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Abstract. Nominal Isabelle is a framework for reasoning about pro-
gramming languages with named bound variables (as opposed to de
Bruijn indices). It is a definitional extension of the HOL object logic
of the Isabelle theorem prover. Nominal Isabelle supports the definition
of term languages of calculi with bindings, functions on the terms of these
calculi and provides mechanisms that automatically rename binders.
Functions defined in Nominal Isabelle can be defined with assumptions:
The binders can be assumed fresh for any arguments of the functions.
Defining functions is often one of the more complicated part of reasoning
with Nominal Isabelle, and together with analysing freshness is the part
that differs most from paper proofs. In this paper we show how to define
terms from λ-calculus and reason about them without having to carry
around the freshness conditions. As a case study we formalize the second
fixed point theorem of the λ-calculus.

1 Introduction

Proofs about abstract calculi are often complicated and tedious; which is why
they are often done only semi-formally. Nominal Isabelle [13], has been designed
to make this kind of proofs easy to formalize. It provides an infrastructure for
defining a term language of a calculus (nominal datatypes) together with a rea-
soning infrastructure about those datatypes. This means a number of lemmas
that describe properties of the introduced type, including induction principles
that already have the variable convention built in. The framework also provides
a number of mechanisms for defining terms and functions over those datatypes.
Nominal Isabelle has been used for formalizing proofs about calculi including
LF [15], π-calculus [3], and ψ-calculus [2]. Here we will look at formalizing defi-
nitions and proofs about terms in the λ-calculus, like pairs, finite sequences, or
initial functions [1].

Defining such constants and simple functions can be done in numerous ways.
Nominal Isabelle provides nominal primrec, a mechanism for defining functions
with primitive recursion [14]. Functions defined with its help can be defined
with assumptions: the binders can be assumed fresh for any arguments of the
functions. The only proof obligations necessary to fulfill are the FCBs (fresh
condition for binder). This is convenient for functions that analyze term struc-
ture, but it does not allow for functions that invent new variables on the right



hand side (this is the case for defining constants with λ-abstractions). It is also
limited to primitive recursion, but this is not an issue since termination for all
the functions that we define here is straightforward.

A different way of defining nominal constants and functions is provided with
the fresh fun binder. This construction allows introducing a new variable, that
is fresh for the term under the binder. This allows defining more complicated
nominal functions, for some CPS translations (the non higher-order ones). Un-
fortunately reasoning about fresh fun involves reasoning about the term and
the freshness obligations together, which means that renamings are performed
manually. This makes the proofs complicated and very hard to read, especially in
the case of iterated applications of fresh fun. In the case of the proofs about the
CPS translation, performing them without the help of the Nominal package [9]
was less involved than reasoning with fresh fun.

It is also possible to define constants using the Isabelle/HOL function pack-
age directly. Given a non-injective datatype, the function package returns a com-
pleteness obligation and compatibility obligations. With this approach it is in
principle possible to define mutually recursive functions, non-primitive-recursive
functions, or even functions on datatypes which abstract multiple binders. In
practice fulfilling the proof obligations about the defined function that the func-
tion package requires is not feasible with the infrastructure given by the function
package (it does not even provide regular induction).

The current implementation of Nominal Isabelle uses quotients [8] to lift
the reasoning infrastructure from a raw datatype to a nominal type modulo α-
equivalence. One could define constants or functions on the raw datatype and
use the same lifting process to obtain a lifted function. This requires showing
respectfulness of the raw function, which is true and it is provable. Unfortunately
on the raw level we cannot use any of the nominal techniques, and proving such
goals does require rederiving the reasoning infrastructure for the raw terms.

This makes defining simple functions or even constants one the more com-
plicated parts of reasoning with Nominal Isabelle. Given that such a function
or constant is defined, it normally has freshness obligations for the binders and
new variables. When proving properties that involve such obligations with the
help of the Nominal package, there is a tendency to leave those freshness obli-
gations to the simplifier. When this does not work, first the user tries to rewrite
with a conditional rewrite rule to get from Isabelle the remaining freshness proof
obligation. The proof is then changed in such a way that the assumption is avail-
able in the goalstate, and the proof can be fully automated with a call to the
simplifier. The proof obtained in this way can look similar to a textbook one
(with the exception of the step where one specifies the constants to avoid), how-
ever this approach has one substantial drawback: the final proof does not reflect
the structure in which the proof was written and does not show the reasoning
necessary for fulfilling the freshness obligations.

In this paper we look at defining constants. We take an approach different
from the ones presented above. Starting with a function that returns different
variables, we define constants using those variables and show their convertibility



to the forms with freshness obligations. We then look at applied versions of the
constants to derive convertibility relations that have no freshness obligations and
only add those to the simplifier. This allows reasoning about convertible terms
without any freshness assumptions and the formalized proofs resemble textbook
proofs. We formalize the second fixed point theorem of the λ-calculus and obtain
a formalized proof that resembles a pen and paper one.3

The rest of the paper is organized as follows: In Section 2 we introduce the
notions from Nominal Logic necessary in later part of the paper. In Section 3 we
the introduce the term language and the conversion relation of the λ-calculus,
and compare it with classical textbook definition. In Section 4 we show our
infrastructure used for defining constants with Nominal Isabelle. Our case-study,
the formalization of the second fixed point theorems follows in next two Sections:
We show the definitions and the properties of the basic constants in Section 5
and the proof in Section 6. We conclude in Section 7.

2 Nominal Logic Preliminaries

In this section we introduce the core notions of nominal logic, that will be used in
the remaining part of the paper. Nominal logic has been introduced by Pitts [12]
and has been adapted to the Isabelle/HOL formal setting by Urban. The details
of the current version of the adaptation including proofs can be found in [7].
Here we shortly introduce only the main notions that will be used further.

The central notions of nominal logic are sorted atoms and sort-respecting
permutations. Atoms are supposed to represent variables (both bound and free
ones). Sorts can be used, if a calculus has different kinds of variables, such as
names and identifiers in LF. Each atom type has an infinite supply of atoms.
Further in this paper we will only talk about one kind of atoms; namely the
variables of the classical λ-calculus, thus and we will omit the function atom
which projects concrete atom types to the type of all atoms.

A permutation is a function that swaps a finite number of atoms. We denote
permutations with π and an application of a permutation to an object as π •
M. Permutations applied to an object change only the atoms of the object. The
permutation application operation, takes a permutation and an object of the
general type-class of objects for which permutations are defined. The identity
permutation is written as 0 and the composition of two permutations π1 and
π2 as π1 + π2. We denote the inverse permutation of π as −π. Application
of permutations naturally extends to products, lists, functions and datatypes
(nominal datatypes) as described in [16].

The smallest non-trivial permutation is called a swapping. We denote a swap-
ping of atoms a and b as (a b), and define by:

(a b) = λc. if a = c then b else if b = c then a else c

3 The source of the formalization in Nominal Isabelle is available at http://score.cs.
tsukuba.ac.jp/∼kaliszyk/sft/

http://score.cs.tsukuba.ac.jp/~kaliszyk/sft/
http://score.cs.tsukuba.ac.jp/~kaliszyk/sft/


The most important notion of the nominal logic work is a general definition for
the “free variables of an object”, called support. We will denote it supp x. This
notion applies not only to terms defined in Nominal Logic, but also to lists, pairs,
sets or general functions. For the definition to be applicable, the type only needs
to have the permutation operation and equality defined:

supp x = {a. infinite {b. (a b) • x 6= x}}

From the notion of support, the notion of atoms being fresh for an object is
derived. Atom a is fresh for an object x :

a # x = a /∈ supp x

Nominal logic also defines equivariance. An object x is equivariant if applying
any permutation to the object leaves it unchanged.

∀π • x = x

All objects that have no atoms (like natural numbers, booleans, . . . ) are equiv-
ariant. Equivariance is especially important for functions, as this is equivalent
to the fact that a permutation applied to the application of the function to its
arguments f a1 a2 .. an is equal to the application of the permutation to all
the arguments. This means that the application of any permutations commutes
with the application of the function:

∀π. π • (f a1 a2 . . . an) = f (π • a1) (π • a2) . . . (π • an)

Finally, if an object is equivariant, any swappings leave the object unchanged
so no atoms are in its support. We will use this property often, to show that a
term is a closed term.

3 Lambda Terms and Conversion

The definition of the terms of λ-calculus, as done in textbooks, starts with an
alphabet of variables, the λ-abstractor and parentheses and continues with an
inductive definition of the set of terms. Below we show the definition according
to the second author’s book [1].

Definition 1. (i) Lambda terms are words over the following alphabet:

v0, v1, . . . variables,
λ abstractor,
( , ) parentheses.

(ii) The set of λ-terms Λ is defined inductively as follows:

1. x ∈ Λ;
2. M ∈ Λ ⇒ (λxM) ∈ Λ;
3. M,N ∈ Λ ⇒ (MN) ∈ Λ;



where x in 1 or 2 is an arbitrary variable.

A textbook would next add notations that allow writing λ-terms without the
brackets that can be unambiguously removed. To make a similar definition in
Isabelle one needs to start with defining the set of variables. This is performed
with:

atom-decl var

which introduces a new sort var that will be used to name the variables. The
command from Nominal Isabelle introduces a new set of variables that is fresh
for all existing sets and is shown to be infinite. The fact that it is infinite will
be necessary to rename variables.

Defining an inductive type in Isabelle requires giving its cases together with
the notations. Additionally Nominal Isabelle lets us specify bindings, here we
specify that the abstracted variable is bound in the lambda case. This instructs
Nominal Isabelle to derive a type where variables in the λ-abstractions can be
renamed:

nominal datatype lam =
v
| lam · lam
| λx. lam bind x in lam

In Isabelle, constructors of inductive types embed particular objects of the type
into the type itself. This is why we need a constructor that embeds variables into
λ-terms. In the above definition the v means a lambda terms that is a variable,
as opposed to v which represents a variable itself. Application is denoted with
an infix left-associative notation, and λ-abstraction is annotated with a binding.
With notations set this way, terms can be written in a way that resembles the
textbook notation, but are still an inductive type.

Next, we would like to define convertibility of λ-terms. A formal definition of
substitution would often be omitted in textbooks, but Isabelle requires a formal
definition of substitution to define β-conversion. Nominal Isabelle allows defining
functions where in the clauses the bound variable can be fresh for any other
terms. We show this in the standard definition of substitution from Nominal
Isabelle:

Definition 2 (Substitution). Substituting a variable y for a term S in term
M is defined by:

T [y := S ] =


if x = y then S else x if T = x

(T 1 [y := S ]) · (T 2 [y := S ]) if T = T 1 · T 2

λx . U [y := S ] if T = λx . U and x # (y , S )

A regular definition of substitution would require renaming the variable in the
lambda case. Nominal Isabelle extends the definition given only for the case



where the binder is fresh for the given arguments to a function on the whole
domain. Next we show a number of simple properties of substitution, that we
want to use to reason about terms involving substitution and freshness later:

Lemma 1. Substitution is equivariant, substituting a fresh variable does not
change the term and substituting a variable for itself does not change the term.

π • a [aa := ab] = (π • a) [(π • aa) := (π • ab)] (1)

x # t =⇒ t [x := s] = t M [x := x] = M

Proof. By induction, follows by definitions of substitution and freshness.

Closed terms have an empty support, so any variable will be fresh for one. This
implies that substitution does not change closed terms:

supp t = {} =⇒ t [x := s] = t

Having defined substitution we can return to the definition of convertibility.
Again we try to closely follow [1].

Definition 3 (Convertibility). Convertibility is an inductively defined rela-
tion axiomatized by the following:

(λx . M ) · N ≈ M [x := N ]
M ≈ M
M ≈ N =⇒ N ≈ M
M ≈ N =⇒ N ≈ L =⇒ M ≈ L
M ≈ N =⇒ Z · M ≈ Z · N
M ≈ N =⇒ M · Z ≈ N · Z
M ≈ N =⇒ (λx . M ) ≈ (λx . N )

(2)

In this paper, we will use two equivalence relations on terms, namely the Isabelle
equality = and the convertibility relation ≈ defined above. This is slightly dif-
ferent from the regular textbook approach where convertibility in introduced in
addition to syntactic equality. Nominal Isabelle has defined the type of lambda
terms in such a way that equality on this type includes α-equivalence, hence
it is different from syntactic equality. Nominal Isabelle can automatically derive
equivariance for convertibility. Since many of our proofs will talk about chains of
convertibilities, we declare convertibility as a transitive relation. This will allow
writing M ≈ ... ≈ N in the formal proofs later.

4 Defining λ-constants with Nominal Isabelle

In order to define all the constants from the next Section, we will need two
mechanisms. First a set of variables that will be fresh in the definitions and
second a convenient way to show that concepts defined with those fixed variables



can be renamed to any fresh variables and therefore applied without freshness
obligations.

Nominal Isabelle ensures that there is an infinite amount of atoms in any of
the concrete atom sorts. This means that for any finite set of variables we can
find a new one, fresh for this set.

Using this property we can define a function ν :: IN ⇒ var which given a
number n returns a variable v that is fresh for the set of the results of the
function for all smaller numbers:

νn ]
⋃

k=0..(n−1)

{νk} (3)

A direct consequence is, that for any two different natural numbers m and n:

νm 6= νn

Given a constant defined with the help of a fixed set of νk, we would like to
rename the variables to any variables that satisfy the property 3. This can be
done by analyzing the equalities between the variable pairs and applying the
definition of swapping atoms together with equivariance. With the help of the
Sledgehammer SMT linkup [4] this can be performed fully automatically.

Given a definition that depends on freshness obligations, we cannot apply
this definition without an additional step in which we obtain the new variables
specifying what are they supposed to be fresh for. This is however not going to be
the case for constant terms representing functions in the λ-calculus. Since they
need to have a λ-abstraction at the top-level, after the abstraction is applied,
the newly invented variable can be forgotten. A simplest possible example is:

(λx . M ) · x ≈ M (4)

We can extend this to arbitrary functions, defined by equations that start with
a λ-abstraction:

Lemma 2. Assuming that function L is defined by the equation

∀ a. (L = (λa. F (a)))

and we can substitute variables in F

∀ x . (x # A =⇒ F (x) [x := A] = F A)

then
L · A ≈ F A

Proof. Obtaining a fresh variable a, such that a # A, using the definition of
convertibility (2) and properties of substitution (1) the proof is a simple calcu-
lation.

The same mechanism works for functions that require more new variables. The
additional assumption that the function makes, is that the variables are distinct,
which follows from 3:



Lemma 3. Assuming that function L is defined by the equation

∀ a b. (a 6= b =⇒ L = (λa. λb. F (a) (b)))

and we can substitute variables in F

∀ x y . (x # (A, B) ∧ y # (A, B , x ) =⇒
=⇒ F (x) (y) [x := A] [y := B ] = F A B)

then
L · A · B ≈ F A B

Proof. Obtaining fresh variables a, such that a # (A, B), and b such that b
# (A, B , a), using freshness for tuples, the definition of convertibility (2) and
properties of substitution (1) the proof is a simple calculation.

5 Basic constants in λ-calculus

In this Section we start a presentation of a case-study: formalization of the second
fixed point theorem of the λ-calculus. Given an internal coding of lambda terms
as normal lambda terms

M 7−→ pMq.

We take the coding used in [5] for its elegance, enabling a short proof, but other
codings could have been used as well.

We start with the definition of the initial functions Um
n . We slightly modify

the usual textbook definition, by using a different indexing, starting from 0. We
define it for all natural numbers, but intend to use it for m ≤ n.

Definition 4 (initial functions). For any natural numbers m and n:

Um
n =

{
λν0 . νn provided m = 0,

λνm. Uk
n provided m = k + 1.

The terms Um
n are equivariant and have empty support in the intended domain.

Lemma 4. Assuming m ≤ n:

supp (Um
n ) = {} π • Um

n = Um
n

Proof. By induction on m.

When reasoning about the second fixed point theorems, we are going to use only
three cases of Um

n , for m = 2 and n ≤ 2. By expanding the definition for these
three cases we can see that it indeed selects the desired elements. We rename
the variables to arbitrary but distinct x, y and z.



Assuming x 6= y, y 6= z and z 6= x :

U2
0 = λx . λy . λz . z

U2
1 = λx . λy . λz . y

U2
2 = λx . λy . λz . x

Definition 5. Assuming x 6= y, x 6= e and y 6= e:

Var = λx . λe. e · U2
2 · x · e

App = λx . λy . λe. e · U2
1 · x · y · e

Abs = λx . λe. e · U2
0 · x · e

Using the lemma 3 we can find equations that express convertibility of the ap-
plications of Var, App, Abs, that will have no freshness obligations:

Var · x · e ≈ e · U2
2 · x · e (5)

App · x · y · e ≈ e · U2
1 · x · y · e (6)

Abs · x · e ≈ e · U2
0 · x · e (7)

Lemma 5. The terms Var, App, Abs are closed terms and are equivariant:

supp Var = {} supp App = {} supp Abs = {}
π • Var = Var π • App = App π • Abs = Abs

Proof. By definitions of the constants, and equivariance rules the terms are
equivariant. Hence they have empty support and are closed terms.

We can now define the function that returns the encoding of a given term. The
definition proceeds by induction on λ-terms:

Definition 6. For a given λ-term t, ptq is is defined by:

ptq =


Var · x provided t = x

App · pMq · pNq provided t = M · N

Abs · (λx . pMq) provided t = (λx . M )

Lemma 6. The encoding function p. . .q is equivariant. It preserves support and
freshness:

π • paq = p(π • a)q supp pxq = supp x a # pxq = a # x

Proof. By induction on x, using the equivariance and freshness lemmas.

The next step in the proof will define finite sequences (or tuples). To define it
we need a helper definition that given a variable and a list of terms applies all
the terms on the list in turn to the variable. We define it by induction on the
list l :



Definition 7. Applying a list of terms l to a variable n is defined by:

app lst n l =

{
n provided l is an empty list

app lst n t · h provided l = (h :: t)

Lemma 7. List application is equivariant and preserves support:

π • app lst n l = app lst (π • n) (π • l)
supp (app lst n l) = {n} ∪ supp l

Proof. By induction on l, using the equivariance and freshness lemmas.

When defining a finite sequence we can use the nominal function mechanism to
write the definition only for the case where the variable is fresh for the list.

Definition 8 (finite sequences). Given a list of terms l, assuming x # l, we
define a finite sequence 〈〈l 〉〉 by:

〈〈l 〉〉 = λx . app lst x (rev l)

Lemma 8. Finite sequences are equivariant and preserve support. Finite se-
quences are equal if their underlying lists are equal. Finite sequences commute
with substitution:

π • 〈〈a〉〉 = 〈〈π • a〉〉 supp 〈〈t 〉〉 = supp t
〈〈M 〉〉 = 〈〈N 〉〉 if and only if M = N
〈〈[M ]〉〉 [x := N ] = 〈〈[M [x := N ]]〉〉

Proof. To prove equivariance we obtain a variable fresh for both sides of the
equation y # (t , π • t), and use the definition with this variable on both sides.
To show that equality of finite sequences implies the equality of the underlying
term lists we obtain a variable that is fresh for both M and N and use the
definition and support equations. To show the support of substitution applied
to a sequence, we proceed by induction on the list. For the induction step we
use a variable y, fresh for the term, the variable, the substituted term and the
result of the substitution: y # (M , x , N , M [x := N ]). The result follows by a
simple computation.

Further in the paper, finite sequences will only refer to lists of one or three ele-
ments always written explicitly. Also, we will not use lists for any other purpose.
To simplify this notation, we will use the notation [. . . ] in place of 〈〈[. . . ]〉〉 to
refer to finite sequences from now in the paper.

Since finite sequences preserve support (lemma 8), using the freshness rules
for lists we can write out explicitly the freshness conditions for specific finite
sequences:

x # [y ] = x # y x # [t , r , s] = x # (t , r , s)



Applying the lemmas 2 and 3 from the previous section we can get terms con-
vertible to the application of a finite sequence. It is indeed the term applied to
the elements of the sequence in order:

[M ] · N ≈ N · M (8)

[M , N , P ] · R ≈ R · M · N · P

Using the lemmas from Section 4 we can get simpler convertibility rules for
finite sequences applied to initial functions. Indeed they return the appropriate
elements from the sequences:

[A, B , C ] · U2
2 ≈ A

[A, B , C ] · U2
1 ≈ B

[A, B , C ] · U2
0 ≈ C

(9)

We can now define the terms F 1, F 2, F 3:

Definition 9. Assuming a 6= b, b 6= c and c 6= a:

F 1 = (λa. App · pVarq · (Var · a))

F 2 = (λa. λb. λc. App · (App · pAppq · (c · a)) · (c · b))

F 3 = (λa. λb. App · pAbsq · (Abs · (λc. b · (a · c))))

Using the lemmas 2 and 3 we can derive the convertibility relations for F 1, F 2,
F 3. The first two have no freshness obligations, however in the case of F 3 the
internal λ-abstraction is not applied, so the freshness obligations for this variable
remain:

F 1 · A ≈ App · pVarq · (Var · A) (10)

F 2 · A · B · C ≈ App · (App · pAppq · (C · A)) · (C · B) (11)

Assuming x # A and x # B :

F 3 · A · B ≈ App · pAbsq · (Abs · (λx . B · (A · x))) (12)

Lemma 9. The terms F 1, F 2, F 3 are equivariant and are closed terms:

π • F 1 = F 1 π • F 2 = F 2 π • F 3 = F 3

supp F 1 = {} supp F 2 = {} supp F 3 = {}

Proof. Using the equivariance of the subterms and the fact that equivariance
implies empty support.

Next, we define the terms A1, A2, A3:

Definition 10. Assuming a 6= b, b 6= c and c 6= a:

A1 = (λa. λb. F 1 · a)

A2 = (λa. λb. λc. F 2 · a · b · [c])

A3 = (λa. λb. F 3 · a · [b])



Using lemma 3 we can derive the convertibility relations for the applied terms
A1, A2, A3 that will have no freshness obligations:

A1 · A · B ≈ F 1 · A (13)

A2 · A · B · C ≈ F 2 · A · B · [C ] (14)

A3 · A · B ≈ F 3 · A · [B ] (15)

Lemma 10. A1, A2 and A3 are closed terms:

supp A1 = {} supp A2 = {} supp A3 = {}

Proof. Using lemma 9 and the properties of support.

Finally we define Num; the definition follows the idea from the beginning of this
section:

Definition 11.
Num = [[A1, A2, A3]]

From the support of the terms A1, A2, A3 and the fact that finite sequences
preserve support, we also get that Num is a closed term:

supp Num = {}

6 The proof of the Second Fixed Point Theorem

In this Section we present to proof of the Second Fixed Point Theorem together
with the most interesting lemma that combines all the definitions from the pre-
vious Section. Namely, all the constants F 1−3 and A1−3 have been defined in
such a way that the encoding of terms is λ-defined by Num. Here we will show
that Num applied to an encoded a term is convertible to its encoding.

For the proofs presented in this Section we decide on using the Isabelle ren-
dering of the formal proofs. We use the number of lemmas in the paper as the
lemma names in Isabelle). The simplifier is set up with the lemmas about empty
support and support preservation shown before in the paper. Given a λ-term M
we prove the property by induction on the structure of M. For each of the three
cases the proof proceeds by transforming the left-hand side using the convertibil-
ity rules and lemmas proven in the previous section obtaining the right-hand side:

lemma num numeral:1

shows Num · pMq ≈ ppMqq2

proof (induct M)3

case n4

have Num · p(n)q = Num · (Var · n) by simp5

also have . . . = [[A1, A2, A3]] · (Var · n) by simp6



also have . . . ≈ Var · n · [A1, A2, A3] using 8 .7

also have . . . ≈ [A1, A2, A3] · U2
2 · n · [A1, A2, A3] using 5 .8

also have . . . ≈ A1 · n · [A1, A2, A3] using 9 by simp9

also have . . . ≈ F 1 · n using 13 .10

also have . . . ≈ App · pVarq · (Var · n) using 10 .11

also have . . . = pp(n)qq by simp12

finally show Num · p(n)q ≈ pp(n)qq .13

next14

case M · N15

assume IH: Num · pMq ≈ ppMqq Num · pNq ≈ ppNqq16

have Num · p(M · N )q = Num · (App · pMq · pNq) by simp17

also have . . . = [[A1, A2, A3]] · (App · pMq · pNq) by simp18

also have . . . ≈ App · pMq · pNq · [A1, A2, A3] using 8 .19

also have . . . ≈ [A1, A2, A3] · U2
1 · pMq · pNq · [A1, A2, A3] using 6 .20

also have . . . ≈ A2 · pMq · pNq · [A1, A2, A3] using 9 by simp21

also have . . . ≈ F 2 · pMq · pNq · Num using 14 by simp22

also have . . . ≈ App · (App · pAppq · (Num · pMq)) · (Num · pNq) using 11 .23

also have . . . ≈ App · (App · pAppq · ppMqq) · (Num · pNq) using IH by simp24

also have . . . ≈ pp(M · N )qq using IH by simp25

finally show Num · p(M · N )q ≈ pp(M · N )qq .26

next27

case λx . P28

assume IH: Num · pPq ≈ ppPqq29

have Num · p(λx . P)q = Num · (Abs · (λx . pPq)) by simp30

also have . . . = [[A1, A2, A3]] · (Abs · (λx . pPq)) by simp31

also have . . . ≈ Abs · (λx . pPq) · [A1, A2, A3] using 8 .32

also have . . . ≈ [A1, A2, A3] · U2
0 · (λx . pPq) · [A1, A2, A3] using 7 .33

also have . . . ≈ A3 · (λx . pPq) · [A1, A2, A3] using 9 by simp34

also have . . . ≈ F 3 · (λx . pPq) · [[A1, A2, A3]] using 15 .35

also have . . . = F 3 · (λx . pPq) · Num by simp36

also have . . . ≈ App · pAbsq · (Abs · (λx . Num · ((λx . pPq) · x)))37

by (rule 12) simp all38

also have . . . ≈ App · pAbsq · (Abs · (λx . Num · pPq)) using 4 by simp39

also have . . . ≈ App · pAbsq · (Abs · (λx . ppPqq)) using IH by simp40

also have . . . = pp(λx . P)qq by simp41

finally show Num · p(λx . P)q ≈ pp(λx . P)qq .42

qed43

The proof is similar to the text proof formalized, with one exception. In
the λ-abstraction case, when transforming the application of F 3 (lines 36-38)
a new variable name is necessary. This also comes from lemmas 2, 3, where
we cannot remove freshness assumptions about variables introduced inside the
term. In the above proof, it is also the only place where we need to use two
methods to convince Isabelle that the transformation is correct. The application
of F 3 (method rule 12) leaves proof obligations about freshness of the introduced
variable. In this case the variable is supposed to be fresh for a closed term, which
the simplifier can deduce automatically (method simp all), however this may not
always be the case (and it will not be the case in the final theorem).



The second fixed point theorems states, that for any λ-term F, there exists
a term X, such that X is convertible to the application of F to the term repre-
senting the encoding of X. The proof defines the term X explicitly and shows
that is has the desired property by transforming the term using convertibility
rules and properties shown before:

theorem second fixed point theorem:44

fixes F :: lam45

shows ∃X . X ≈ F · pXq46

proof -47

obtain x :: var where x # F using obtain fresh by blast48

def W = λx . F · (App · x · (Num · x))49

def X = W · pWq50

have a: X = W · pWq unfolding X def ..51

also have . . . = (λx . F · (App · x · (Num · x))) · pWq unfolding W def ..52

also have . . . ≈ F · (App · pWq · (Num · pWq)) by simp53

also have . . . ≈ F · (App · pWq · ppWqq) by simp54

also have . . . ≈ F · p(W · pWq)q by simp55

also have . . . = F · pXq unfolding X def ..56

finally show X ≈ F · pXq ..57

qed58

The proof is again similar to a textbook one, however as the first step of the
proof we need to add line 48, even before the definitions of W and X. The term
W introduces a new abstraction together with a new variable x. In the formal
proof we assume that this variable is fresh for the original term F. This is indeed
necessary, if x was bound in F then the first step of convertibility reasoning
would leave the term F [x := W ] on the left side of the application until the end
of the proof, and the property would not hold.

7 Conclusion

We compared a number of approaches for defining terms in the λ-calculus and
showed a convenient way of defining constants. We start with a function that
returns different atoms, define constants using those atoms and show their con-
vertibility to the forms with freshness obligations. We use the simplifier only
for convertibility equations, obtaining proofs where there are very few freshness
obligations making them similar to paper proofs.

We formalized the second fixed point theorem of the λ-calculus, using Nom-
inal Isabelle. We showed how to define constants and their properties, so that
the proof resembles a paper proof. The main difference is obtaining a variable
fresh for the given term. We show that if the variable is not fresh for the given
term, the usual textbook proof does not hold.

In the proof we give the term that satisfies the second fixed point theorem
explicitly; it remains to be seen how a meta-proof that talks about λ-definability



could be formalized. The approach presented here could be compared with using
standard combinator terms used by Norrish [11], this could perheapes simplify
the equations for definitions with internal abstractions, in our case study this
could be preferable in case of property 12.

7.1 Related Work

A number of proofs about the λ-calculus have already been performed with
Nominal Isabelle. Examples include the Church-Rosser property, strong normal-
ization. More examples are described in [13].

Norrish [10] derives an infrastructure for the λ-calculus manually in the HOL4
system, using properties from Nominal Logic. He proves a number of properties
about the λ-calculus following [1] and the book by Hankin [6].
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