecha-
nized Reasoning), Natick, Massachusetts, 2000. A.K. Peters. ISBN
1-56881-145-4.

[7] B. Dehbonei and F. Mejia. Formal methods in the railways signalling
industry. In M. B. M. Naftalin, T. Denvir, editor, FME’94:Industrial
Benefit of Formal Methods, pages 26–34. Springer-Verlag, October
1994.

[8] Standard ECMA-367 Eiffel: Analysis, Design and Programming Lan-
guage. ECMA International, 2 edition, June 2006. www.ecma-
international.org/publications/standards/Ecma-367.htm.

[9] W. M. Farmer. Biform theories in chiron. In Kauers et al. [19], page
6679. ISBN 978-3-540-73083-5.

[10] W. M. Farmer. A scheme for defining partial higher-order functions
by recursion. In A. Butterfield and K. Haegele, editors, IWFM, Work-
shops in Computing. BCS, 1999.

[11] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite
systems. In Functional and Logic Programming, 10th International
Symposium: FLOPS 2010, volume 6009 of Lecture Notes in Computer
Science. Springer, 2010.

[12] K. M. Hansen. Validation of a railway interlocking model. In M. B.
M. Naftalin, T. Denvir, editor, FME’94: Industrial Benefit of Formal
Methods, pages 582–601. Springer-Verlag, October 1994.

[13] J. R. Harrison. Theorem proving with the real numbers. Technical Re-
port 408, University of Cambridge, Computer Laboratory, November
1996.

[14] J. Hölzl. Proving inequalities over reals with computation in Is-
abelle/HOL. In G. D. Reis and L. Théry, editors, Proceedings of the
ACM SIGSAM 2009 International Workshop on Programming Lan-
guages for Mechanized Mathematics Systems (PLMMS’09), pages 38–
45, Munich, August 2009.

[15] T. Ida, M. Marin, H. Takahashi, and F. Ghourabi. Computational
origami construction as constraint solving and rewriting. Electr. Notes
Theor. Comput. Sci., 216:31–44, 2008.

[16] D. Jeffrey and A. Norman. Not seeing the roots for
the branches: multivalued functions in computer algebra.
SIGSAM Bull., 38(3):57–66, 2004. ISSN 0163-5824. doi:
http://doi.acm.org/10.1145/1040034.1040036.

[17] C. Kaliszyk. Automating side conditions in formalized partial func-
tions. In S. Autexier, J. Campbell, J. Rubio, V. Sorge, M. Suzuki, and
F. Wiedijk, editors, AISC/MKM/Calculemus, volume 5144 of LNCS,
pages 300–314. Springer, 2008. ISBN 978-3-540-85109-7.

[18] C. Kaliszyk and F. Wiedijk. Certified computer algebra on top of an
interactive theorem prover. In Kauers et al. [19], pages 94–105. ISBN
978-3-540-73083-5.

[19] M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors. To-
wards Mechanized Mathematical Assistants, 14th Symposium, Cal-
culemus 2007, 6th International Conference, MKM 2007, Hagenberg,
Austria, June 27-30, 2007, Proceedings, volume 4573 of LNCS, 2007.
Springer. ISBN 978-3-540-73083-5.

[20] A. Krauss. Partial recursive functions in higher-order logic. In
U. Furbach and N. Shankar, editors, IJCAR, volume 4130 of Lecture
Notes in Computer Science, pages 589–603. Springer, 2006. ISBN
3-540-37187-7.

[21] R. Lang. Elementare Gleichungen der Mittelschulmathematik in der
ISACWissensbasis. Master’s thesis, University of Technology, Insti-
tute of Software Technology, Graz, Austria, March 2003.
http://www.ist.tugraz.at/projects/isac/publ/da-rlang.ps.gz.

[22] D. R. Lester. Real number calculations and theorem: Proving vali-
dation and use of an exact arithmetic. In O. Ait-Mohamed, editor,
TPHOLs, volume 5170 of Lecture Notes in Computer Science, pages
215–229. Springer, 2008.

[23] P. Lucas. Formal semantics of programming languages: VDL. IBM
Journal of Devt. and Res., 25(5), 1981.

[24] P. Lucas. On the formalization of programming languages: Early
history and main approaches. In D. Bjørner and C. B. Jones, editors,
The Vienna Development Method: The Meta-Language, volume 16 of
LNCS. Springer, 1978.

[25] P. Lucas and K. Walk. On the Formal Description of PL/I, volume 6 of
Annual Review in Automatic Programming. Pergamon Press, Oxford,
1970.

[26] N. Magaud, J. Narboux, and P. Schreck. Formalizing desargues’
theorem in coq using ranks. In SAC ’09: Proceedings of the 2009 ACM
symposium on Applied Computing, pages 1110–1115, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-166-8.

[27] G. Melquiond. Proving bounds on real-valued functions with com-
putations. In A. Armando, P. Baumgartner, and G. Dowek, editors,
Proceedings of the 4th International Joint Conference on Automated
Reasoning, Lectures Notes in Computer Science, Sydney, Australia,
2008.

[28] B. Meyer. Design by contract. Technical Report TR-EI-12/CO,
Interactive Software Engineering Inc., 1986.

[29] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). The MIT Press, Cambridge, London, 1997.

[30] W. Neuper. Reactive User-Guidance by an Autonomous Engine Doing
High-School Math. PhD thesis, IICM - Inst. f. Softwaretechnology,
Technical University, A-8010 Graz, 2001.
http://www.ist.tugraz.at/projects/isac/publ/wn-diss.ps.gz.

[31] T. Nipkow. A Tutorial Introduction to Structured
Isar Proofs. Institut fr̈ Informatik, TU Mn̈chen.
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-overview.pdf.

[32] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[33] R. O’Connor. Incompleteness and Completeness. PhD thesis, Rad-
boud University Nijmegen, 2009.

[34] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS:
Combining specification, proof checking, and model checking. In
R. Alur and T. Henzinger, editors, Computer-Aided Verification, pages
411–414. CAV’96, 1996.

[35] L. C. Paulson. Organizing numerical theories using axiomatic type
classes. Automated Reasoning, 33(1):2949, 2004.

[36] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361–386. Academic Press,
1990.

[37] E. Poll and S. Thompson. Adding the axioms to Axiom: Towards a
system of automated reasoning in Aldor. In Calculemus and Types
’98, July 1998. Also as technical report 6-98, Computing Laboratory,
University of Kent.

[38] M. Wenzel. The Isabelle/Isar implementation. Technical report,
TU München, Software & Systems Engineering, April 2009. With
contributions by Florian Haftmann and Larry Paulson.

[39] M. Wenzel. The languages of Isabelle: Isar, ML, and Scala.
Slides Lausanne, September 2009. http://www4.informatik.tu-
muenchen.de/ wenzelm/papers/lausanne2009.pdf.

