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Abstract

Large formal mathematical libraries consist of millions of atomic inference steps that give rise
to a corresponding number of proved statements (lemmas). Analogously to the informal mathe-
matical practice, only a tiny fraction of such statements is named and re-used in later proofs by
formal mathematicians. In this work, we suggest and implement criteria defining the estimated
usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine
the large inference graph of the lemmas in the HOL Light and Flyspeck libraries, adding up
to millions of the best lemmas to the pool of statements that can be re-used in later proofs.
We show that in combination with learning-based relevance filtering, such methods significantly
strengthen automated theorem proving of new conjectures over large formal mathematical li-
braries such as Flyspeck.
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1. Introduction: Automated Reasoning over Large Mathematical Libraries

In the last decade, large formal mathematical corpora such as the Mizar Mathematical
Library (Grabowski et al., 2010) (MML), Isabelle/HOL (Wenzel et al., 2008) and HOL
Light (Harrison, 1996)/Flyspeck (Hales, 2006) have been translated to formats that allow
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easy experiments with external automated theorem provers (ATPs) and AI systems (Ur-
ban, 2004; Meng and Paulson, 2008; Kaliszyk and Urban, 2014).

The problem that has immediately emerged is to efficiently automatically reason over
such large formal mathematical knowledge bases, providing as much support for author-
ing computer-understandable mathematics as possible. Reasoning with and over such
large ITP (interactive theorem proving) libraries is however not just a new problem, but
also a new opportunity, because the libraries already contain a lot of advanced knowledge
in the form of concepts, theorems, proofs, and whole theory developments. Such large
pre-existing knowledge allows mathematicians to state more advanced conjectures, and
experiment on them with the power of existing symbolic reasoning methods. The large
amount of mathematical and problem-solving knowledge contained in the libraries can be
also subjected to all kinds of knowledge-extraction methods, which can later complement
more exhaustive theorem-proving methods by providing domain-specific guidance. De-
veloping the strongest possible symbolic reasoning methods that combine such knowledge
extraction and re-use with correct deductive search is an exciting new area of Artificial
Intelligence and Symbolic Computation.

Several symbolic AI/ATP methods for reasoning in the context of a large number
of related theorems and proofs have been suggested and tried already, including: (i)
methods (often external to the core ATP algorithms) that select relevant premises (facts)
from the thousands of theorems available in such corpora (Hoder and Voronkov, 2011;
Kühlwein et al., 2012), (ii) methods for internal guidance of ATP systems when reasoning
in the large-theory setting (Urban et al., 2011), (iii) methods that automatically evolve
more and more efficient ATP strategies for the clusters of related problems from such
corpora (Urban, 2013), and (iv) methods that learn which of such specialized strategies
to use for a new problem (Kühlwein et al., 2013).

In this work, we start to complement the first set of methods – ATP-external premise
selection – with lemma mining from the large corpora. The main idea of this approach is
to enrich the pool of human-defined main (top-level) theorems in the large libraries with
the most useful/interesting lemmas extracted from the proofs in these libraries. Such
lemmas are then eligible together with (or instead of) the main library theorems as the
premises that are given to the ATPs to attack new conjectures formulated over the large
libraries.

This high-level idea is straightforward, but there are a number of possible approaches
involving a number of issues to be solved, starting with a reasonable definition of a
useful/interesting lemma, and with making such definitions efficient over corpora that
contain millions to billions of candidate lemmas. These issues are discussed in Sections 4
and 5, after motivating and explaining the overall approach for using lemmas in large
theories in Section 2 and giving an overview of the recent related work in Section 3.

As in any AI discipline dealing with large amount of data, research in the large-theory
field is driven by rigorous experimental evaluations of the proposed methods over the ex-
isting corpora. For the first experiments with lemma mining we use the HOL Light system,
together with its core library and the Flyspeck library. The various evaluation scenarios
are defined and discussed in Section 6, and the implemented methods are evaluated in
Section 7. Section 8 discusses the various future directions and concludes. 1

1 This paper is an extended version of (Kaliszyk and Urban, 2013c).
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2. Using Lemmas for Theorem Proving in Large Theories

The main task in the Automated Reasoning in Large Theories (ARLT) domain is to
prove new conjectures with the knowledge of a large body of previously proved theorems
and their proofs. This setting reasonably corresponds to how large ITP libraries are con-
structed, and hopefully also emulates how human mathematicians work more faithfully
than the classical scenario of a single hard problem consisting of isolated axioms and a
conjecture (Urban and Vyskočil, 2013). The pool of previously proved theorems ranges
from thousands in large-theory ATP benchmarks such as MPTP2078 (Alama et al.,
2014), to tens of thousands when working with the whole ITP libraries. 2

The strongest existing ARLT systems combine variously parametrized premise-selection
techniques (often based on machine learning from previous proofs) with ATP systems
and their strategies that are called with varied numbers of the most promising premises.
These techniques can go quite far already: when using 14-fold parallelization and 30s
wall-clock time, the HOLyHammer system (Kaliszyk and Urban, 2014, 2013a) can today
prove 47% of the 14185 3 Flyspeck theorems (Kaliszyk and Urban, 2013e). This is mea-
sured in a scenario 4 in which the Flyspeck theorems are ordered chronologically using
the loading sequence of the Flyspeck library, and presented in this order to HOLyHammer
as conjectures. After each theorem is attempted, its human-designed HOL Light proof
is fed to the HOLyHammer’s learning components, together with the (often numerous)
ATP proofs found by HOLyHammer itself. This means that for each Flyspeck theorem,
all human-written HOL Light proofs of all previous theorems are assumed to be known,
together with all their ATP proofs found already by HOLyHammer, but nothing is known
about the current conjecture and the following parts of the library (they do not exist
yet).

So far, systems like HOLyHammer (similar systems include Sledgehammer/MaSh (Kühlwein
et al., 2013), MizAR (Urban et al., 2013; Kaliszyk and Urban, 2013d) and MaLARea (Ur-
ban et al., 2008)) have only used the set of named library theorems for proving new
conjectures and thus also for the premise-selection learning. This is usually a reasonable
set of theorems to start with, because the human mathematicians have years of experi-
ence with structuring the formal libraries. On the other hand, there is no guarantee that
this set is in any sense optimal, both for the human mathematicians and for the ATPs.
The following three observations indicate that the set of human-named theorems may be
suboptimal:
Proofs of different length: The human-named theorems may differ considerably in the

length of their proofs. The human naming is based on a number of (possibly tradi-
tional/esthetical) criteria that may sometimes have little to do with a good struc-
turing of the library.

Duplicate and weak theorems: The large collaboratively-build libraries are hard to man-
ually guard against duplications and naming of weak versions of various statements.
The experiments with the MoMM system over the Mizar library (Urban, 2006) and

2 23323 theorems are in the HOL Light/Flyspeck library (SVN revision 3437), about 20000 are in the

Isabelle/HOL library, and about 50000 theorems are in the Mizar library.
3 These experiments were done on a earlier version of Flyspeck (SVN revision 2887) than is used here
(SVN revision 3437), where the number of theorems is 23323.
4 A similar scenario has been introduced in 2013 also for the LTB (Large-Theory Batch) division of the
CASC competition.
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with the recording of the Flyspeck library (Kaliszyk and Krauss, 2013) have shown
that there are a number of subsumed and duplicated theorems, and that some
unnamed strong lemmas are proved over and over again.

Short alternative proofs: The experiments with AI-assisted ATP over the Mizar and Fly-
speck libraries (Alama et al., 2012; Kaliszyk and Urban, 2014) have shown that the
combined AI/ATP systems may sometimes find alternative proofs that are much
shorter and very different from the human proofs, again turning some “hard” named
theorems into easy corollaries.

Suboptimal naming may obviously influence the performance of the current large-
theory systems. If many important lemmas are omitted by the human naming, the ATPs
will have to find them over and over when proving the conjectures that depend on such
lemmas. On the other hand, if many similar variants of one theorem are named, the cur-
rent premise-selection methods might focus too much on those variants, and fail to select
the complementary theorems that are also necessary for proving a particular conjecture. 5

To various extent, this problem might be remedied by the alternative learning/guid-
ance methods (ii) and (iii) mentioned in Section 1: Learning of internal ATP guidance
using for example Veroff’s hint technique (Veroff, 1996), and learning of suitable ATP
strategies using systems like BliStr (Urban, 2013). But these methods are so far much
more experimental in the large-theory setting than premise selection. 6 That is why we
propose and explore here the following lemma-mining approach:

(1) Considering (efficiently) the detailed graph of all atomic inferences contained in the
ITP libraries. Such a graph has millions of nodes for the core HOL Light corpus,
and hundreds of millions of nodes for the whole Flyspeck.

(2) Defining over such large proof graphs efficient criteria that select a smaller set of
the strongest and most orthogonal lemmas from the corpora.

(3) Using such lemmas together with (or instead of) the human-named theorems for
proving new conjectures over the corpora.

3. Overview of Related Work and Ideas

A number of ways how to measure the quality of lemmas and how to use them for
further reasoning have been proposed already, particularly in the context of ATP systems
and proofs. Below we summarize recent approaches and tools that initially seemed most
relevant to our work.

Lemmas are an essential part of various ATP algorithms. State-of-the-art ATPs such
as Vampire (Kovács and Voronkov, 2013), E (Schulz, 2002) and Prover9 (McCune, 2005–
2010) implement various variants of the ANL loop (Wos et al., 1984), resulting in hun-
dreds to billions of lemmas inferred during the prover runs. This gave rise to a number
of efficient ATP indexing techniques, redundancy control techniques such as subsump-
tion, and also fast ATP heuristics (based on weight, age, conjecture-similarity, etc.) for
choosing the best lemmas for the next inferences. Several ATP methods and tools work

5 This behavior obviously depends on the premise-selection algorithm. It is likely to occur when the

premise selection is mainly based on symbolic similarity of the premises to the conjecture. It is less likely
to occur when complementary semantic selection criteria are additionally used as, e.g., in SRASS (Sut-

cliffe and Puzis, 2007) and MaLARea (Urban et al., 2008).
6 In particular, several initial experiments done so far with Veroff’s hints over the MPTPChallenge and

MPTP2078 benchmarks were so far unsuccessful.
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with such ATP lemmas. Veroff’s hint technique (Veroff, 1996) extracts the best lemmas
from the proofs produced by successful Prover9 runs and uses them for directing the
proof search in Prover9 on related problems. A similar lemma-extracting, generalizing
and proof-guiding technique (called E Knowledge Base – EKB) was implemented by
Schulz in E prover as a part of his PhD thesis (Schulz, 2000).

Schulz also implemented the epcllemma tool that estimates the best lemmas in an
arbitrary DAG (directed acyclic graph) of inferences. Unlike the hint-extracting/guiding
methods, this tool works not just on the handful of lemmas involved in the final refuta-
tional proof, but on the typically very large number of lemmas produced during the (pos-
sibly unfinished) ATP runs. The epcllemma’s criteria for selecting the next best lemma
from the inference DAG are: (i) the size of the lemma’s inference subgraph based at the
nodes that are either axioms or already chosen (better) lemmas, and (ii) the weight of the
lemma. This lemma-selection process may be run recursively, until a stopping criterion
(minimal lemma quality, required number of lemmas, etc.) is reached. Our algorithm for
selecting HOL Light lemmas (Section 5) is quite similar to this.

AGIntRater (Puzis et al., 2006) is a tool that computes various characteristics of the
lemmas that are part of the final refutational ATP proof and aggregates them into
an overall interestingness rating. These characteristics include: obviousness, complexity,
intensity, surprisingness, adaptivity, focus, weight, and usefulness, see (Puzis et al., 2006)
for details. AGIntRater so far was not directly usable on our data for various reasons
(particularly the size of our graph), but we might re-use and try to efficiently implement
some of its ideas later.

Pudlák (2006) has conducted experiments over several datasets with automated re-use
of lemmas from many existing ATP proofs in order to find smaller proofs and also to
attack unsolved problems. This is similar to the hints technique, however more automated
and closer to our large-theory setting (hints have so far been successfully applied mainly
in small algebraic domains). To interreduce the large number of such lemmas with respect
to subsumption he used the CSSCPA (Sutcliffe, 2001) subsumption tool based on the
E prover by Schulz and Sutcliffe. MoMM (Urban, 2006) adds a number of large-theory
features to CSSCPA. It was used for (i) fast interreduction of million of lemmas extracted
(generalized) from the proofs in the Mizar library, and (ii) as an early ATP-for-ITP
hammer-style tool for completing proofs in Mizar with the help of the whole Mizar library.
All library lemmas can be loaded, indexed and considered for each query, however the
price for this breadth of coverage is that the inference process is limited to subsumption
extended with Mizar-style dependent types.

AGIntRater and epcllemma use a lemma’s position in the inference graph as one of the
lemma’s characteristics that contribute to its importance. There are also purely graph-
based algorithms that try to estimate a relative importance of nodes in a graph. In
particular, research of large graphs became popular with the appearance of the World
Wide Web and social networks. Algorithms such as PageRank (Page et al., 1998) (eigen-
vector centrality) have today fast approximative implementations that easily scale to
billions of nodes.

4. The Proof Data

We consider two corpora: the core HOL Light corpus (SVN version 179) and the Fly-
speck corpus (SVN version 3437). The core HOL Light corpus contains of 2,239 named
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theorems, while the Flyspeck corpus consists of 23,323 named theorems. The first prereq-
uisite for implementing and running interesting lemma-finding algorithm is the extraction
of the full dependency graph containing all intermediate steps (lemmas), and identifica-
tion of the named top-level theorems among them.

There are three issues with the named theorems that we initially need to address.
First, many theorems in HOL Light are conjunctions. It is often the case that lemmas
that deal with the same constant or theory are put in the same theorem, so that they
can be passed to tactics and decision procedures as a single argument rather than a list.
Second, a single theorem may be given multiple names. This is especially common in
case of larger formalizations like Flyspeck. Third, even if theorems are not syntactically
equal they may be alpha equal. HOL Light does not natively use de Bruijn indices for
representing variables, i.e., two alpha-convertible versions of the same theorems will be
kept in the proof trace if they differ in variable names. Therefore the first operation we
perform is to find a unique name for each separate top-level conjunct. The data sizes and
processing times of this first phase can be found in Table 1.

HOL Light (179) Flyspeck (3437)

Named theorems 2,239 23,323

Distinct named conjuncts 2,542 24,745

Constant definitions 234 2,106

Type definitions 18 29

Processing time 2m09s 327m56s

Processing memory 214MB 1,645MB

Table 1. The top-level available data and processing statistics of the analyzed corpora.

We next look at all the available intermediate lemmas, each of them corresponding
to one of the LCF-style kernel inferences done by HOL Light. The number of these
lemmas when processing Flyspeck is around 1.7 billion. Here, already performing the
above mentioned reduction is hard since the whole graph with the 1.7 billion HOL Light
formulas can be considered big data: it fits neither in memory nor on a single hard disk.
Therefore we perform the first graph reductions already when recording the proof trace.

To obtain the full inference graph for Flyspeck we run the proof-recording version
of HOL Light (Kaliszyk and Krauss, 2013) patched to additionally remember all the
intermediate lemmas. Obtaining such trace for Flyspeck takes 29 hours of CPU time and
56 GB of RAM on an AMD Opteron 6174 2.2 GHz Because of the memory consumption
we initially consider two versions: a) de-duplicating all the intermediate lemmas within
a named theorem; we call the graph obtained in this way TRACE0, and b) de-duplicating
all the lemmas; which we call TRACE1. The sizes of the traces are presented in Table 2.
This time and memory consumption are much lower when working only with the core
HOL Light, where a further graph optimization in this step could already be possible.

There are 1,953,406,411 inference edges between the unique Flyspeck lemmas. During
the proof recording we additionally export the information about the symbol weight
(size) of each lemma, and for the small HOL Light traces also the lemma’s normalized
form that serially numbers bound and free variables and tags them with their types.
This information is later used for external postprocessing, together with the information
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HOL Light graph Flyspeck graph

nodes edges nodes edges

kernel inferences 8,919,976 10,331,922 1,728,861,441 1,953,406,411

TRACE0 2,435,875 3,476,767 206,699,009 302,799,816

TRACE1 2,076,682 3,002,990 159,102,636 233,488,673

tactical inferences 148,514 594,056 11,824,052 42,296,208

tactical trace 22,284 89,981 1,067,107 4,268,428

Table 2. The sizes of the inference graphs.

about which theorems where originally named. The initial segment of the Flyspeck proof
trace is presented in Fig. 1, all the traces are available online. 7

F13 #1, Definition (size 13): T ⇐⇒ (λA0. A0) = (λA0. A0)
R9 #2, Reflexivity (size 9): (λA0. A0) = (λA0. A0)
R5 #3, Reflexivity (size 5): T ⇐⇒ T

R5 #4, Reflexivity (size 5): (⇐⇒) = (⇐⇒)
C17 4 1 #5, Application(4,1): (⇐⇒) T = (⇐⇒) ((λA0. A0) = (λA0. A0))
C21 5 3 #6, Application(5,3): (T ⇐⇒ T) ⇐⇒ (λA0. A0) = (λA0. A0) ⇐⇒ T

E13 6 3 #7, EQ_MP(6,3) (size 13): (λA0. A0) = (λA0. A0) ⇐⇒ T

Fig. 1. Initial segment of the HOL Light theorem trace commented with the numbers of the steps
and the theorems derived by the steps.

4.1. Initial Post-processing and Optimization of the Inference Traces

During the proof recording, only exact duplicates are easy to detect. As already ex-
plained in the previous Section, HOL Light does not natively use de Bruijn indices for
representing variables, so the trace may still contain alpha-convertible versions of the
same theorems. Checking for alpha convertibility during the proof recording would be
possible, however is not obvious since in the HOL Light’s LCF-style approach alpha con-
version itself results in multiple kernel inferences. In order to avoid performing term-level
renamings we keep the original proof trace untouched, and implement its further opti-
mizations as external postprocessing of the trace.

In particular, to merge alpha convertible lemmas in a proof trace T , we just use the
above mentioned normalized-variable representation of the lemmas as an input to an
external program that produces a new version of the proof trace T ′. This program goes
through the trace T and replaces references to each lemma by a reference to the earliest
lemma in T with the same normalized-variable representation. The proofs of the later
named alpha variants of the lemmas in T are however still kept in the new trace T ′,
because such proofs are important when computing the usage and dependency statistics
over the normalized lemmas. We have done this postprocessing only for the core HOL
Light lemmas, because printing out of the variable-normalized version of the 150,142,900
partially de-duplicated Flyspeck lemmas is currently not feasible on our hardware. From

7 http://cl-informatik.uibk.ac.at/~cek/lemma_mining/
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the 2,076,682 partially de-duplicated core HOL Light lemmas 1,076,995 are left after this
stronger normalization. We call such further post-processed graph TRACE2.

It is clear that such post-processing operations can be implemented in various ways. In
this case, some original information about the proof graph is lost, while some information
(proofs of duplicate lemmas) is still kept, even though it could be also pruned from the
graph, producing a differently normalized version.

4.2. Obtaining Shorter Traces from the Tactic Calls

Considering the HOL kernel proof steps as the atomic steps in construction of inter-
mediate lemmas has (at least) three drawbacks. First, the pure size of the proof traces
makes it hard to scale the lemma-mining procedures to big developments like Flyspeck.
Second, the multitude of steps that arise when applying simple HOL Light decision pro-
cedures overshadows the interesting parts of the proofs. It is not uncommon for a simple
operation, like a normalization of a polynomial, to produce tens of thousands of core ker-
nel inferences. Third, some operations (most notably the HOL Light simplifier) produce
kernel inferences in the process of proof search. Such inferences are not only uninteresting
(as in the previous case), but often useless for the final proof.

In order to overcome the above three issues encountered in the first experiments, we
followed by gathering data at the level of the HOL Light tactic steps (Harrison, 1996). The
execution of each HOL Light tactic produces a new goal state together with a justification
function that produces an intermediate lemma. In this approach, instead of considering
all kernel steps, we will consider only the lemmas produced by the justification functions
of tactics. The HOL Light tactics work on different levels. The tactics executed by the
user and visible in the proof script form the outermost layer. However most of the tactics
are implemented as OCaml functions that inspect the goal and execute other (smaller)
tactics. If we unfold such internal executions of tactics recursively, the steps performed
are of a similar level of detail as in typical natural deduction proofs.

This could give us a trace that is slightly smaller than the typical trace of the kernel
inferences; however the size is still of the same order of magnitude. In order to efficiently
process large formal developments we decided to look at an intermediate level: only at
the tactics that are composed using tactic combinators (Harrison, 1996).

In order to patch the tactic combinators present in HOL Light and Flyspeck it is enough
to patch the three building blocks of tactic combinators: THEN, THENL, and by. Loading
Flyspeck with these functions patched takes about 25% more time than the original and
requires 6GB of memory to remember all the 20 million new intermediate theorems.
This is significantly less than the patched kernel version and the produced graph can be
reasonably optimized.

The optimizations performed on the level of named theorems can be done here again:
recursively splitting conjunctions and normalizing the quantifiers, as well as the premises
we get 2,014,505 distinct conjuncts. After alpha-normalization this leaves a trace with
1,067,107 potential intermediate lemmas. In order to find dependencies between the po-
tential intermediate lemmas we follow the approach by Kaliszyk and Krauss (2013) which
needs a second dependency recording pass over the whole Flyspeck.

The post-processed tactics dependency graph has 4,268,428 edges and only 2,145 nodes
have no dependencies. The comparison of all the traces can be seen in Table 2. The data
is written in the same format as the HOL kernel inference data, so that we can use the
same predictors. An excerpt from the tactical trace coming from the proof of MAP_APPEND
is presented in Fig. 2.
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X29 3377 3371 #3437, Rewriting with two given theorems, size 29:

` ∀l2. MAP f (APPEND [] l2) = APPEND (MAP f []) (MAP f l2)

X66 3378 3372 #3438, Rewriting with two given theorems, size 66:

` ∀t. (∀l2. MAP f (APPEND t l2) = APPEND (MAP f t) (MAP f l2))
=⇒ (∀l2. MAP f (APPEND (CONS h t) l2) =

APPEND (MAP f (CONS h t)) (MAP f l2))

X33 3321 3437 3438 #3439, List induction, size 33:

` ∀f l1 l2. MAP f (APPEND l1 l2) = APPEND (MAP f l1) (MAP f l2)

Fig. 2. An excerpt of the tactical trace showing the dependencies between the goal states in the
proof of MAP_APPEND. For simplicity we chose an excerpt that shows the theorems created by the
direct application of a tactic that does not call other tactics (LIST_INDUCT_TAC). This means
that all the theorems created in this part of the trace directly correspond to goals visible to the
proof-assistant user.

4.3. Other Possible Optimizations

The ATP experiments described below use only the four versions of the proof trace
(TRACE0, TRACE1, TRACE2, and the tactical trace) described above, but we have also
explored some other normalizations. A particularly interesting optimization from the
ATP point of view is the removal of subsumed lemmas. An initial measurement with
the (slightly modified) MoMM system done on the clausified first-order versions of about
200,000 core HOL Light lemmas has shown that about 33% of the clauses generated from
the lemmas are subsumed. But again, ATP operations like subsumption interact with the
level of inferences recorded by the HOL Light kernel in nontrivial ways. It is an interesting
task to define exactly how the original proof graph should be transformed with respect
to such operations, and how to perform such proof graph transformations efficiently over
the whole Flyspeck.

5. Selecting Good Lemmas

Several approaches to defining the notion of a useful/interesting lemma are mentioned
in Section 3. There are a number of ideas that can be explored and combined together in
various ways, but the more complex methods (such as those used by AGIntRater) are not
yet directly usable on the large ITP datasets that we have. So far, we have experimented
mainly with the following techniques:

(1) A direct OCaml implementation of lemma quality metrics based on the HOL Light
proof-recording data structures.

(2) Schulz’s epcllemma and its minor modifications.
(3) PageRank, applied in various ways to the proof trace.
(4) Graph cutting algorithms with modified weighting function.

5.1. Direct Computation of Lemma Quality

The advantage of the direct OCaml implementation is that no export to external tools
is necessary and all the information collected about the lemmas by the HOL Light proof
recording is directly available. The basic factors that we use so far for defining the quality
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of a lemma i are its: (i) set of direct proof dependencies d(i) given by the proof trace,
(ii) number of recursive dependencies D(i), (iii) number of recursive uses U(i), and (iv)
number of HOL symbols (HOL weight) S(i). When recursively defining U(i) and D(i)
we assume that in general some lemmas may already be named (k ∈ Named) and some
lemmas are just axioms (k ∈ Axioms). Note that in HOL Light there are many lemmas
that have no dependencies, but formally they are still derived using for example the
reflexivity inference rule (i.e., we do not count them among the HOL Light axioms).
The recursion when defining D thus stops at axioms, named lemmas, and lemmas with
no dependencies. The recursion when defining U stops at named lemmas and unused
lemmas. Formally:

Definition 1 (Recursive dependencies and uses).

D(i) =

1 if i ∈ Named ∨ i ∈ Axioms,∑
j∈d(i)

D(j) otherwise.

U(i) =

1 if i ∈ Named,∑
i∈d(j)

U(j) otherwise.

In particular, this means that

D(i) = 0 ⇐⇒ d(i) = ∅ ∧ ¬(i ∈ Axioms)

and also that
U(i) = 0 ⇐⇒ ∀j¬(i ∈ d(j))

These basic characteristics are combined into the following lemma quality metrics Q1(i),
Q2(i), and Q3(i). Qr

1(i) is a generalized version of Q1(i), which we (apart from Q1) test
for r ∈ {0, 0.5, 1.5, 2}:

Definition 2 (Lemma quality).

Q1(i) =
U(i) ∗D(i)

S(i)

Q2(i) =
U(i) ∗D(i)

S(i)2

Qr
1(i) =

U(i)r ∗D(i)2−r

S(i)

Q3(i) =
U(i) ∗D(i)

1.1S(i)

The justification behind these definitions are the following heuristics:
(1) The higher is D(i), the more necessary it is to remember the lemma i, because it

will be harder to infer with an ATP when needed.
(2) The higher is U(i), the more useful the lemma i is for proving other desired con-

jectures.
(3) The higher is S(i), the more complicated the lemma i is in comparison to other

lemmas. In particular, doubled size may often mean in HOL Light that i is just a
conjunction of two other lemmas. 8

8 The possibility to create conjunctions is quite a significant difference to the clausal setting handled

by the existing tools. A longer clause is typically weaker, while longer conjunctions are stronger. A
dependence on a longer conjunction should ideally be treated by the evaluating heuristics as a dependence
on the multiple conjuncts. Note that for the tactical trace we already split all conjunctions in the trace.
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5.2. Lemma Quality via epcllemma

Lemma quality in epcllemma is defined on clause inferences recorded using E’s native
PCL protocol. The lemma quality computation also takes into account the lemmas that
have been already named, and with minor implementational variations it can be expressed
using D and S as follows:

EQ1(i) =
D(i)

S(i)

The difference to Q1(i) is that U(i) is not used, i.e., only the cumulative effort needed
to prove the lemma counts, together with its size (this is also very close to Qr

1(i) with
r = 0). The main advantage of using epcllemma is its fast and robust implementation
using the E code base. This allowed us to load in reasonable time (about one hour) the
whole Flyspeck proof trace into epcllemma, taking 67 GB of RAM. Unfortunately, this
experiment showed that epcllemma assumes that D is always an integer. This is likely
not a problem for epcllemma’s typical use, but on the Flyspeck graph this quickly leads
to integer overflows and wrong results. To a smaller extent this shows already on the
core HOL Light proof graph. A simple way how to prevent the overflows was to modify
epcllemma to use instead of D the longest chain of inferences L:

L(i) =

{
1 if i ∈ Named ∨ i ∈ Axioms,

maxj∈d(i)(1 + L(j)) otherwise.

This leads to:

EQ2(i) =
L(i)

S(i)

Apart from this modification, only minor changes were needed to make epcllemma work
on the HOL Light data. The proof trace was expressed as a PCL proof (renaming the HOL
inferences into E inferences), and TPTP clauses were used instead of the original HOL
clauses. We additionally compared two strategies of creating the TPTP clauses. First
we applied the MESON translation to the HOL clause, second we tried to create artificial
TPTP clauses of the size corresponding to the size of the HOL clause.

5.3. Lemma Quality via PageRank

PageRank (eigenvector centrality of a graph) is a method that assigns weights to
the nodes in an arbitrary directed graph (not just DAG) based on the weights of the
neighboring nodes (“incoming links”). In more detail, the weights are computed as the
dominant eigenvector of the following set of equations:

PR1(i) =
1− f

N
+ f

∑
i∈d(j)

PR1(j)

|d(j)|

where N is the total number of nodes and f is a damping factor, typically set to 0.85.
The advantage of using PageRank is that there are fast approximative implementations
that can process the whole Flyspeck proof graph in about 10 minutes using about 21 GB
RAM, and the weights of all nodes are computed simultaneously in this time.

This is however also a disadvantage in comparison to the previous algorithms: PageR-
ank does not take into account the lemmas that have already been selected (named). The
closer a lemma i is to an important lemma j, the more important i will be. Modifications
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that use the initial PageRank scores for more advanced clustering exist (Avrachenkov
et al., 2008) and perhaps could be used to mitigate this problem while still keeping the
overall processing reasonably fast. Another disadvantage of PageRank is its ignorance of
the lemma size, which results in greater weights for the large conjunctions that are used
quite often in HOL Light. PR2 tries to counter that:

PR2(i) =
PR1(i)

S(i)

PR1 and PR2 are based on the idea that a lemma is important if it is needed to prove
many other important lemmas. This can be again turned around: we can define that
a lemma is important if it depends on many important lemmas. This is equivalent to
computing the reverse PageRank and its size-normalized version:

PR3(i) =
1− f

N
+ f

∑
i∈u(j)

PR3(j)

|u(j)|
PR4(i) =

PR3(i)

S(i)

where u(j) are the direct uses of the lemma j, i.e., i ∈ u(j) ⇐⇒ j ∈ d(i). The two ideas
can again be combined (note that the sum of the PageRanks of all nodes is always 1):

PR5(i) = PR1(i) + PR3(i) PR6(i) =
PR1(i) + PR3(i)

S(i)

5.4. Lemma Quality using Graph Cut

The approaches so far tried to define what a “good” lemma is using our intuitions
coming from mathematics. Here we will try to estimate the impact that choosing certain
lemmas will have on the final dependency graph used for the learning framework.

Choosing a subset of the potential intermediate lemmas can be considered a variant
of the graph-theoretic problems of finding a cut with certain properties. We will consider
only cuts that respect the chronological order of theorems in the library. Since many
of the graph-cut algorithms (for example maximum cut) are NP-complete, we decide to
build the cut greedily adding nodes to the cut one by one.

Fig. 3. An example cut of the dependency graph that respects the chronological order of the
library. The already named theorems are marked in gray.

Given a graph where certain nodes are already named (marked gray in the Figure 3)
we want to estimate the impact of choosing a new lemma on the evaluation. In the
evaluation, we will compute the dependency graph of all the gray nodes together with
the newly chosen one. The final graph represents the human dependencies, which means
that theorems are ATP-provable using exactly these dependencies. By minimizing the
number of edges in this final graph we make the average number of premises in the
problems smaller which should make the problems easier to prove. The assumption here,
is that training our estimators on theorems that are easier to prove makes the resulting
AI/ATP system stronger.
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In order to minimize the number of edges in the final graph we will investigate what is

the impact of adding a node n to the cut. We consider all the dependency paths starting

which start at n. On each path we select the first already named node. All the nodes

that have been selected are the dependencies that n will have in the final dependency

graph. Lets denote this set as D(n). Similarly we can find all the nodes that will have

n as a dependency This can be done in a similar way, taking all the paths the opposite

direction again choosing the first gray node on each path. Lets denote the nodes found

as U(n). These nodes will have n as a dependency if n is chosen to be in the cut.

Theorem 3. Adding a node n to the cut c will decrease the number of edges in the final

graph by |D(n)| ∗ |U(n)| − |D(n)| − |U(n)|.

Proof. With the cut c the edges in the final graph include all the edges between the

nodes in D(n) and U(n). Adding the node n to c these |D(n)| ∗ |U(n)| edges will be

replaced by the dependencies from each element of U(n) to n (|U(n)| many of them) and

the dependencies from n to all the elements of D(n) (|D(n)| many of them). 2

The algorithm manipulates sets of nodes rather than numbers, which makes it signif-

icantly slower than all the previously described ones. We will test this algorithm only

for up to 10,000 lemmas as already finding them takes 11 CPU hours. Similarly to the

algorithms in the previous subsections we try to limit the effect of large theorems on the

algorithm by considering also the size normalized version:

MC1(i) = |D(i) ∗ U(i)| − |D(i)| − |U(i)| MC2(i) =
MC1(i)

S(i)

5.5. Selecting Many Lemmas

From the methods described above, only the various variants of PageRank (PRi)

produce the final ranking of all lemmas in one run. Both epcllemma (EQi) and our custom

methods (Qi, MCi) are parametrized by the set of lemmas (Named) that have already

been named. When the task is to choose a predefined number of the best lemmas, this

naturally leads to the recursive lemma-selection Algorithm 1 (used also by epcllemma).

There are two possible choices of the initial set of named lemmas Named0 in Al-

gorithm 1: either the empty set, or the set of all human-named theorems. This choice

depends on whether we want to re-organize the library from scratch, or whether we just

want to select good lemmas that complement the human-named theorems. Below we

experiment with both approaches. Note that this algorithm is currently quite expensive:

the fast epcllemma implementation takes 65 seconds to update the lemma qualities over

the whole Flyspeck graph after each change of the Named set. This means that with

the kernel-based inference trace (TRACE1) producing the first 10,000 Flyspeck lemmas

takes 180 CPU hours. That is why most of the experiments are limited to the core HOL

Light graph and Flyspeck tactical graph where this takes about 1 second and 3 hours

respectively.
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Algorithm 1 Best lemmas

Input a lemma-quality metric Q, set of lemmas Lemmas, an initial set of named lemmas
Named0 ⊂ Lemmas, and a required number of lemmas M

Output set Named of M best lemmas according to Q
1: Named← Named0
2: m← 0
3: while m < M do
4: for i ∈ Lemmas do
5: Calculate(QNamed(i))
6: end for
7: j ← argmax{QNamed(i) : i ∈ Lemmas \Named}
8: Named← Named ∪ {j}
9: m← m + 1

10: end while
11: Return(Named)

6. Evaluation Scenarios and Issues

To assess and develop the lemma-mining methods we define several evaluation scenar-
ios that vary in speed, informativeness and rigor. The simplest and least rigorous is the
expert-evaluation scenario: We can use our knowledge of the formal corpora to quickly
see if the top-ranked lemmas produced by a particular method look plausible.

The cheating ATP scenario uses the full proof graph of a corpus to compute the set of
the (typically 10,000) best lemmas (BestLemmas) for the whole corpus. Then the set of
newly named theorems (NewThms) is defined as the union of BestLemmas with the set
of originally named theorems (OrigThms): NewThms := BestLemmas ∪ OrigThms.
The derived graph GNewThms of direct dependencies among the elements of NewThms is
used for ATP evaluation, which may be done in two ways: with human selection and with
AI selection. When using human selection, we try to prove each lemma from its parents
in GNewThms. When using AI selection, we use the chronological order (see Section 2)
of NewThms to incrementally train and evaluate the k-NN machine learner (Kaliszyk
and Urban, 2013e) on the direct dependencies from GNewThms. This produces for each
new theorem an ATP problem with premises advised by the learner trained on the
GNewThms dependencies of the preceding new theorems. This scenario may do a lot of
cheating, because when measuring the ATP success on OrigThms, a particular theorem
i might be proved with the use of lemmas from NewThms that have been stated for
the first time only in the original proof of i (we call such lemmas directly preceding). In
other words, such lemmas did not exist before the original proof of i was started, so they
could not possibly be suggested by lemma-quality metrics for proving i. Such directly
preceding lemmas could also be very close to i, and thus equally hard to prove.

The almost-honest ATP scenario does not allow the use of the directly preceding
new lemmas. The dependencies of each i ∈ NewThms may consist only of the previ-
ous OrigThms and the lemmas that precede them. Directly preceding new lemmas are
replaced by their closest OrigThms ancestors. This scenario is still not fully honest,
because the lemmas are computed according to their lemma quality measured on the
full proof graph. In particular, when proving an early theorem i from OrigThms, the
newly used parents of i are lemmas whose quality was clear only after taking into account
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the theorems that were proved later than i. These theorems and their proofs however
did not exist at the time of proving i. Still, we consider this scenario sufficiently honest
for most of the ATP evaluations done with the whole core HOL Light dataset and the
representative subset of the Flyspeck dataset.

The fully-honest ATP scenario removes this last objection, at the price of using con-
siderably more resources for a single evaluation. For each originally named theorem j we
limit the proof graph used for computing BestLemmas to the proofs that preceded j.
Since computing BestLemmas for the whole core HOL Light takes at least three hours
for the Qi and EQi methods, the full evaluation on all 1,954 core HOL Light theorems
would take about 2,000 CPU hours. That is why we further scale down this evaluation
by doing it only for every tenth theorem in core HOL Light.

The chained-conjecturing ATP scenario is similar to the cheating scenario, but with
limits imposed on the directly preceding lemmas. In chain1-conjecturing, any (possibly
directly preceding) lemma used to prove a theorem i must itself have an ATP proof
using only OrigThms. In other words, it is allowed to guess good lemmas that still do
not exist, but such lemmas must not be hard to prove from OrigThms. Analogously for
chain2-conjecturing (resp. chainN ), where lemmas provable from chain1-lemmas (resp.
chainN−1) are allowed to be guessed. To some extent, this scenario measures the theo-
retical ATP improvement obtainable with guessing of good intermediate lemmas.

7. Experiments

In total, we have performed experiments with 180 different strategies for adding new
lemmas based on the kernel inference traces, and with 164 different strategies for adding
new lemmas based on the tactical traces. The ATP experiments are done on the same
hardware and using the same setup that was used for the earlier evaluations described
in (Kaliszyk and Urban, 2014, 2013e): All ATP systems are run with 30s time limit on a
48-core server with AMD Opteron 6174 2.2 GHz CPUs, 320 GB RAM, and 0.5 MB L2
cache per CPU.

In order to find the exact HOL formulas corresponding to the new lemmas (known only
as nodes in a graph) coming from mining the kernel inference traces, we first have to
process the formalization again with a patched kernel that takes the lemma numbers as a
parameter and exports also the statements of the selected new lemmas. This is no longer
necessary for the tactic data, since the formula statements can be stored together with the
proof graph during the first run. The slowest part of our setup is computing the formula
features needed for the machine learning. For the experiments with the kernel inference
lemmas, the features of each final set of selected lemmas (NewThms) are computed
independently, since we cannot pre-compute the features of all the lemmas in the kernel
traces. In case of the Flyspeck tactical trace we can directly compute the features of all
of the over 1 million lemmas. Due to their size (the intermediate lemmas are often large
implications), it takes 28 hours to extract and normalize (Kaliszyk and Urban, 2014) all
the features. The sum of the counts of such features over all these lemmas is 63,433,070,
but there are just 383,304 unique features in these lemmas. Even for the extreme case of
directly using and predicting premises for all the lemmas from the Flyspeck tactical trace
without any preselection, our k-NN predictor can perform all the one million predictions
in about 30 hours, taking 0.11s per prediction. Predictions are translated from the HOL
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logic into FOF problems (Kaliszyk and Urban, 2014) and ATPs are run on them in the
usual way to make the evaluations.

In order to compare the new results with the extensive experimental results obtained
over the previous versions of HOL Light and Flyspeck used in (Kaliszyk and Urban, 2014),
we first detect the set of theorems that are preserved between the different versions.
This is done by using the recursive content-based naming of symbols and theorems that
we have developed for re-using as much information between different library versions
in the HOLyHammer online service Kaliszyk and Urban (2013b). In case of HOL Light
the complete set of 1954 core HOL Light theorems evaluated in previous evaluations of
HOLyHammer has been preserved, only some of the names have been changed. In case
of Flyspeck a smaller set of 10,779 theorems is preserved. In order to perform more
experiments we further reduced the size of this set by choosing only every sixth theorem
and evaluating the performance on the resulting 1796 theorems.

7.1. Evaluation on Core HOL Light

When using only the original theorems, the success rate of the 14 most complementary
AI/ATP methods developed in (Kaliszyk and Urban, 2014) run with 30s time limit
each and restricted to the 1954 core HOL Light theorems is 63.1% (1232 theorems) and
the union of all those methods solved 65.4% (1278 theorems). In the very optimistic
cheating scenario (limited only to the Qi metrics), these numbers go up to 76.5% (1496
theorems) resp. 77.9% (1523 theorems). As mentioned in Section 6, many proofs in this
scenario may however be too simple because a close directly preceding lemma was used by
the lemma-mining/machine-learning/ATP stack. This became easy to see already when
using the almost-honest scenario, where the 14 best methods (including also EQi and
PRi) solve together only 66.2% (1293 theorems) and the union of all methods solves
68.9% (1347 theorems). The performance of the various (almost-honest) new lemma-
based methods is shown in Table 3, together with their comparison and combination
with the old experiments.

Strategy Theorems (%) Unique Theorems

Q1..3 (direct quality, sec. 5.1) 62.897 68 1229

PR1..5 (PageRank, sec. 5.3) 58.700 17 1147

EQ1..2 (epcllemma, sec. 5.2) 57.011 4 1114

MC1..2 (graph cut, sec. 5.4) 47.288 1 924

total 64.125 1253

only named 54.452 0 1064

total 64.125 1253

HOLyHammer (14 best) 63.050 92 1232

combined 14 best 66.172 1293

total 68.833 1345

Table 3. Comparison of the methods evaluated on the kernel traces on the 1954 HOL Light
theorems
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Added theorems Success rate Unique Thms

TRACE2 62.078 48 1213

TRACE0 59.365 12 1160

TRACE1 58.802 17 1149

10,000 63.562 138 1242

1,000 55.374 9 1082

Table 4. Success rate depending on kind of trace used and depending on the number of added
theorems

The majority of the new solved problems come from the alpha-normalized TRACE2,
however the non-alpha normalized versions with and without duplicates do contribute as
well. When it comes to the number of theorems added, adding more theorems seems to
help significantly, see Table 4. We do not try to add more than 10,000 theorems for core
HOL Light, as this is already much bigger than the size of the library. We will add up to
one million theorems when looking at the whole Flyspeck in the next subsection.

For each of the strategies the success rates again depend on the different arguments
that the strategy supports. In case of direct lemma computation considering Q1 seems to
give the best results, followed by Q2 and Q1.1

3 ; see Table 5. This suggest that focusing on
either U or D is worse than looking at the combination. For core HOL Light size seems
not to be an issue and dividing by size gives us best results. This will change in Flyspeck
where the real arithmetic decision procedures produce much bigger intermediate lemmas.

Lemma quality Success rate Unique Thms

Q1 (U(i)∗D(i)
S(i)

) 58.751 21 1148

Q2 (U(i)∗D(i)

S(i)2
) 57.932 10 1132

Q1.1
3 (U(i)∗D(i)

1.1S(i) ) 57.523 8 1124

Q1.25
3 (U(i)∗D(i)

1.25S(i) ) 53.685 2 1049

Q1.05
3 (U(i)∗D(i)

1.05S(i) ) 52.866 0 1033

Q2
2 (U(i)

S(i)
) 52.456 4 1025

Q1.025
3 (U(i)∗D(i)

1.025S(i) ) 49.437 0 966

Q2
1 (U(i)2

S(i)
) 49.437 8 966

Q0
1 (D(i)2

S(i)
) 46.469 3 908

Q0
2 (D(i)

S(i)
) 44.882 1 877

Table 5. Success rate of Qi depending on the quality formula.

In case of epcllemma three main strategies of creating a FOF trace from an inference
trace were considered. First, we tried to apply the MESON translation of formulas. On
one hand this was most computationally expensive as it involves lambda-lifting and
introducing the apply functor, on the other hand it produces first-order formulas whose
semantics are closest to those of the higher-order formulas involved. Second, we tried to
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create arbitrary FOF formulas of the same size as the one of the input HOL formula.
Third, we modified the second approach to also initialize epcllemma with the already
named theorems. The results can be found in Table 6. The size of theorems is much more
important than the structure and initialization does not seem to help.

Added theorems Success rate Unique Thms

Preserve size 55.732 15 1089

Preserve size and initialize 55.322 8 1081

MESON translation 47.339 11 925

Table 6. Success rate of epcllemma depending on kinds of formulas given

We next compare the versions of PageRank. The intersection between the first 10,000
lemmas advised by PR1 and PR2 is 79%, which suggests that the lemmas suggested by
PR1 are already rather small. For the reverse PageRank it is the opposite: PR3 and PR4

have only 11% intersection. This makes the bigger lemmas suggested by PR3 come out
second after the normalized combined PR6 in Table 7.

Added theorems Success rate Unique Thms

PR6 (PR1(i)+PR3(i)
S(i)

) 53.173 22 1039

PR3 (reverse PR1) 52.968 13 1035

PR5 (PR1(i) + PR3(i)) 52.252 14 1021

PR2 (PR1(i)
S(i)

) 46.008 5 899

PR4 (PR3(i)
S(i)

) 45.650 8 892

PR1 42.272 1 826

Table 7. Success rate of PageRank depending on kinds of formulas given

The resource-intensive fully-honest evaluation is limited to a relatively small subset of
the core HOL Light theorems, however it confirms the almost-honest results. While the
original success rate was 61.7% (less than 14 methods are needed to reach it), the success
rate with lemma mining went up to 64.8% (again, less than 14 methods are needed).
This means that the non-cheating lemma-mining approaches so far improve the overall
performance of the AI/ATP methods over core HOL Light by about 5%. The best method
in the fully-honest evaluation is Q2 which solves 46.2% of the original problems when
using 512 premises, followed by EQ2 (using the longest inference chain instead of D),
which solves 44.6 problems also with 512 premises. The best PageRank-based method is
PR2 (PageRank divided by size), solving 41.4% problems with 128 premises.

An interesting middle-way between the cheating and non-cheating scenarios is the
chained-conjecturing evaluation, which indicates the possible improvement when guessing
good lemmas that are “in the middle” of long proofs. Since this is also quite expensive,
only the best lemma-mining method (Q2) was evaluated on the HOL Light TRACE2.
Q2 itself solves (altogether, using different numbers of premises) 54.5% (1066) of the
problems. This goes up to 61.4% (1200 theorems) when using only chain1-conjecturing
and to 63.8% (1247 theorems) when allowing also chain2 and chain3-conjecturing. These
are 12.6% and 17.0% improvements respectively, see Table 8.
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Length of chains Success rate Unique Thms

- 54.5 519 1066

1 32.0 75 627

2 12.2 30 239

3 2.3 12 46

4 1.1 4 22

5 0.3 4 6

6 0.3 4 6

> 6 0.1 2 2

Total 64.6 1264

Table 8. Theorems found with chains of given lengths

7.2. Evaluation on Flyspeck

For the whole Flyspeck the evaluation is due to the sizes of the data limited to the
tactical trace and the almost-honest scenario. Table 9 (the Flyspeck counterpart of Ta-
ble 3) presents the performance of the various lemma-based methods on the 1796 selected
Flyspeck theorems, together with the comparison and combination with the old experi-
ments. The combination of the 14 best methods tested here solves 37.6% problems, and
the combination of all methods solves 40.8% problems. When combined with the most
useful old methods developed in (Kaliszyk and Urban, 2014), the performance of the
best 14 methods is 44.2%, i.e., we get a 21.4% improvement over the older methods. The
sequence of these 14 most-contributing methods is shown in Table 10.

Strategy Theorems (%) Unique Theorems

PR1..5 (pagerank, sec. 5.3) 36.860 39 662

Q1..3 (direct quality, sec. 5.1) 35.913 31 645

MC1..2 (graph cut, sec. 5.4) 30.178 1 542

EQ1..2 (epcllemma, sec. 5.2) 29.677 0 533

all lemmas 21.047 26 378

only named 28.786 1 517

14 best 37.584 675

total 40.813 733

HOLyHammer (14 best) 36.414 127 654

combined 14 best 44.209 794

total 47.884 860

Table 9. Comparison of the methods evaluated on the tactical trace and the 1796 Flyspeck
theorems

There are several issues related to the previous evaluations that need explanation.
First, the final 14-method HOLyHammer performance reported in (Kaliszyk and Urban,
2014) was 39%, while here it is only 36.4%. The 39% were measured on the whole older
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version of Flyspeck, while the 36.4% here is the performance of the old methods lim-
ited to the 1796 problems selected from the set of 10,779 theorems that are preserved
between the old and the new version of Flyspeck. Additionally, we have recently re-
ported (Kaliszyk and Urban, 2013e) an improvement of the 39% performance to 47% by
using better learning methods and better E strategies. However, that preliminary eval-
uation has been so far done only on a smaller random subset of the old Flyspeck, so we
do not yet have the corresponding data for all the 10,779 preserved theorems and their
1796-big subselection used here for the comparison. A very rough extrapolation is that
the 47% performance on the smaller subset will drop to 45% on the whole old Flyspeck,
which when proportionally decreased by the performance decrease of the old methods
(39/36.4) yields 42% performance estimate on the new 1796-big set. Third, we should
note that the new lemma-based methods are so far based only on learning from the
ITP (human-proof) dependencies, which is for Flyspeck quite inferior to learning on the
dependencies extracted from minimized ATP proofs of the problems. Fourth, we do use
here the (one) best predictor and the ATP strategies developed in (Kaliszyk and Urban,
2013e), however, we have not so far explored and globally optimized as many parameters
(learners, features and their weightings, premise slices, and ATP strategies) as we have
done for the older non-lemma methods; such global optimization is future work.

Strategy Pred. Feat. Lemmas Prem. ATP Success Thms

HOLyHammer NBayes typed, notriv ATP-deps 154 epar 24.666 443

MC2 k-NN typed 1,000 lemmas 128 epar 31.180 560

All lemmas k-NN types all lemmas 32 z3 34.855 626

HOLyHammer NBayes types, notriv ATP-deps 1024 epar 36.693 659

Q1 k-NN types 60,000 lemmas 32 z3 38.474 691

HOLyHammer NBayes typed, notriv ATP-deps 92 vam 40.033 719

Only Named k-NN types - 512 epar 40.980 736

Q2
1 k-NN types 60,000 lemmas 32 z3 41.759 750

HOLyHammer k-NN160 types, notriv ATP deps 512 z3 42.316 760

Q0
1 k-NN types 60,000 lemmas 32 z3 42.762 768

PR6 k-NN types 20,000 lemmas 512 epar 43.207 776

HOLyHammer NBayes fixed Human deps 512 epar 43.541 782

PR1 k-NN types 20,000 lemmas 32 z3 43.875 788

PR4 k-NN types 20,000 lemmas 128 epar 44.209 794

Table 10. Combined 14 best covering sequence

So while the 21.4% improvement over (Kaliszyk and Urban, 2014) is valid, a full-scale
evaluation of all the methods on the whole new Flyspeck 9 will likely show a smaller
improvement due to the lemma-mining methods. A very conservative estimate is again
5% (44.2%/42%), however a much more realistic is probably 10%, because the effect
of learning from ATP proofs is quite significant. Higher lemma-based performance on
Flyspeck than on the core HOL Light is quite plausible: the core HOL Light library is

9 Such evaluation could take another month with our current resources.
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much smaller, more stable and optimized, while Flyspeck is a fast-moving project written

by several authors, and the library structuring there is more challenging.

As expected the graph cutting method (MC) does indeed produce the smallest de-

pendency graph passed to the predictors. For 10,000 added lemmas the average number

of edges in the MC-produced dependency graph is 37.0, compared with the average over

all strategies being 42.9 dependencies per theorem and epcllemma producing graphs with

the biggest number: 63.1 dependencies. This however does not yet correspond to high

success rates in the evaluation, possibly due to the fact that graph cutting does not so

far take into account the number of small steps needed to prove the added lemma. On

the other hand, Table 10 shows that graph cutting provides the most complementary

method, adding about 25% more new solutions to the best method available.

Added lemmas Theorems (%) Unique Theorems

60,000 36.804 37 661

20,000 35.523 18 638

10,000 33.463 3 601

0 28.786 1 517

5,000 27.951 0 502

1,000 27.895 0 501

all 21.047 26 378

Table 11.

Finally we analyze the influence of the number of added lemmas on the success rate

in Table 11. As expected adding more lemmas does improve the general performance up

to a certain point. The experiments performed with all the lemmas added are already

the weakest. However, when it comes to the problems solved only with a certain number

of lemmas added, using all the lemmas comes out complementary to the other numbers.

7.3. Examples

We have briefly looked at some first examples of the problems that can be solved

only with the lemma-based methods. So far we have detected two main effects how

such new proofs are achieved: (i) the new lemma (or lemmas) is an easy-but-important

specialization of a general theorem or theory, either directing the proof search better

than its parents or just working better with the other premises, and (ii) no new lemma

is needed, but learning on the newly added lemmas improves the predicting systems,

which then produce better advice for a previously unsolvable problem. The second effect

is however hard to exemplify, since the number of alternative predictions we tried is high,

and it usually is not clear why a particular prediction did not succeed. An example in

the first category is the theorem

AFFINE_ALT: ` affine s ⇐⇒ (∀x y u. x IN s ∧ y IN s =⇒ (&1 − u) % x + u % y IN s)

which E can prove using 15 premises, three of them being new lemmas that are quite

“trivial” consequences of more general theorems:
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NEWDEP309638: ` &1 − a + a = &1

NEWDEP310357: ` − &1 * − &1 = &1

NEWDEP272099_conjunct1: ` ∀m. &m + − &m = &0

Another example in the first category is theorem

MEASURABLE_ON_NEG: ` ∀f s. measurable_on f s =⇒ measurable_on (\x. −f x) s

whose proof uses a few basic vector facts plus one added lemma:

NEWDEP1643063: measurable_on f s ` measurable_on ((%) c o f) s

This lemma appeared in the proof of the close theorem

MEASURABLE_ON_CMUL: ` ∀c f s. measurable_on f s =⇒ measurable_on (\x. c % f x) s

The lemma here is almost the same as the theorem where it was first used, but it likely

works better in the FOF encoding because the lambda function is eliminated.

8. Future Work and Conclusion

We have proposed, implemented and evaluated several approaches that try to effi-

ciently find the best lemmas and re-organize a large corpus of computer-understandable

human mathematical ideas, using the millions of logical dependencies between the corpus’

atomic elements. We believe that such conceptual re-organization is a very interesting

AI topic that is best studied in the context of large, fully semantic corpora such as HOL

Light and Flyspeck. The byproduct of this work are the exporting and post-processing

techniques resulting in the publicly available proof graphs that can serve as a basis for

further research.

The most conservative improvement in the strength of automated reasoning obtained

so far over the core HOL Light thanks to lemma mining is about 5%. The improvement in

the strength of automated reasoning obtained over Flyspeck problems is 21.4% in compar-

ison to the methods developed in (Kaliszyk and Urban, 2014), however this improvement

is not only due to the lemma-mining methods, but also due to some of the learning and

strategy improvements introduced in (Kaliszyk and Urban, 2013e). A further large-scale

evaluation using learning from ATP proofs and global parameter optimization is needed

to exactly measure the contribution and overall strength of the various AI/ATP methods

over the whole Flyspeck corpus.

There are many further directions for this work. The lemma-mining methods can

be made faster and more incremental, so that the lemma quality is not completely re-

computed after a lemma is named. Fast PageRank-based clustering should be efficiently

implemented and possibly combined with the other methods used. ATP-style normal-

izations such as subsumption need to be correctly merged with the detailed level of

inferences used by the HOL Light proof graph. Guessing of good intermediate lemmas for

proving harder theorems is an obvious next step, the value of which has already been

established to a certain extent in this work.
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