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Abstract. HOL(y)Hammer is an AI/ATP service for formal (computer-
understandable) mathematics encoded in the HOL Light system, in par-
ticular for the users of the large Flyspeck library. The service uses several
automated reasoning systems combined with several premise selection
methods trained on previous Flyspeck proofs, to attack a new conjecture
that uses the concepts defined in the Flyspeck library. The public online
incarnation of the service runs on a 48-CPU server, currently employing
in parallel for each task 25 AI/ATP combinations and 4 decision pro-
cedures that contribute to its overall performance. The system is also
available for local installation by interested users, who can customize it
for their own proof development. An Emacs interface allowing parallel
asynchronous queries to the service is also provided. The overall struc-
ture of the service is outlined, problems that arise are discussed, and an
initial account of using the system is given.

1 Introduction and Motivation

HOL Light [10] is one of the best-known interactive theorem proving (ITP) sys-
tems. It has been used to prove a number of well-known mathematical theo-
rems3 and to formalize the proof of the Kepler conjecture targeted by the Fly-
speck project [9]. The whole Flyspeck development, together with the required
parts of the HOL Light library consists of about 14.000 theorems and 1800 con-
cepts. Motivated by the development of large-theory automated theorem prov-
ing [12,18,26,31] and its growing use for ITPs like Isabelle [19] and Mizar [29,30],
we have recently implemented translations from HOL Light to ATP (automated
theorem proving) formats, developed a number of premise-selection techniques
for HOL Light, and experimented with the strongest and most orthogonal combi-
nations of the premise-selection methods and various ATPs. This work, described
in [15], has shown that 39% of the 14185 Flyspeck theorems could be proved in
a push-button mode (without any high-level advice and user interaction) in 30
seconds of real time on a fourteen-CPU workstation.

The experiments that we did emulated the Flyspeck development (when user
always knows all the previous proofs at a given point, and wants to prove the
next theorem), however they were all done in an offline mode which is suitable
for such experimentally-driven research. The ATP problems were created in large
batches using different premise-selection techniques and different ATP encodings

3 http://www.cs.ru.nl/~freek/100/
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(untyped first-order [23], polymorphic typed first-order [4], and typed higher-
order [8]), and then attempted with different ATPs (17 in total) and different
numbers of the most relevant premises. Analysis of the results interleaved with
further improvements of the methods and data have gradually led to the current
strongest combination of the AI/ATP methods.

This strongest combination now gives to a HOL Light/Flyspeck user a 39%
chance (when using 14 CPUs, each for 30s) that he will not have to search
the library for suitable lemmas and figure out the proof of the next toplevel
theorem by himself. For smaller (proof-local) lemmas such likelihood should be
correspondingly higher. To really provide this strong automated advice to the
users, the functions that have been implemented for the experiments need to be
combined into a suitable AI/ATP tool. Our eventual goal should be an easy-to-
use service, which in its online form offers to formal mathematics (done here in
HOL Light, over the Flyspeck-defined concepts) what services like Wolfram Al-
pha offer for informal/symbolic mathematics. Some expectations (linked to the
recent success of the IBM Watson system) are today even higher4. Indeed, we
believe that developing stronger and stronger AI/ATP tools similar to the one
presented here is a necessary prerequisite (providing the crucial semantic un-
derstanding/reasoning layer) for building larger Watson-like systems for mathe-
matics that will (eventually) understand (nearly-)natural language and (perhaps
reasonably semanticized versions/alternatives of) LATEX. The more user-friendly
and smarter such AI/ATP systems become, the higher also the chance that
mathematicians (and exact scientists) will get some nontrivial benefits (apart
from the obvious verification/correctness argument, which however so far con-
vinced only a few) from encoding mathematics (and exact science) directly in a
computer-understandable form.

This paper describes the first instance of such a HOL Light/Flyspeck-based
AI/ATP service. The service – HOL(y)Hammer5 (HH) – is now available in its
strongest form as a public online system, running on a 48-CPU server spawning
for each query 25 different AI/ATP combinations and four decision procedures.
This functionality is described in Section 2, together with short examples of
interaction (Emacs, command-line queries). The service can be also installed
locally, and trained on user’s private developments. This is described in Section 3.
The advantages of the two approaches are briefly compared in Section 4, and
Section 5 concludes and discusses future work.

2 The Online Service Description

The overall architecture of the system is shown in Figure 1. The service receives
a query (a formula to prove, possibly with local assumptions) generated by one
of the clients/frontends (Emacs, web interface, HOL session, etc.). If the query
produces a parsing (or type-checking) error, an exception is raised, and an error

4 See for example Jonathan Borwein’s article: http://theconversation.edu.au/

if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213
5 See [33] for an example of future where AIs turn into deities.
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Fig. 1: Online service architecture overview

message is sent as a reply. Otherwise the parsed query is processed in parallel by
the (time-limited) AI/ATP combinations and the native HOL Light decision pro-
cedures (each managed by its forked HOL Light process, and terminated/killed
by the master process if not finished within its global time limit). Each of the
AI/ATP processes computes a specific feature representation of the query, and
sends such features to a specific instance of a premise advisor trained (using
the particular feature representation) on previous proofs. Each of the advisors
replies with a specific number of premises, which are then translated to a suitable
ATP format, and written to a temporary file on which a specific ATP is run.
The successful ATP result is then (pseudo-)minimized, and handed over to the
combination of proof-reconstruction procedures. These procedures again run in
parallel, and if any of them is successful, the result is sent as a particular tactic



application to the frontend. In case a native HOL Light decision procedure finds a
proof, the result (again a particular tactic application) can be immediately sent
to the frontend. The following subsections explain this process in more detail.

2.1 Feature Extraction and Premise Selection

Given a (formal) mathematical conjecture, the selection of suitable premises
from a large formal library is an interesting AI problem, for which a number
of methods have been tried recently [16, 26]. The strongest methods use ma-
chine learning on previous problems, combined in various ways with heuristics
like SInE [12]. To use the machine learning systems, the previous problems have
to be described as training examples in a suitable format, typically as a set
of (input) features characterizing a given theorem, and a set of labels (output
features) characterizing the proof of the theorem. Devising good feature/label
characterizations for this task is again an interesting AI problem (see, e.g. [30]),
however already the most obvious characterizations like the conjecture symbols
and the names of the theorems used in the conjecture’s proof are useful. This
basic scheme can be extended in various ways; see [15] for the feature-extraction
functions (basically adding various subterm and type-based characteristics) and
label-improving methods (e.g., using minimized ATP proofs instead of the orig-
inal Flyspeck proofs whenever possible) that we have so far used for HOL Light.

On average, for each feature-extraction method there are in total about
30.000 possible conjecture-characterizing features extracted from the theorems
in the Flyspeck development. The output features (labels) are in the simplest set-
ting just the names of the 14185 Flyspeck theorems6 extracted from the proofs
with a modified (proof recording [13]) HOL Light kernel. These features and la-
bels are (for each extraction method) serially numbered in a stable way (using
hashtables), producing from all Flyspeck proofs the training examples on which
the premise selectors are trained. The learning-based premise selection meth-
ods currently used are those available in the SNoW [5] sparse learning toolkit
(most prominently sparse naive Bayes) together with a custom implementation
of the k-nearest neighbor (k-NN) learner. Training a particular learning method
on all (14185) characterizations extracted from the Flyspeck proofs takes from
1 second for k-NN (a lazy learner that essentially just loads all the 14185 proof
characterizations) and 6 seconds for naive Bayes using labels from minimized
ATP proofs, to 25 seconds for naive Bayes using the labels from the original
Flyspeck proofs.7 The trained premise selectors are then run as daemons (using
their server modes) that accept queries in the language of the numerical features

6 In practice, the Flyspeck theorems are further preprocessed to provide better learning
precision, for example by splitting conjunctions and detecting which of the conjuncts
are relevant in which proof. Again, see [15] for the details. The most recent number
of labels used is thus 16082.

7 The original Flyspeck proofs are often using theorems that are in some sense redun-
dant, resulting in longer proof characterizations (and thus longer learning). This is
typically a consequence of using larger building blocks (e.g., decision procedures,
drawing in many dependencies) when constructing the ITP proofs.



over which they have been trained, producing for each query their ranking of all
the labels (corresponding to the available Flyspeck theorems).

Given a new conjecture, the first step of each of the forked HOL Light AI/ATP
managing process is thus to compute the features of the conjecture according
to a particular feature extraction method, compute (using the corresponding
hashtable) the numerical representation of the features, and send these numeric
features as a query to the corresponding premise-selection daemon. The daemon
then replies (again, the speed depending on the learning method and the fea-
ture/label size) within a fraction of a second with its ranking, which is translated
back (using the corresponding table) to the ranking of the HOL Light theorems.
Each of the AI/ATP combinations then uses its particular number (optimized so
that the methods in the end complement each other as much as possible) of the
best-ranked theorems, passing them together with the conjecture to the function
that translates such set of HOL Light formulas to a suitable ATP format.

2.2 Translation to ATP Formats and Running ATPs

As mentioned in Section 1, several ATP formalisms are used today by ATP and
SMT systems. However the (jointly) most useful proof-producing systems in our
experiments turned out to be E [22] version 1.6 (run under the Epar [28] strategy
scheduler), Vampire [21] 2.6, and Z3 [6] 4.0. All these systems accept the TPTP
untyped first-order format (FOF). Even when the input formalism (the HOL
logic [20] - polymorphic version of Church’s simple type theory) and the output
formalism (TPTP FOF) are fixed, there are in general many methods [3] how to
translate from the former to the latter, each method providing different tradeoffs
between soundness, completeness, ATP efficiency, and the overall (i.e., including
HOL proof reconstruction) efficiency. The particular method chosen by us in [15]
and used currently also for the service is the polymorphic tagged encoding [3]. To
summarize, the higher-order features (such as lambda abstraction, application)
of the HOL formulas are first encoded (in a potentially incomplete way) in first-
order logic (still using polymorphic types), and then type tags are added in a
way that usually guarantees type safety during the first-order proof search.

This translation method is in general not stable on the level of single formulas,
i.e., it is not possible to just keep in a global hashtable the translated FOF
version for each original HOL formula, as done for example for the MizAR ATP
service. This is because a particular optimization (by Meng and Paulson [17])
is used for translating higher-order constants, creating for each such constant c
a first-order function that has the minimum arity with which c is used in the
particular set of HOL formulas that is used to create the ATP (FOF) problem. So
once the particular AI/ATP managing process advises its N most-relevant HOL
Light theorems for the conjecture, this set of theorems and the conjecture are
as a whole passed to the translation function, which for each AI/ATP instance
may produce slightly different FOF encoding on the formula level. The encoding
function is still reasonably fast (fractions of a second when using hundreds of
formulas), and still has the property that both the FOF formula names and the
FOF formulas (also those inferred during the ATP proof search) can (typically)



be decoded back into the original HOL names and formulas (allowing later HOL
proof reconstruction).

Each AI/ATP instance thus produces its specific temporary file (the FOF
ATP problem) and runs its specific ATP system on it with its time limit. The
time limit is currently set globally to 30 seconds for each instance, however (as
usual in strategy scheduling setups) this could be made instance-specific too,
based on further analysis of the time performance of the particular instances.
Vampire and Epar already do such scheduling internally: the current version
of Epar runs a fixed schedule of 14 strategies, while Vampire runs a problem-
dependent schedule of several to dozen of strategies. Assuming one strategy
for Z3 and on average eight strategies for Vampire, this means (counting the
combinations in Table 1) that for each HOL query there are now 249 different
proof-data/feature-extraction/learning/premise-slicing/ATP-strategy instantia-
tions tried by the online service within the 30 seconds of the real time allowed
for the query. Provided sufficient complementarity of such instantiations, this
significantly raises the overall power of the service.

2.3 The AI/ATP Combinations Used

The 25 currently used combinations of the machine learner, proof data, number
of top premises used, the feature extraction method, and the ATP system are
shown in Table 1. The proof data are either just the data from the (minimized)
ATP proofs (ATP0, ..., ATP3) created by a particular (MaLARea-style [31], i.e.,
re-using the proofs found in previous iteration for further learning) iteration of
the experimenting, possibly preferring either the Vampire or Epar proofs (V pref,
E pref), or a combination of such data from the ATP proofs with the original
HOL proofs, obtained by slightly different versions of the HOL proof record-
ing. Such combination typically uses the HOL proof only when the ATP proof
is not available, see [15] for details. The standard feature extraction method
combines the formula’s symbols, standard-normalized subterms and normalized
types into its feature vector. The standard normalization here means that each
variable name is in each formula replaced by its normalized HOL type. The
all-vars-same and all-vars-diff methods respectively just rename all for-
mula variables into one common variable, or keep them all different. This obvi-
ously influences the concept of similarity used by the machine learners (see [15]
for more discussion). The 40-NN and 160-NN learners are k-nearest-neighbors,
run with k = 40 and k = 160. The reason for running these 25 particular combi-
nations is that they together (computed in a greedy fashion) currently provide
the greatest coverage of the solvable Flyspeck problems. This obviously changes
quite often, whenever some of the many components of this AI architecture gets
strengthened.

2.4 Decision Procedures

Some goals are hard for ATPs, but are easy for the existing decision procedures
already implemented in HOL Light. To make the service more powerful, we also



Table 1: The 25 AI/ATP combinations used by the online service

Learner Proofs Premises Features ATP

Bayes ATP2 0092 standard Vampire
Bayes ATP2 0128 standard Epar
Bayes ATP2 0154 standard Epar
Bayes ATP2 1024 standard Epar
Bayes HOL0+ATP0 0512 all-vars-same Epar
Bayes HOL0+ATP0 0128 all-vars-diff Vampire
Bayes ATP1 0032 standard Z3
Bayes ATP1 V pref 0128 all-vars-diff Epar
Bayes ATP1 V pref 0128 standard Z3
Bayes HOL0+ATP0 0032 standard Z3
Bayes HOL0+ATP0 0154 all-vars-same Epar
Bayes HOL0+ATP0 0128 standard Epar
Bayes HOL0+ATP0 0128 standard Vampire
Bayes ATP1 E pref 0128 standard Z3
Bayes ATP0 V pref 0154 standard Vampire
40-NN ATP1 0032 standard Epar
160-NN ATP1 0512 standard Z3
Bayes HOL3+ATP3 0092 standard Vampire
Bayes HOL3+ATP3 0128 standard Epar
Bayes HOL3+ATP3 0154 standard Epar
Bayes HOL3+ATP3 1024 standard Epar
Bayes ATP3 0092 standard Vampire
Bayes ATP3 0128 standard Epar
Bayes ATP3 0154 standard Epar
Bayes ATP3 1024 standard Epar

try to directly use some of these HOL Light decision procedures on the given
conjecture. A similar effect could be achieved also by mapping some of the HOL
Light symbols (typically those encoding arithmetics) to the symbols that are
reserved and treated specially by SMT solvers and ATP systems. This is now
done for example in Isabelle/Sledgehammer, with the additional benefit of the
combined methods employed by SMTs and ATPs over various well-known the-
ories. Our approach is so far much simpler, which also means that we do not
have to ensure that the semantics of such special theories remains the same (e.g.,
1/0 = 0 in HOL Light). The HOL Light decision procedures might often not be
powerful enough to prove whole theorems, however for example the REAL_ARITH8

tactic is called on 2678 unique (sub)goals in Flyspeck, making such tools a useful
addition to the service.

Each decision procedure is spawned in a separate instance of HOL Light using
our parallel infrastructure, and if any returns within the timeout, it is reported

8 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_ARITH.html

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_ARITH.html


to the user. The decision procedures that we found most useful for solving goals
are:9

– TAUT10 — Propositional tautologies.
(A ==> B ==> C) ==> (A ==> B) ==> (A ==> C)

– INT_ARITH11 — Algebra and linear arithmetic over Z (including R).
&2 * &1 = &2 + &0

– COMPLEX_FIELD — Field tactic over C (including multivariate R12).
(Cx (&1) + Cx(&1)) = Cx(&2)

Additionally the decision procedure infrastructure can be used to try common
tactics that could solve the goal. One that we found especially useful is simpli-
fication with arithmetic (SIMP_TAC[ARITH]), which solves a number of simple
numerical goals that the service users ask the server.

2.5 Proof Minimization and Reconstruction

When an ATP finds (and reports in its proof) a subset of the advised premises
that prove the goal, it is often the case that this set is not minimal. By re-running
the prover and other provers with only this set of proof-relevant premises, it is
often possible to obtain a proof that uses less premises. A common example
are redundant equalities that may be used by the ATP for early (but unneces-
sary) rewriting in the presence of many premises, and avoided when the num-
ber of premises is significantly lower (and different ordering is then used, or a
completely different strategy or ATP might find a very different proof). This
(pseudo/cross-minimization) procedure is run recursively, until the number of
premises needed for the proof no longer decreases. Minimizing the number of
premises improves the chances of the HOL proof reconstruction, and the speed
of (re-)processing large libraries that contain many such reconstruction tactics.13

Given the minimized list of advised premises, we try to reconstruct the proof.
As mentioned in Section 2.1, the advice system may internally use a number of
theorem names (now mostly produced by splitting conjunctions) not present in
standard HOL Light developments. It is possible to call the reconstruction tactics
with the names used internally in the advice system; however this would create
proof scripts that are not compatible with the original developments. We could
directly address the theorem sub-conjuncts (using, e.g., “nth (CONJUNCTS thm)

9 The reader might wonder why the above mentioned REAL_ARITH is not among the
tactics used. The reason is that even though REAL_ARITH is used a lot in HOL Light
formalizations, INT_ARITH is simply more powerful. It solves 60% more Flyspeck
goals automatically without losing any of those solved by REAL_ARITH. As with the
AI/ATP instances, the usage of decision procedures is optimized to jointly cover as
many problems as possible.

10 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/TAUT.html
11 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/INT_ARITH.html
12 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_FIELD.html
13 Premise minimization has been for long time used to improve the quality and refac-

toring speed of the Mizar articles. It is now also a standard part of Sledgehammer.

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/TAUT.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/INT_ARITH.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_FIELD.html


n”) however such proof scripts look quite unnatural (even if they are indeed
faster to process by HOL Light). Instead, we now prefer to use the whole original
theorems (including all conjuncts) in the reconstruction.

Three basic strategies are now tried to reconstruct the proof: REWRITE14

(rewriting), SIMP15 (conditional rewriting) and MESON [11] (internal first-order
ATP). These three strategies are started in parallel, each with the list of HOL
theorems that correspond to the minimized list of ATP premises as explained
above. The strongest of these tactics – MESON – can in one second reconstruct
79.3% of the minimized ATP proofs. While this is certainly useful, the perfor-
mance of MESON reconstruction drops below 40% as soon as the ATP proof uses
at least seven premises. Since the service is getting stronger and stronger, the ra-
tio of MESON-reconstructable proofs is likely to get lower and lower. That is why
we have developed also a fine-grained reconstruction method – HH_RECON [14],
which uses the quite detailed TPTP proofs produced by Vampire and E. This
method however still needs an additional mechanism that maintains the TPTP
proof as part of the user development: either dedicated storage, or on-demand
ATP-recreation, or translation to a corresponding fine-grained HOL Light proof
script. That is why HH_RECON is not yet included by default in the service.

2.6 Parallel Infrastructure

An important aspect of the online service is its parallelization capability. This is
needed to efficiently process multiple requests coming in from the clients, and to
execute the large number of AI/ATP instances in parallel within a short overall
wall-clock time limit. HOL Light uses a number of imperative features of OCaml,
such as static lists of constants and axioms, and a number of references (mutable
variables). Also a number of procedures that are needed use shared references
internally. For example the MESON procedure uses list references for variables.
This makes HOL Light not thread safe. Instead of spending lots of time on a
thread-safe re-implementation, the service just (in a pragmatic and simple way,
similar to the Mizar parallelization [27]) uses separate processes (Unix fork).
Given a list of HOL Light tasks that should be performed in parallel and a
timeout, the managing process spawns a child process for each of the tasks. It
also creates a pipe for communicating with each child process. Progress, failures
or completion information are sent over the pipe using OCaml marshalling. This
means that it is enough to have running just one managing instance of HOL
Light loaded with Flyspeck and with the advising infrastructure. This process
forks itself for each client query, and the child then spawns as many AI/ATP,
minimization, reconstruction, and decision procedure instances as needed.

2.7 Cache

Even though the service can asynchronously process a number of parallel re-
quests, it is not immune to overloading by a large number of requests coming in

14 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REWRITE_TAC.html
15 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/SIMP_TAC.html
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simultaneously. In such cases, each response gets less CPU time and the requests
are less likely to succeed within the 30 seconds of wall-clock time. Such overload-
ing is especially common for requests generated automatically. For example the
Wiki service that is being built for Flyspeck [24] may ask many queries prac-
tically simultaneously when an article in the wiki is re-factored, but many of
such queries will in practice overlap with previously asked queries. Caching is
therefore employed by the service to efficiently serve such repeated requests.

Since the parallel architecture uses different processes to serve different re-
quests, a file-system based cache is used (using file-level locking). For any in-
coming request the first job done by the forked process handling the request
is to check whether an identical request has already been served, and if so, the
process just re-sends the previously computed answer. If the request is not found
in the cache, a new entry (file) for it is created, and any information sent to the
client (apart from the progress information) is also written to the cache entry.
This means that all kinds of answers that have been sent to the client can be
cached, including information about terms that failed to parse or typecheck,
terms solved by ATP only, minimization results and replaying results, includ-
ing decision procedures. The cache stored in the filesystem has the additional
advantage of persistence, and in case of updating the service the cache can be
easily invalidated by simply removing the cache entries.

2.8 Interaction with the Service

Fig. 2: Parallel asynchronous calls of the online advisor from Emacs.

Figure 2 shows an Emacs session with several HOL Light goals.16 The online
advisor has been asynchronously called on the goals, and just returned the answer

16 A longer video of the interaction is at http://mws.cs.ru.nl/~urban/ha1.mp4
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for the fifth goal and inserted the corresponding tactic call at an appropriate
place in the buffer. The relevant Emacs code (customized for the HOL Light
mode distributed with Flyspeck) is available online17 and also distributed with
the local HOL(y)Hammer install. It is a modification of the similar code used for
communicating with the MizAR service from Emacs.

An experimental web editor interacting both with HOL Light and with the
online advisor is described in [24]. The simplest option (useful as a basis for
more sophisticated interfaces) is to interact with the service in command line,
for example using netcat, as shown for two following two queries. The first query
is solved easily by INT_ARITH, while the other requires nontrivial premise and
proof search. Table 2 gives an overview of the service use so far (the queries came
from 67 unique IP addresses).

$ echo 'max a b = &1 / &2 * ((a + b) + abs(a - b))'
| nc colo12-c703.uibk.ac.at 8080

......

* Replaying: SUCCESS (0.25s): INT_ARITH_TAC

* Loadavg: 48.13 48.76 48.49 52/1151 46604

$ echo '!A B (C:A->bool).((A DIFF B) INTER C=EMPTY) <=> ((A INTER C) SUBSET B)'
| nc colo12-c703.uibk.ac.at 8080

* Read OK

..............

* Theorem! Time: 14.74s Prover: Z Hints: 32 Str:

allt_notrivsyms_m10u_all_atponly

* Minimizing, current no: 9

.* Minimizing, current no: 6

* Result: EMPTY_SUBSET IN_DIFF IN_INTER MEMBER_NOT_EMPTY SUBSET SUBSET_ANTISYM

Table 2: Statistics of the queries to the online service (Jan 24 - Mar 11 2013)

Total (Unique) Parsed Typechecked Solved ATP-solved Reconstructed Dec. Proc. solved

482 445 382 228 108 86 142

3 The Local Service Description

The service can be also downloaded,18 installed and used locally, for example
when a user is working on a private formalization that cannot be included in the
public online service.19

Installing the advisor locally now requires two passes through the user’s
repository. In the first pass, a special module of the advisor stores the names of
all the theorems available in the user’s repository, together with their features
(symbols, terms, types, etc., as explained in Section 2.1). In the second pass,

17 https://raw.github.com/JUrban/hol-advisor/master/hol-advice.el
18 http://cl-informatik.uibk.ac.at/users/cek/hh/
19 The online service could eventually also accommodate private clones, using for ex-

ample the techniques proposed for the Mizar Wiki in [2].

https://raw.github.com/JUrban/hol-advisor/master/hol-advice.el
http://cl-informatik.uibk.ac.at/users/cek/hh/


the dependencies between the named theorems are computed, again using the
modified proof recording HOL Light kernel that records all the processing steps.
Given the exported features and dependencies, local advice system(s) (premise
selectors) are trained outside HOL Light. Using the fast sparse learning meth-
ods described in Section 2.1, this again takes seconds, depending on the user
hardware and the size of the development. The advisors are then run locally (as
independent servers) to serve the requests coming from HOL Light. While the
first pass is just a fast additional function that can be run by the user at any time
on top of his loaded repository, the second pass now still requires full additional
processing of the repository. This could be improved in the future by running
the proof-recording kernel as a default, as it is done for example in Isabelle.

The user is provided with a tactic (HH_ADVICE_TAC) which runs all the mech-
anisms described in the Section 2 on the current goal locally. This means that
the functions relying on external premise selection and ATPs are tried in paral-
lel, together with a number of decision procedures. The ATPs are expected to
be installed on the user’s machine and (as in the online service) they are run
on the goal translated to the TPTP format, together with a limited number of
premises optimized separately for each prover. By default Vampire, Eprover and
Z3 are now run, using three-fold parallelization.

The local installation in its simple configuration is now only trained using
the naive Bayes algorithm on the training data coming from the HOL Light
proof dependencies and the features extracted with the standard method. As
shown in [15], the machine learning advice can be strengthened using ATP de-
pendencies, which can be also optionally plugged into the local mode. Further
strengthening can be done with combinations of various methods. This is easy
to adjust; for example a user with a 24-CPU workstation can re-use/optimize
the parallel combinations from Table 1 used by the online service.

4 Comparison of the Online and Local Service

The two related existing services are MizAR and Sledgehammer. MizAR has so
far been an online service (accessible via Emacs or web interface), while Sledge-
hammer has so far required a local install (even though it already calls some
ATPs over a network). HOL(y)Hammer started as an online service, and the lo-
cal version has been added recently to answer the demand by some (power)users.

As described in Section 2, the online service now runs 25 different AI/ATP
instances and 4 decision procedures for each query. When counting the individual
ATP strategies (which may indeed be very orthogonal in systems like Vampire
and E), this translates to 249 different AI/ATP attempts for each query. If the
demands grows, we can already now distribute the load from the current 48-CPU
server to 112 CPUs by installing the service on another 64-CPU server. The old
resolution-ATP wisdom is that systems rarely prove a result in higher time limits,
since the search space grows very fast. A more recent wisdom (most prominently
demonstrated by Vampire) however is that using (sufficiently orthogonal) strat-
egy scheduling makes higher time limits much more useful.20 And even more

20 In [15], the relative performance of Vampire in 30 and 900 seconds is very different.



recent wisdom is that learning in various ways from related successes and fail-
ures further improves the systems’ chances when given more resources.21 All this
makes a strong case for developing powerful online computing services that can
in short bursts focus its great power on the user queries, which are typically re-
lated to many previous problems. Also in some sense, the currently used AI/ATP
methods are only scratching the surface. For example, further predictive power
is obtained in MaLARea by computing thousands of interesting finite models,
and using evaluation in them as additional semantic features of the formulas.
ATP prototypes like MaLeCoP [32] can already benefit from accumulated fine-
grained learned AI guidance at every inference step that they make. The service
can try to make the best (re-)use of all smaller lemmas that have been proved
so far (as in [25]). And as usual in machine learning, the more data are cen-
trally accumulated for such methods, the stronger the methods become. Finally,
it is hard to overlook the recent trend of light-weight devices for which the hard
computational tasks are computed by large server farms (cloud computing).

The arguments for installing the service locally are mainly the option to
use the service offline, and so far also the fact that the online service does not
yet accept and learn on (possibly private) user developments. The latter is just
a matter of additional implementation work. For example the MizAR service
already now keeps a number of (incompatible) MML versions over which the
query can be formulated, and techniques have been recently developed for the
Mizar wiki that provide very fast and space-efficient cloning of large libraries and
private additions over them managed by the server. As usual, the local install
will also require the tools involved to work on all kinds of architectures, which is
often an issue, particularly with software that is mostly developed in academia.

5 Conclusion and Future Work

HOL(y)Hammer is one of the strongest AI/ATP services currently available. It
uses a toolchain of evolving methods that have been continuously improved as
more and more experiments and computations have been done over the Flyspeck
corpus in the past six months. The combinations that jointly provide the greatest
theorem-proving coverage are employed to answer the queries with parallelization
of practically all of the components. The parallelization factor is probably the
highest of all existing ATP services, helping to focus the power of many different
AI/ATP methods to answer the queries as quickly as possible.

At this moment, there seems to be no end to better premise selection, better
translation methods for ATPs (and SMTs, and more advanced combined systems
like MetiTarski [1]), better ATP methods (and their AI-based guidance), and
better reconstruction methods. Useful work can be also done by making the
online service accept private user developments and clones that currently have to
rely only on the local installation. An interesting future direction is the use of the
service with its large knowledge base and growing reasoning power as a semantic

21 See, e.g., the performance graph for the MaLARea 0.4 system in the recent
Mizar@Turing12 competition: http://www.tptp.org/CASC/J6/TuringWWWFiles/

ResultsPlots.html#MRTProblems

http://www.tptp.org/CASC/J6/TuringWWWFiles/ResultsPlots.html#MRTProblems
http://www.tptp.org/CASC/J6/TuringWWWFiles/ResultsPlots.html#MRTProblems


understanding (connecting) layer for experiments with tools that attempt to
extract logical meaning from informal mathematical texts. Mathematics, with
its explicit semantics, could in fact pioneer the technology of very deep parsing
of scientific natural language writings, and their utilization in making stronger
and stronger automated reasoning tools about all kinds of scientific domains.
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nection prover. In Kai Brünnler and George Metcalfe, editors, TABLEAUX, volume
6793 of LNCS, pages 263–277. Springer, 2011.

33. Vernor Vinge. A Fire Upon the Deep. Tor Books, 1992.


	Automated Reasoning Service for HOL Light

