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ABSTRACT
Higher-Order Logic (HOL) is based on a small logic kernel, whose
only mechanism for extension is the introduction of safe definitions
and of non-empty types. Both extensions are often performed in
quotient constructions. To ease the work involved with such quo-
tient constructions, we re-implemented in the Isabelle/HOL theo-
rem prover the quotient package by Homeier. In doing so we ex-
tended his work in order to deal with compositions of quotients and
also specified completely the procedure of lifting theorems from the
raw level to the quotient level. The importance for theorem proving
is that many formal verifications, in order to be feasible, require a
convenient reasoning infrastructure for quotient constructions.
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1. INTRODUCTION
One might think quotients have been studied to death, but in the
context of theorem provers many questions concerning them are far
from settled. In this paper we address the question of how to estab-
lish a convenient reasoning infrastructure for quotient constructions
in the Isabelle/HOL, theorem prover. Higher-Order Logic (HOL)
consists of a small number of axioms and inference rules over a
simply-typed term-language. Safe reasoning in HOL is ensured by
two very restricted mechanisms for extending the logic: one is the
definition of new constants in terms of existing ones; the other is the
introduction of new types by identifying non-empty subsets in ex-
isting types. Previous work has shown how to use both mechanisms
for dealing with quotient constructions in HOL (see [6, 9]). For ex-
ample the integers in Isabelle/HOL are constructed by a quotient
construction over the type nat × nat and the equivalence relation

(n1, n2) ≈ (m1, m2) , n1 + m2 = m1 + n2 (1)

This constructions yields the new type int, and definitions for 0
and 1 of type int can be given in terms of pairs of natural numbers
(namely (0, 0) and (1, 0)). Operations such as add with type int⇒
int⇒ int can be defined in terms of operations on pairs of natural
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numbers (namely add_pair (n1, m1) (n2, m2) , (n1 + n2, m1 +
m2)). Similarly one can construct finite sets, written α fset, by
quotienting the type α list according to the equivalence relation

xs ≈ ys , (∀ x. memb x xs←→ memb x ys) (2)

which states that two lists are equivalent if every element in one list
is also member in the other. The empty finite set, written ∅, can
then be defined as the empty list and the union of two finite sets,
written ∪, as list append.

Quotients are important in a variety of areas, but they are really
ubiquitous in the area of reasoning about programming language
calculi. A simple example is the lambda-calculus, whose raw terms
are defined as

t ::= x | t t | λx.t

The problem with this definition arises, for instance, when one at-
tempts to prove formally the substitution lemma [1] by induction
over the structure of terms. This can be fiendishly complicated (see
[4, Pages 94–104] for some “rough” sketches of a proof about raw
lambda-terms). In contrast, if we reason about α-equated lambda-
terms, that means terms quotient according to α-equivalence, then
the reasoning infrastructure provided, for example, by Nominal Is-
abelle makes the formal proof of the substitution lemma almost
trivial.

The difficulty is that in order to be able to reason about integers,
finite sets or α-equated lambda-terms one needs to establish a rea-
soning infrastructure by transferring, or lifting, definitions and the-
orems from the raw type nat× nat to the quotient type int (similarly
for finite sets and α-equated lambda-terms). This lifting usually re-
quires a lot of tedious reasoning effort [9]. In principle it is feasible
to do this work manually, if one has only a few quotient construc-
tions at hand. But if they have to be done over and over again, as in
Nominal Isabelle, then manual reasoning is not an option.

The purpose of a quotient package is to ease the lifting of the-
orems and automate the reasoning as much as possible. In the
context of HOL, there have been a few quotient packages already
[5, 10]. The most notable one is by Homeier [6] implemented in
HOL4. The fundamental construction these quotient packages per-
form can be illustrated by the following picture:

equiv-
clas.

new
type
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type
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Rep

Abs

The starting point is an existing type, to which we refer as the raw
type and over which an equivalence relation is given by the user.



With this input the package introduces a new type, to which we
refer as the quotient type. This type comes with an abstraction
and a representation function, written Abs and Rep.1 They relate
elements in the existing type to elements in the new type, and can
be uniquely identified by their quotient type. For example for the
integer quotient construction the types of Abs and Rep are

Abs :: nat × nat⇒ int Rep :: int⇒ nat × nat

We therefore often write Abs_int and Rep_int if the typing infor-
mation is important.

Every abstraction and representation function stands for an iso-
morphism between the non-empty subset and elements in the new
type. They are necessary for making definitions involving the new
type. For example 0 and 1 of type int can be defined as

0 , Abs_int (0, 0) 1 , Abs_int (1, 0)

Slightly more complicated is the definition of add having type int
⇒ int⇒ int. Its definition is as follows

add n m , Abs_int (add_pair (Rep_int n) (Rep_int m)) (3)

where we take the representation of the arguments n and m, add
them according to the function add_pair and then take the abstrac-
tion of the result. This is all straightforward and the existing quo-
tient packages can deal with such definitions. But what is surprising
is that none of them can deal with slightly more complicated defi-
nitions involving compositions of quotients. Such compositions are
needed for example in case of quotienting lists to yield finite sets
and the operator that flattens lists of lists, defined as follows

flat [] , [] flat x::xs , x @ flat xs

where @ is the usual list append. We expect that the corresponding
operator on finite sets, written fconcat, builds finite unions of finite
sets:⋃

∅ , ∅
⋃

{x} ∪ S , x ∪
⋃

S

The quotient package should automatically provide us with a def-
inition for

⋃
in terms of flat, Rep_fset and Abs_fset. The problem

is that the method used in the existing quotient packages of just
taking the representation of the arguments and then taking the ab-
straction of the result is not enough. The reason is that in case of

⋃
we obtain the incorrect definition⋃

S , Abs_fset (flat (Rep_fset S))

where the right-hand side is not even typable! This problem can
be remedied in the existing quotient packages by introducing an
intermediate step and reasoning about flattening of lists of finite
sets. However, this remedy is rather cumbersome and inelegant in
light of our work, which can deal with such definitions directly.
The solution is that we need to build aggregate representation and
abstraction functions, which in case of

⋃
generate the definition⋃

S , Abs_fset (flat ((map_list Rep_fset ◦ Rep_fset) S))

where map_list is the usual mapping function for lists. In this paper
we will present a formal definition of our aggregate abstraction and
representation functions (this definition was omitted in [6]). They
1Actually slightly more basic functions are given; the functions Abs
and Rep need to be derived from them. We will show the details
later.

generate definitions, like the one above for
⋃

, according to the type
of the raw constant and the type of the quotient constant. This
means we also have to extend the notions of aggregate equivalence
relation, respectfulness and preservation from Homeier [6].

In addition we are able to clearly specify what is involved in the
lifting process (this was only hinted at in [6] and implemented as
a “rough recipe” in ML-code). A pleasing side-result is that our
procedure for lifting theorems is completely deterministic follow-
ing the structure of the theorem being lifted and the theorem on the
quotient level. Space constraints, unfortunately, allow us to only
sketch this part of our work in Section 5 and we defer the reader to
a longer version for the details. However, we will give in Section
3 and 4 all definitions that specify the input and output data of our
three-step lifting procedure. Appendix A gives an example how our
quotient package works in practise.

2. PRELIMINARIES AND GENERAL
QUOTIENTS

We will give in this section a crude overview of HOL and describe
the main definitions given by Homeier for quotients [6].

At its core, HOL is based on a simply-typed term language,
where types are recorded in Church-style fashion (that means, we
can always infer the type of a term and its subterms without any
additional information). The grammars for types and terms are

σ, τ ::= α | (σ,. . . , σ) κ t, s ::= xσ | cσ | t t | λxσ . t

with types being either type variables or type constructors and terms
being variables, constants, applications or abstractions. We often
write just κ for () κ, and use αs and σs to stand for collections of
type variables and types, respectively. The type of a term is of-
ten made explicit by writing t :: σ. HOL includes a type bool for
booleans and the function type, written σ⇒ τ . HOL also contains
many primitive and defined constants; for example, a primitive con-
stant is equality, with type = :: σ ⇒ σ ⇒ bool, and the identity
function with type id :: σ⇒ σ is defined as λxσ . xσ .

An important point to note is that theorems in HOL can be seen
as a subset of terms that are constructed specially (namely through
axioms and proof rules). As a result we are able to define auto-
matic proof procedures showing that one theorem implies another
by decomposing the term underlying the first theorem.

Like Homeier’s, our work relies on map-functions defined for ev-
ery type constructor taking some arguments, for example map_list
for lists. Homeier describes in [6] map-functions for products,
sums, options and also the following map for function types

(f 7→ g) h , g ◦ h ◦ f

Using this map-function, we can give the following, equivalent, but
more uniform definition for add shown in (3):

add , (Rep_int 7→ Rep_int 7→ Abs_int) add_pair

Using extensionality and unfolding the definition of 7→, we can
get back to (3). In what follows we shall use the convention to
write map_κ for a map-function of the type-constructor κ. In our
implementation we maintain a database of these map-functions that
can be dynamically extended.

It will also be necessary to have operators, referred to as rel_κ,
which define equivalence relations in terms of constituent equiv-
alence relations. For example given two equivalence relations R1

and R2, we can define an equivalence relations over products as

(R1 ### R2) (x1, x2) (y1, y2) , R1 x1 y1 ∧ R2 x2 y2



Homeier gives also the following operator for defining equivalence
relations over function types

R1 Z⇒ R2 , λf g. ∀ x y. R1 x y −→ R2 (f x) (g y) (4)

In the context of quotients, the following two notions from [6] are
needed later on.

DEFINITION 1 (RESPECTS). An element x respects a relation
R provided R x x.

DEFINITION 2 (BOUNDED ∀ AND λ). ∀ x ∈ S. P x holds if
for all x, x ∈ S implies P x; and (λx ∈ S. f x) = f x provided x ∈ S.

The central definition in Homeier’s work [6] relates equivalence
relations, abstraction and representation functions:

DEFINITION 3 (QUOTIENT TYPES). Given a relation R, an
abstraction function Abs and a representation function Rep, the
predicate Quot R Abs Rep holds if and only if

(i) ∀ a. Abs (Rep a) = a
(ii) ∀ a. R (Rep a) (Rep a)

(iii) ∀ r s. R r s = (R r r ∧ R s s ∧ Abs r = Abs s)

The value of this definition lies in the fact that validity of Quot R
Abs Rep can often be proved in terms of the validity of Quot over
the constituent types of R, Abs and Rep. For example Homeier
proves the following property for higher-order quotient types:

PROPOSITION 1. If Quot R1 Abs1 Rep1 and Quot R2 Abs2 Rep2

then Quot R1 Z⇒ R2 Rep1 7→ Abs2 Abs1 7→ Rep2.

As a result, Homeier is able to build an automatic prover that can
nearly always discharge a proof obligation involving Quot. Our
quotient package makes heavy use of this part of Homeier’s work
including an extension for dealing with conjugations of equiva-
lence relations2 defined as follows:

DEFINITION 4. R1 ◦◦◦ R2 , R1 ◦◦ R2 ◦◦ R1 where ◦◦ is the
predicate composition defined by (R1 ◦◦ R2) x z holds if and only
if there exists a y such that R1 x y and R2 y z.

Unfortunately a general quotient theorem for ◦◦◦, analogous to the
one for 7→ given in Proposition 1, would not be true in general. It
cannot even be stated inside HOL, because of restrictions on types.
However, we can prove specific instances of a quotient theorem for
composing particular quotient relations. For example, to lift theo-
rems involving flat the quotient theorem for composing ≈list will
be necessary: given Quot R Abs Rep with R being an equivalence
relation, then

Quot (rel_list R ◦◦◦ ≈list)
(Abs_fset ◦ map_list Abs) (map_list Rep ◦ Rep_fset)

3. QUOTIENT TYPES AND QUOTIENT
DEFINITIONS

The first step in a quotient construction is to take a name for the
new type, say κq , and an equivalence relation, say R, defined over
a raw type, say σ. The type of the equivalence relation must be σ
⇒ σ⇒ bool. The user-visible part of the quotient type declaration
is therefore
2That are symmetric by definition.

quotient_type αs κq = σ / R (5)

and a proof that R is indeed an equivalence relation. Theαs indicate
the arity of the new type and the type-variables of σ can only be
contained in αs. Two concrete examples are

quotient_type int = nat × nat / ≈nat × nat
quotient_type α fset = α list / ≈list

which introduce the type of integers and of finite sets using the
equivalence relations ≈nat × nat and ≈list defined in (1) and (2),
respectively (the proofs about being equivalence relations is omit-
ted). Given this data, we define for declarations shown in (5) the
quotient types internally as

typedef αs κq = {c. ∃ x. c = R x}

where the right-hand side is the (non-empty) set of equivalence
classes of R. The constraint in this declaration is that the type vari-
ables in the raw type σ must be included in the type variables αs
declared for κq . HOL will then provide us with the following ab-
straction and representation functions

abs_κq :: σ set⇒ αs κq rep_κq :: αs κq ⇒ σ set

As can be seen from the type, they relate the new quotient type
and equivalence classes of the raw type. However, as Homeier [6]
noted, it is much more convenient to work with the following de-
rived abstraction and representation functions

Abs_κq x , abs_κq (R x) Rep_κq x , ε (rep_κq x)

on the expense of having to use Hilbert’s choice operator ε in the
definition of Rep_κq . These derived notions relate the quotient type
and the raw type directly, as can be seen from their type, namely σ
⇒ αs κq and αs κq ⇒ σ, respectively. Given that R is an equiva-
lence relation, the following property holds for every quotient type
(for the proof see [6]).

PROPOSITION 2. Quot R Abs_κq Rep_κq .

The next step in a quotient construction is to introduce defini-
tions of new constants involving the quotient type. These defini-
tions need to be given in terms of concepts of the raw type (remem-
ber this is the only way how to extend HOL with new definitions).
For the user the visible part of such definitions is the declaration

quotient_definition c :: τ is t :: σ

where t is the definiens (its type σ can always be inferred) and c is
the name of definiendum, whose type τ needs to be given explicitly
(the point is that τ and σ can only differ in places where a quotient
and raw type is involved). Two concrete examples are

quotient_definition 0 :: int is (0::nat, 0::nat)
quotient_definition

⋃
:: (α fset) fset⇒ α fset is flat

The first one declares zero for integers and the second the operator
for building unions of finite sets (flat having the type (α list) list⇒
α list).

From such declarations given by the user, the quotient package
needs to derive proper definitions using Abs and Rep. The data we
rely on is the given quotient type τ and the raw type σ. They al-
low us to define aggregate abstraction and representation functions
using the functions ABS (σ, τ ) and REP (σ, τ ) whose clauses we



shall give below. The idea behind these two functions is to simul-
taneously descend into the raw types σ and quotient types τ , and
generate the appropriate Abs and Rep in places where the types dif-
fer. Therefore we generate just the identity whenever the types are
equal. On the “way” down, however we might have to use map-
functions to let Abs and Rep act over the appropriate types. In what
follows we use the short-hand notation ABS (σs, τs) to mean ABS
(σ1, τ1). . .ABS (σn, τn); similarly for REP.

equal types:
ABS (σ, σ) , id :: σ⇒ σ REP (σ, σ) , id :: σ⇒ σ

function types:
ABS (σ1⇒ σ2, τ1⇒ τ2) , REP (σ1, τ1) 7→ ABS (σ2, τ2)
REP (σ1⇒ σ2, τ1⇒ τ2) , ABS (σ1, τ1) 7→ REP (σ2, τ2)

equal type constructors:
ABS (σs κ, τs κ) , map_κ (ABS (σs, τs))
REP (σs κ, τs κ) , map_κ (REP (σs, τs))

unequal type constructors:
ABS (σs κ, τs κq) , Abs_κq ◦ (MAP(%s κ) (ABS (σs’, τs)))
REP (σs κ, τs κq) , (MAP(%s κ) (REP (σs’, τs))) ◦ Rep_κq

(6)

In the last two clauses are subtle. We rely in them on the fact that
the type αs κq is the quotient of the raw type %s κ (for example
int and nat × nat, or α fset and α list). This data is given by
declarations shown in (5). The quotient construction ensures that
the type variables in %s κ must be among the αs. The σs’ are given
by the substitutions for the αs when matching σs κ against %s κ.
This calculation determines what are the types in place of the type
variables αs in the instance of quotient type αs κq—namely τs,
and the corresponding types in place of the αs in the raw type %s
κ—namely σs’. The function MAP calculates an aggregate map-
function for a raw type as follows:

MAP’ (α) , aα

MAP’ (κ) , id :: κ⇒ κ

MAP’ (σs κ) , map_κ (MAP’(σs))

MAP (σ) , λas. MAP’(σ)

In this definition we rely on the fact that in the first clause we can
interpret type-variables α as term variables a. In the last clause
we build an abstraction over all term-variables of the map-function
generated by the auxiliary function MAP’. The need for aggregate
map-functions can be seen in cases where we build quotients, say
(α, β) κq , out of compound raw types, say (α list)× β. In this case
MAP generates the aggregate map-function:

λa b. map_prod (map_list a) b

which is essential in order to define the corresponding aggregate
abstraction and representation functions.

To see how these definitions pan out in practise, let us return to
our example about flat and fconcat, where we have the raw type (α
list) list⇒ α list and the quotient type (α fset) fset⇒ α fset. Feed-
ing these types into ABS gives us (after some β-simplifications) the
abstraction function

(map_list (map_list id ◦ Rep_fset) ◦ Rep_fset) 7→
Abs_fset ◦ map_list id

In our implementation we further simplify this function by rewrit-
ing with the usual laws about maps and id, for example map_list id
= id and f ◦ id = id ◦ f = f. This gives us the simpler abstraction
function

(map_list Rep_fset ◦ Rep_fset) 7→ Abs_fset

which we can use for defining fconcat as follows⋃
, ((map_list Rep_fset ◦ Rep_fset) 7→ Abs_fset) flat

Note that by using the operator 7→ and special clauses for func-
tion types in (6), we do not have to distinguish between arguments
and results, but can deal with them uniformly. Consequently, all
definitions in the quotient package are of the general form

c , ABS (σ, τ ) t

where σ is the type of the definiens t and τ the type of the defined
quotient constant c. This data can be easily generated from the
declaration given by the user. To increase the confidence in this
way of making definitions, we can prove that the terms involved
are all typable.

LEMMA 1. If ABS (σ, τ ) returns some abstraction function
Abs and REP (σ, τ ) some representation function Rep, then Abs
is of type σ⇒ τ and Rep of type τ ⇒ σ.

PROOF. By mutual induction and analysing the definitions of
ABS and REP. The cases of equal types and function types are
straightforward (the latter follows from 7→ having the type (α ⇒
β) ⇒ (γ ⇒ δ) ⇒ (β ⇒ γ) ⇒ (α ⇒ δ)). In case of equal type
constructors we can observe that a map-function after applying the
functions ABS (σs, τs) produces a term of type σs κ⇒ τs κ. The
interesting case is the one with unequal type constructors. Since
we know the quotient is between αs κq and %s κ, we have that
Abs_κq is of type %s κ⇒ αs κq . This type can be more specialised
to %s[τs] κ ⇒ τs κq where the type variables αs are instantiated
with the τs. The complete type can be calculated by observing that
MAP (%s κ), after applying the functions ABS (σs’, τs) to it, returns
a term of type %s[σs’] κ⇒ %s[τs] κ. This type is equivalent to σs
κ⇒ %s[τs] κ, which we just have to compose with %s[τs] κ⇒ τs
κq according to the type of ◦.

4. RESPECTFULNESS AND
PRESERVATION

The main point of the quotient package is to automatically “lift”
theorems involving constants over the raw type to theorems involv-
ing constants over the quotient type. Before we can describe this
lifting process, we need to impose two restrictions in form of proof
obligations that arise during the lifting. The reason is that even if
definitions for all raw constants can be given, not all theorems can
be lifted to the quotient type. Most notable is the bound variable
function, that is the constant bn, defined for raw lambda-terms as
follows

bn (x) , ∅ bn (t1 t2) , bn (t1) ∪ bn (t2)
bn (λx. t) , {x} ∪ bn (t)

We can generate a definition for this constant using ABS and REP.
But this constant does not respect α-equivalence and consequently
no theorem involving this constant can be lifted toα-equated lambda
terms. Homeier formulates the restrictions in terms of the proper-
ties of respectfulness and preservation. We have to slightly extend
Homeier’s definitions in order to deal with quotient compositions.

To formally define what respectfulness is, we have to first define
the notion of aggregate equivalence relations using the function
REL(σ, τ ) The idea behind this function is to simultaneously de-
scend into the raw types σ and quotient types τ , and generate the
appropriate quotient equivalence relations in places where the types
differ and equalities elsewhere.



equal types: REL (σ, σ) , = :: σ⇒ σ⇒ bool

equal type constructors:
REL (σs κ, τs κ) , rel_κ (REL (σs, τs))

unequal type constructors:
REL (σs κ, τs κq) , rel_κq (REL (σs’, τs))

(7)

The σs’ in the last clause are calculated as in (6): again we know
that type αs κq is the quotient of the raw type %s κ. The σs’ are the
substitutions for αs obtained by matching %s κ and σs κ.

Let us return to the lifting procedure of theorems. Assume we
have a theorem that contains the raw constant cr :: σ and which we
want to lift to a theorem where cr is replaced by the corresponding
constant cq :: τ defined over a quotient type. In this situation we
generate the following proof obligation

REL (σ, τ ) cr cr .

Homeier calls these proof obligations respectfulness theorems. How-
ever, unlike his quotient package, we might have several respectful-
ness theorems for one constant—he has at most one. The reason is
that because of our quotient compositions, the types σ and τ are
not completely determined by cr. And for every instantiation of
the types, a corresponding respectfulness theorem is necessary.

Before lifting a theorem, we require the user to discharge re-
spectfulness proof obligations. In case of bn this obligation is

(≈α Z⇒ =) bn bn

and the point is that the user cannot discharge it: because it is not
true. To see this, we can just unfold the definition of Z⇒ (4) using
extensionality to obtain the false statement

∀ t1 t2. if t1 ≈α t2 then bn(t1) = bn(t2)

In contrast, lifting a theorem about append to a theorem describing
the union of finite sets will mean to discharge the proof obligation

(≈list Z⇒≈list Z⇒≈list) append append

To do so, we have to establish

if xs ≈list ys and us ≈list vs then xs @ us ≈list ys @ vs

which is straightforward given the definition shown in (2).
The second restriction we have to impose arises from non-lifted

polymorphic constants, which are instantiated to a type being quo-
tient. For example, take the cons-constructor to add a pair of natural
numbers to a list, whereby we assume the pair of natural numbers
turns into an integer in the quotient construction. The point is that
we still want to use cons for adding integers to lists—just with a
different type. To be able to lift such theorems, we need a preser-
vation property for cons. Assuming we have a polymorphic raw
constant cr :: σ and a corresponding quotient constant cq :: τ , then
a preservation property is as follows

Quot Rαs Absαs Repαs implies ABS (σ, τ ) cr = cr

where the αs stand for the type variables in the type of cr . In case
of cons (which has type α⇒ α list⇒ α list) we have

(Rep 7→ map_list Rep 7→ map_list Abs) cons = cons

under the assumption Quot R Abs Rep. The point is that if we have
an instance of cons where the type variable α is instantiated with
nat × nat and we also quotient this type to yield integers, then we
need to show this preservation property.

5. LIFTING OF THEOREMS
The main benefit of a quotient package is to lift automatically the-
orems over raw types to theorems over quotient types. We will per-
form this lifting in three phases, called regularization, injection and
cleaning according to procedures in Homeier’s ML-code. Space
restrictions, unfortunately, prevent us from giving anything but a
sketch of these three phases. However, we will precisely define the
input and output data of these phases (this was omitted in [6]).

The purpose of regularization is to change the quantifiers and
abstractions in a “raw” theorem to quantifiers over variables that
respect their respective relations (Definition 1 states what respects
means). The purpose of injection is to add Rep and Abs of appro-
priate types in front of constants and variables of the raw type so
that they can be replaced by the corresponding constants from the
quotient type. The purpose of cleaning is to bring the theorem de-
rived in the first two phases into the form the user has specified.
Abstractly, our package establishes the following three proof steps:

1.) Regularization raw_thm −→ reg_thm
2.) Injection reg_thm←→ inj_thm
3.) Cleaning inj_thm←→ quot_thm

which means, stringed together, the raw theorem implies the quo-
tient theorem. In contrast to other quotient packages, our package
requires that the user specifies both, the raw_thm (as theorem) and
the term of the quot_thm.3 As a result, the user has fine control over
which parts of a raw theorem should be lifted.

The second and third proof step performed in package will al-
ways succeed if the appropriate respectfulness and preservation
theorems are given. In contrast, the first proof step can fail: a theo-
rem given by the user does not always imply a regularized version
and a stronger one needs to be proved. An example for this kind of
failure is the simple statement for integers 0 6= 1. One might hope
that it can be proved by lifting (0, 0) 6= (1, 0), but this raw theorem
only shows that two particular elements in the equivalence classes
are not equal. In order to obtain 0 6= 1, a more general statement
stipulating that the equivalence classes are not equal is necessary.
This kind of failure is beyond the scope where the quotient package
can help: the user has to provide a raw theorem that can be regular-
ized automatically, or has to provide an explicit proof for the first
proof step. Homeier gives more details about this issue in the long
version of [6].

In the following we will first define the statement of the regular-
ized theorem based on raw_thm and quot_thm. Then we define the
statement of the injected theorem, based on reg_thm and quot_thm.
We then show the three proof steps, which can all be performed
independently from each other.

We first define the function REG, which takes the terms of the
raw_thm and quot_thm as input and returns reg_thm. The idea be-
hind this function is that it replaces quantifiers and abstractions in-
volving raw types by bounded ones, and equalities involving raw
types by appropriate aggregate equivalence relations. It is defined
by simultaneous recursion on the structure of the terms of raw_thm
and quot_thm as follows:

3Though we also provide a fully automated mode, where the
quot_thm is guessed from the form of raw_thm.



abstractions:

REG (λxσ . t, λxτ . s) ,

{
λxσ . REG (t, s) provided σ = τ

λxσ ∈ Resp (REL (σ, τ )). REG (t, s)
universal quantifiers:

REG (∀ xσ . t, ∀ xτ . s) ,

{
∀ xσ . REG (t, s) provided σ = τ

∀ xσ ∈ Resp (REL (σ, τ )). REG (t, s)

equality: REG (=σ⇒σ⇒bool, =τ⇒τ⇒bool) , REL (σ, τ )

applications, variables and constants:
REG (t1 t2, s1 s2) , REG (t1, s1) REG (t2, s2)
REG (x1, x2) , x1
REG (c1, c2) , c1
In the above definition we omitted the cases for existential quanti-
fiers and unique existential quantifiers, as they are very similar to
the cases for the universal quantifier.

Next we define the function INJ which takes as argument reg_thm
and quot_thm (both as terms) and returns inj_thm:

abstractions:
INJ (λx. t :: σ, λx. s :: τ ) ,{

λx. INJ (t, s) provided σ = τ

REP (σ, τ ) (ABS (σ, τ ) (λx. INJ (t, s)))

INJ (λx ∈ R. t :: σ, λx. s :: τ ) ,
REP (σ, τ ) (ABS (σ, τ ) (λx ∈ R. INJ (t, s)))

universal quantifiers:
INJ (∀ t, ∀ s) , ∀ INJ (t, s)
INJ (∀ t ∈ R, ∀ s) , ∀ INJ (t, s) ∈ R

applications, variables and constants:

INJ (t1 t2, s1 s2) , INJ (t1, s1) INJ (t2, s2)

INJ (x1σ , x2τ ) ,

{
x1 provided σ = τ

REP (σ, τ ) (ABS (σ, τ ) x1)

INJ (c1σ , c2τ ) ,

{
c1 provided σ = τ

REP (σ, τ ) (ABS (σ, τ ) c1)

In this definition we again omitted the cases for existential and
unique existential quantifiers.

In the first phase, establishing raw_thm−→ reg_thm, we always
start with an implication. Isabelle provides mono rules that can
split up the implications into simpler implicational subgoals. This
succeeds for every monotone connective, except in places where
the function REG replaced, for instance, a quantifier by a bounded
quantifier. To decompose them, we have to prove that the relations
involved are aggregate equivalence relations.

The second phase, establishing reg_thm←→ inj_thm, starts with
an equality between the terms of the regularized theorem and the
injected theorem. The proof again follows the structure of the two
underlying terms taking respectfulness theorems into account.

We defined the theorem inj_thm in such a way that establishing
in the third phase the equivalence inj_thm ←→ quot_thm can be
achieved by rewriting inj_thm with the preservation theorems and
quotient definitions. This step also requires that the definitions of
all lifted constants are used to fold the Rep with the raw constants.
We will give more details about our lifting procedure in a longer
version of this paper.

6. CONCLUSION AND RELATED WORK
The code of the quotient package and the examples described here
are already included in the standard distribution of Isabelle. 4 The
4Available from http://isabelle.in.tum.de/.

package is heavily used in the new version of Nominal Isabelle,
which provides a convenient reasoning infrastructure for program-
ming language calculi involving general binders. To achieve this,
it builds types representing α-equivalent terms. Earlier versions of
Nominal Isabelle have been used successfully in formalisations of
an equivalence checking algorithm for LF [12], Typed Scheme [11],
several calculi for concurrency [2] and a strong normalisation result
for cut-elimination in classical logic [13].

There is a wide range of existing literature for dealing with quo-
tients in theorem provers. Slotosch [10] implemented a mecha-
nism that automatically defines quotient types for Isabelle/HOL.
But he did not include theorem lifting. Harrison’s quotient pack-
age [5] is the first one that is able to automatically lift theorems,
however only first-order theorems (that is theorems where abstrac-
tions, quantifiers and variables do not involve functions that include
the quotient type). There is also some work on quotient types in
non-HOL based systems and logical frameworks, including theory
interpretations in PVS [8], new types in MetaPRL [7], and setoids
in Coq [3]. Paulson showed a construction of quotients that does
not require the Hilbert Choice operator, but also only first-order
theorems can be lifted [9]. The most related work to our pack-
age is the package for HOL4 by Homeier [6]. He introduced most
of the abstract notions about quotients and also deals with lifting
of higher-order theorems. However, he cannot deal with quotient
compositions (needed for lifting theorems about flat). Also, a num-
ber of his definitions, like ABS, REP and INJ etc only exist in [6] as
ML-code, not included in the paper. Like Homeier’s, our quotient
package can deal with partial equivalence relations, but for lack of
space we do not describe the mechanisms needed for this kind of
quotient constructions.

One feature of our quotient package is that when lifting theo-
rems, the user can precisely specify what the lifted theorem should
look like. This feature is necessary, for example, when lifting an
induction principle for two lists. Assuming this principle has as the
conclusion a predicate of the form P xs ys, then we can precisely
specify whether we want to quotient xs or ys, or both. We found this
feature very useful in the new version of Nominal Isabelle, where
such a choice is required to generate a reasoning infrastructure for
alpha-equated terms.
Acknowledgements: We would like to thank Peter Homeier for the
many discussions about his HOL4 quotient package and explaining
to us some of its finer points in the implementation. Without his
patient help, this work would have been impossible.
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APPENDIX
A. EXAMPLES
In this appendix we will show a sequence of declarations for defin-
ing the type of integers by quotienting pairs of natural numbers,
and lifting one theorem.

A user of our quotient package first needs to define a relation
on the raw type with which the quotienting will be performed. We
give the same integer relation as the one presented in (1):

fun int_rel :: (nat × nat)⇒ (nat × nat)⇒ (nat × nat)
where int_rel (m, n) (p, q) = (m + q = n + p)

Next the quotient type must be defined. This generates a proof obli-
gation that the relation is an equivalence relation, which is solved
automatically using the definition of equivalence and extensional-
ity:

quotient_type int = (nat × nat) / int_rel
by (auto simp add: equivp_def expand_fun_eq)

The user can then specify the constants on the quotient type:

quotient_definition 0 :: int is (0 :: nat, 0 :: nat)

fun add_pair
where add_pair (m, n) (p, q) , (m + p :: nat, n + q :: nat)
quotient_definition + :: int⇒ int⇒ int is add_pair

The following theorem about addition on the raw level can be proved.

lemma add_pair_zero: int_rel (add_pair (0, 0) x) x

If the user lifts this theorem, the quotient package performs all the
lifting automatically leaving the respectfulness proof for the con-
stant add_pair as the only remaining proof obligation. This prop-
erty needs to be proved by the user:

lemma [quot_respect]:
(int_rel Z⇒ int_rel Z⇒ int_rel) add_pair add_pair

It can be discharged automatically by Isabelle when hinting to un-
fold the definition of Z⇒. After this, the user can prove the lifted
lemma as follows:

lemma 0 + (x :: int) = x by lifting add_pair_zero

or by using the completely automated mode stating just:

thm add_pair_zero[quot_lifted]

Both methods give the same result, namely 0 + x = x where x is
of type integer. Although seemingly simple, arriving at this result
without the help of a quotient package requires a substantial rea-
soning effort (see [9]).
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