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Abstract. HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable)
mathematics encoded in the HOL Light system. The service allows its users to upload and auto-
matically process an arbitrary formal development (project) based on HOL Light, and to attack
arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the
service uses several automated reasoning systems combined with several premise selection meth-
ods trained on all the project proofs. The projects that are readily available on the server for such
query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex
Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each
task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance.
The system is also available for local installation by interested users, who can customize it for
their own proof development. An Emacs interface allowing parallel asynchronous queries to the
service is also provided. The overall structure of the service is outlined, problems that arise and
their solutions are discussed, and an initial account of using the system is given.

1. Introduction and Motivation
HOL Light [14] is one of the best-known interactive theorem proving (ITP) systems. It has been
used to prove a number of well-known mathematical theorems1 and as a platform for formaliz-
ing the proof of the Kepler conjecture targeted by the Flyspeck project [13]. The whole Flyspeck
development, together with the required parts of the HOL Light library consisted of about 14000
theorems as of June 2012, growing to about 19000 theorems as of August 2013. Motivated by the
development of large-theory automated theorem proving [17,29,36,42] and its growing use for ITPs
like Isabelle [30] and Mizar [40,41], we have recently implemented translations from HOL Light to
ATP (automated theorem proving) formats, developed a number of premise-selection techniques2 for
HOL Light, and experimented with the strongest and most orthogonal combinations of the premise-
selection methods and various ATPs. This initial work, described in [25], has shown that 39% of the
(June 2012) 14185 Flyspeck theorems could be proved in a push-button mode (without any high-
level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation. More
recent work on the AI/ATP methods have raised this performance to 47% [24].

The experiments that we did emulated the Flyspeck development (when the user always knows
all the previous proofs3 at a given point, and wants to prove the next theorem), however they were all
done in an offline mode which is suitable for such experimentally-driven research. The ATP prob-
lems were created in large batches using different premise-selection techniques and different ATP

1http://www.cs.ru.nl/˜freek/100/
2Premise selection [3, 27] is the problem of selecting suitable premises (theorems, definitions, lemmas, etc.) from a large
formal library for proving a new conjecture over such library.
3The Flyspeck processing order is used to define precisely what “previous” means. See [25] for details.

http://www.cs.ru.nl/~freek/100/
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encodings (untyped first-order [33], polymorphic typed first-order [5], and typed higher-order [12]),
and then attempted with different ATPs (17 in total) and different numbers of the most relevant
premises. Analysis of the results interleaved with further improvements of the methods and data
have gradually led to the current strongest combination of the AI/ATP methods.

This strongest combination now gives to a HOL Light/Flyspeck user a 47% chance (when us-
ing 14 CPUs, each for 30s) that he will not have to search the library for suitable lemmas and figure
out the proof of the next toplevel theorem by himself. For smaller (proof-local) lemmas such likeli-
hood should be correspondingly higher. To really provide this strong automated advice to the users,
the functions that have been implemented for the experiments need to be combined into a suitable
AI/ATP tool. Our eventual goal (from which we are of course still very far) should be an easy-to-use
service, which in its online form offers to formal mathematics (done here in HOL Light, over the con-
cepts defined formally in the libraries) what services like Wolfram Alpha offer for informal/symbolic
mathematics. Some expectations, linked to the recent success of the IBM Watson system, are today
even higher4. Indeed, we believe that developing stronger and stronger AI/ATP tools similar to the
one presented here is a necessary prerequisite providing the crucial semantic understanding/reason-
ing layer for building larger Watson-like systems for mathematics that will (eventually) understand
(nearly-)natural language and (perhaps reasonably semanticized versions/alternatives of) LATEX. The
more user-friendly and smarter such AI/ATP systems become, the higher also the chance that math-
ematicians (and exact scientists) will get some nontrivial benefits5 from encoding mathematics (and
exact science) directly in a computer-understandable form.

This paper describes such an AI/ATP service based on the formal mathematical corpora like
Flyspeck developed with HOL Light. The service – HOL(y)Hammer6 (HH) – is now available as a
public online system7 instantiated for several large HOL Light libraries, running on a 48-CPU server
spawning for each query by default 7 different AI/ATP combinations and four decision procedures.
We first describe in Section 2 the static (i.e., not user-updatable) problem solving functions developed
in the first simplified version of the service for the most interesting example of Flyspeck. This initial
version of the service allowed the users to experiment with ATP queries over the fixed June 2012
version of Flyspeck for which the AI/ATP components had been gradually developed over several
months in the offline experiments described in [25]. Section 3 then discusses the issues and solutions
related to running the service for multiple libraries and their versions at once, allowing the users also
to submit a new library to the server or to update an existing library and all its AI/ATP components.
Section 4 shows examples of interaction with the service, using web, Emacs, and command-line
interfaces. The service can be also installed locally, and trained on user’s private developments. This
is described in Section 5. Section 6 concludes and discusses future work.8

2. Description of the Problem Solving Functions for Flyspeck
The overall problem solving architecture without the updating functions is shown in Figure 1. Since
Flyspeck is the largest and most interesting corpus on which this architecture was developed and
tested, we use the Flyspeck service as a running example in this whole section. The service receives
a query (a conjecture to prove, possibly with local assumptions) generated by one of the clients/front-
ends (Emacs, web interface, HOL session, etc.). If the query produces a parsing (or type-checking)
error, an exception is raised, and an error message is sent as a reply. Otherwise the parsed query is
processed in parallel by the (time-limited) AI/ATP combinations and the native HOL Light decision

4See for example Jonathan Borwein’s article: http://theconversation.edu.au/if-i-had-a-blank-
cheque-id-turn-ibms-watson-into-a-maths-genius-1213
5Formal verification itself is of course a great benefit, but its cost has been so far too high to attract most mathematicians.
6See [44] for an example of future where AIs turn into deities.
7http://colo12-c703.uibk.ac.at/hh/
8This paper is an extended version of [20].

http://theconversation.edu.au/if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213
http://theconversation.edu.au/if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213
http://colo12-c703.uibk.ac.at/hh/
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FIGURE 1. Overview of the problem solving functions

procedures (each managed by its forked HOL Light process, and terminated/killed by the master
process if not finished within its global time limit). Each of the AI/ATP processes computes a spe-
cific feature representation of the query, and sends such features to a specific instance of a premise
advisor trained (using the particular feature representation) on previous proofs. Each of the advi-
sors replies with a specific number of premises, which are then translated to a suitable ATP format,
and written to a temporary file on which a specific ATP is run. The successful ATP result is then
(pseudo-)minimized, and handed over to the combination of proof-reconstruction procedures. These
procedures again run in parallel, and if any of them is successful, the result is sent as a particular
tactic application to the frontend. In case a native HOL Light decision procedure finds a proof, the
result (again a particular tactic application) can be immediately sent to the frontend. The following
subsections explain this process in more detail.

2.1. Feature Extraction and Premise Selection
Given a (formal) mathematical conjecture, the selection of suitable premises from a large formal
library is an interesting AI problem, for which a number of methods have been tried recently [24,
27, 36]. The strongest methods use machine learning on previous problems, combined in various
ways with heuristics like SInE [17]. To use the machine learning systems, the previous problems
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have to be described as training examples in a suitable format, typically as a set of (input) features
characterizing a given theorem, and a set of labels (output features) characterizing the proof of
the theorem. Devising good feature/label characterizations for this task is again an interesting AI
problem (see, e.g. [41]), however already the most obvious characterizations like the conjecture
symbols and the names of the theorems used in the conjecture’s proof are useful. This basic scheme
can be extended in various ways; see [25] for the feature-extraction functions (basically adding
various subterm and type-based characteristics) and label-improving methods (e.g., using minimized
ATP proofs instead of the original Flyspeck proofs whenever possible) that we have so far used for
HOL Light. For example, the currently most useful version of the characterization algorithm would
describe the HOL theorem DISCRETE_IMP_CLOSED:9

∀s:realˆN→bool e.
&0 < e ∧ (∀x y. x IN s ∧ y IN s ∧ norm(y − x) < e =⇒ y = x)
=⇒ closed s

by the following set of strings that encode its symbols and normalized types and terms:
"real", "num", "fun", "cart", "bool", "vector_sub", "vector_norm",
"real_of_num", "real_lt", "closed", "_0", "NUMERAL", "IN", "=", "&0",
"&0 < Areal", "0", "Areal", "ArealˆA", "ArealˆA - ArealˆA",
"ArealˆA IN ArealˆA->bool", " ArealˆA->bool", "_0", "closed ArealˆA->bool",
"norm (ArealˆA - ArealˆA)", "norm (ArealˆA - ArealˆA) < Areal"

Here, real is a type constant, IN is a term constructor, ArealˆA->bool is a normalized type,
ArealˆA its component type, norm (ArealˆA - ArealˆA) < Areal is a normalized atomic
formula, and ArealˆA - ArealˆA is its normalized subterm.

On average, for each of our feature-extraction methods there are in total about 30000 possible
conjecture-characterizing features extracted from the theorems in the Flyspeck development. The
output features (labels) are in the simplest setting just the names of the Flyspeck theorems10 ex-
tracted from the proofs with a modified (proof recording [19]) HOL Light kernel. These features and
labels are (for each extraction method) serially numbered in a stable way (using hashtables), pro-
ducing from all Flyspeck proofs the training examples on which the premise selectors are trained.
The learning-based premise selection methods currently used are those available in the SNoW [8]
sparse learning toolkit (most prominently sparse naive Bayes), together with a custom implemen-
tation [24] of the distance-weighted k-nearest neighbor (k-NN) learner [10]. Training a particular
learning method on all (14185) characterizations extracted from the Flyspeck proofs takes from 1
second for k-NN (a lazy learner that essentially just loads all the 14185 proof characterizations) and
6 seconds for naive Bayes using labels from minimized ATP proofs, to 25 seconds for naive Bayes
using the labels from the original Flyspeck proofs.11 The trained premise selectors are then run as
daemons (using their server modes) that accept queries in the language of the numerical features over
which they have been trained, producing for each query their ranking of all the labels, corresponding
to the available Flyspeck theorems.

Given a new conjecture, the first step of each of the forked HOL Light AI/ATP managing
process is thus to compute the features of the conjecture according to a particular feature extraction
method, compute (using the corresponding hashtable) the numerical representation of the features,
and send these numeric features as a query to the corresponding premise-selection daemon. The
daemon replies within a fraction of a second with its ranking, the exact speed depending on the

9http://mws.cs.ru.nl/˜mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_
IMP_CLOSED
10In practice, the Flyspeck theorems are further preprocessed to provide better learning precision, for example by splitting
conjunctions and detecting which of the conjuncts are relevant in which proof. Again, see [25] for the details. The number of
labels used for the June 2012 Flyspeck version with 14185 theorems is thus 16082.
11The original Flyspeck proofs are often using theorems that are in some sense redundant, resulting in longer proof character-
izations (and thus longer learning). This is typically a consequence of using larger building blocks (e.g., decision procedures,
drawing in many dependencies) when constructing the ITP proofs.

http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_IMP_CLOSED
http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_IMP_CLOSED
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learning method and the size of the feature/label sets. This ranking is translated back (using the
corresponding table) to the ranking of the HOL Light theorems. Each of the AI/ATP combinations
then uses its particular number (optimized so that the methods in the end complement each other
as much as possible) of the best-ranked theorems, passing them together with the conjecture to the
function that translates such set of HOL Light formulas to a suitable ATP format.

2.2. Translation to ATP Formats and Running ATPs
As mentioned in Section 1, several ATP formalisms are used today by ATP and SMT systems.
However the (jointly) most useful proof-producing systems in our experiments turned out to be
E [32] version 1.6 (run under the Epar [39] strategy scheduler), Vampire [26] 2.6, and Z3 [9] 4.0.
All these systems accept the TPTP untyped first-order format (FOF). Even when the input formalism
(the HOL logic [31] - polymorphic version of Church’s simple type theory) and the output formalism
(TPTP FOF) are fixed, there are in general many methods [4] to translate from the former to the
latter, each method providing different tradeoffs between soundness, completeness, ATP efficiency,
and the overall (i.e., including HOL proof reconstruction) efficiency. The particular method chosen
by us in [25] and used currently also for the service is the polymorphic tagged encoding [4]. To
summarize, the higher-order features (such as lambda abstraction, application) of the HOL formulas
are first encoded (in a potentially incomplete way) in first-order logic (still using polymorphic types),
and then type tags are added in a way that usually guarantees type safety during the first-order proof
search.

This translation method is in general not stable on the level of single formulas, i.e., it is not
possible to just keep in a global hashtable the translated FOF version for each original HOL formula,
as done for example for the MizAR ATP service [22, 40]. This is because a particular optimization
(by Meng and Paulson [28]) is used for translating higher-order constants, creating for each such
constant c a first-order function that has the minimum arity with which c is used in the particular
set of HOL formulas that is used to create the ATP (FOF) problem. So once the particular AI/ATP
managing process advises its N most-relevant HOL Light theorems for the conjecture, this set of
theorems and the conjecture are as a whole passed to the translation function, which for each AI/ATP
instance may produce a slightly different FOF encoding on the formula level. The encoding function
is still reasonably fast, taking fractions of a second when using hundreds of formulas, and still has
the property that both the FOF formula names and the FOF formulas (also those inferred during
the ATP proof search) can typically be decoded back into the original HOL names and formulas,
allowing later HOL proof reconstruction.

Each AI/ATP instance thus produces its specific temporary file (the FOF ATP problem) and
runs its specific ATP system on it with its time limit. The time limit is currently set globally to 30 sec-
onds for each instance, however (as usual in strategy scheduling setups) this could be made instance-
specific too, based on further analysis of the time performance of the particular instances. Vampire
and Epar already do such scheduling internally: the current version of Epar runs a fixed schedule
of 14 strategies, while Vampire runs a problem-dependent schedule using for each problem a varied
number of strategies. Assuming one strategy for Z3 and on average eight strategies for Vampire,
this now means that using 10-CPU parallelization results in about 100 different proof-data/feature-
extraction/learning/premise-slicing/ATP-strategy instantiations tried by the online service within the
30 seconds of the real time allowed for each query. Provided sufficient complementarity of such
instantiationsand enough CPUs, this significantly raises the overall power of the service [24, 25].

2.3. The AI/ATP Combinations Used
An example of the 25 initially used combinations of the machine learner, proof data, number of
top premises used, the feature extraction method, and the ATP system is shown in Table 1. The
proof data are either just the data from the ATP proofs, or a combination of the ATP proofs with
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the original HOL proofs. The ATP proofs (ATP0, ..., ATP3) are created by a particular MaLARea-
style [42] (i.e., re-using the proofs found in previous iteration for further learning) iteration of the
experimenting, possibly preferring either the Vampire or Epar proofs (V pref, E pref). The HOL
proofs are obtained by slightly different versions of the HOL proof recording. The HOL/ATP com-
binations typically use the HOL proof only when the ATP proof is not available, see [25] for details.
The standard feature extraction method combines the formula’s symbols, standard-normalized
subterms and normalized types into its feature vector. The standard normalization here means that
each variable name is in each formula replaced by its normalized HOL type. Types are normal-
ized by renaming their polymorphic variables with de Bruijn indices. The all-vars-same and
all-vars-diff methods respectively just rename all formula variables into one common vari-
able, or keep them all different. This obviously influences the concept of similarity used by the
machine learners (see [25] for more discussion). The 40-NN and 160-NN learners are k-nearest-
neighbors, run with k = 40 and k = 160. The particular combination of the AI/ATP is chosen
by computing in a greedy fashion the set of methods with the greatest coverage of the solvable
Flyspeck problems. This changes often, whenever some of the many components of this AI archi-
tecture get improved. For example, after the more recent strengthening of the premise-selection and
ATP components described in [24], and the addition of multiple developments and functions for their
dynamic update described in Section 3, the number of AI/ATP combinations run for a single query
was reduced to 7.

TABLE 1. The 25 AI/ATP combinations used by the initial Flyspeck service

Learner Proofs Premises Features ATP

Bayes ATP2 0092 standard Vampire
Bayes ATP2 0128 standard Epar
Bayes ATP2 0154 standard Epar
Bayes ATP2 1024 standard Epar
Bayes HOL0+ATP0 0512 all-vars-same Epar
Bayes HOL0+ATP0 0128 all-vars-diff Vampire
Bayes ATP1 0032 standard Z3
Bayes ATP1 V pref 0128 all-vars-diff Epar
Bayes ATP1 V pref 0128 standard Z3
Bayes HOL0+ATP0 0032 standard Z3
Bayes HOL0+ATP0 0154 all-vars-same Epar
Bayes HOL0+ATP0 0128 standard Epar
Bayes HOL0+ATP0 0128 standard Vampire
Bayes ATP1 E pref 0128 standard Z3
Bayes ATP0 V pref 0154 standard Vampire
40-NN ATP1 0032 standard Epar
160-NN ATP1 0512 standard Z3
Bayes HOL3+ATP3 0092 standard Vampire
Bayes HOL3+ATP3 0128 standard Epar
Bayes HOL3+ATP3 0154 standard Epar
Bayes HOL3+ATP3 1024 standard Epar
Bayes ATP3 0092 standard Vampire
Bayes ATP3 0128 standard Epar
Bayes ATP3 0154 standard Epar
Bayes ATP3 1024 standard Epar
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2.4. Use of Decision Procedures
Some goals are hard for ATPs, but are easy for the existing decision procedures already implemented
in HOL Light. To make the service more powerful, we also try to directly use some of these HOL
Light decision procedures on the given conjecture. A similar effect could be achieved also by map-
ping some of the HOL Light symbols (typically those encoding arithmetics) to the symbols that are
reserved and treated specially by SMT solvers and ATP systems. This is now done for example in
Isabelle/Sledgehammer [29], with the additional benefit of the combined methods employed by
SMTs and ATPs over various well-known theories. Our approach is so far much simpler, which also
means that we do not have to ensure that the semantics of such special theories remains the same
(e.g., 1/0 = 0 in HOL Light). The HOL Light decision procedures might often not be powerful
enough to prove whole theorems, however for example the REAL_ARITH12 tactic is called on 2678
unique (sub)goals in Flyspeck, making such tools a useful addition to the service.

Each decision procedure is spawned in a separate instance of HOL Light using our parallel
infrastructure, and if any returns within the timeout, it is reported to the user. The decision procedures
that we found most useful for solving goals are:13

• TAUT14 — Propositional tautologies.
(A ==> B ==> C) ==> (A ==> B) ==> (A ==> C)

• INT_ARITH15 — Algebra and linear arithmetic over Z (including R).
&2 * &1 = &2 + &0

• COMPLEX_FIELD16 — Field tactic over C (including multivariate R).
(Cx (&1) + Cx(&1)) = Cx(&2)

Additionally the decision procedure infrastructure can be used to try common tactics that could
solve the goal. One that we found especially useful is simplification with arithmetic (SIMP_-
TAC[ARITH]), which solves a number of simple numerical goals that the service users ask the
server.

2.5. Proof Minimization and Reconstruction
When an ATP finds (and reports in its proof) a subset of the advised premises that prove the goal, it
is often the case that this set is not minimal. By re-running the prover and other provers with only
this set of proof-relevant premises, it is often possible to obtain a proof that uses fewer premises. A
common example are redundant equalities that may be used by the ATP for early (but unnecessary)
rewriting in the presence of many premises, and avoided when the number of premises is signifi-
cantly lower (and different ordering is then used, or a completely different strategy or ATP might
find a very different proof). This procedure is run recursively, until the number of premises needed for
the proof no longer decreases. We call this recursive procedure pseudo/cross-minimization, since it
is not exhaustive and uses multiple ATPs. Minimizing the number of premises improves the chances
of the HOL proof reconstruction, and the speed of (re-)processing large libraries that contain many
such reconstruction tactics.17

Given the minimized list of advised premises, we try to reconstruct the proof. As mentioned in
Section 2.1, the advice system may internally use a number of theorem names (now mostly produced

12http://www.cl.cam.ac.uk/˜jrh13/hol-light/HTML/REAL_ARITH.html
13The reader might wonder why the above mentioned REAL_ARITH is not among the tactics used. The reason is that even
though REAL_ARITH is used a lot in HOL Light formalizations, INT_ARITH is simply more powerful. It solves 60% more
Flyspeck goals automatically without losing any of those solved by REAL_ARITH. As with the AI/ATP instances, the usage
of decision procedures is optimized to jointly cover as many problems as possible.
14http://www.cl.cam.ac.uk/˜jrh13/hol-light/HTML/TAUT.html
15http://www.cl.cam.ac.uk/˜jrh13/hol-light/HTML/INT_ARITH.html
16http://www.cl.cam.ac.uk/˜jrh13/hol-light/HTML/REAL_FIELD.html
17Premise minimization has been for long time used to improve the quality and refactoring speed of the Mizar articles. It is
now also a standard part of Sledgehammer.

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_ARITH.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/TAUT.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/INT_ARITH.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_FIELD.html
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by splitting conjunctions) not present in standard HOL Light developments. It is possible to call the
reconstruction tactics with the names used internally in the advice system; however this would create
proof scripts that are not compatible with the original developments. We could directly address the
theorem sub-conjuncts (using, e.g., “nth (CONJUNCTS thm) n”) however such proof scripts
look quite unnatural (even if they are indeed faster to process by HOL Light). Instead, we now
prefer to use the whole original theorems (including all conjuncts) in the reconstruction.

Three basic strategies are now tried to reconstruct the proof: REWRITE18 (rewriting), SIMP19

(conditional rewriting) and MESON [15] (internal first-order ATP). These three strategies are started
in parallel, each with the list of HOL theorems that correspond to the minimized list of ATP premises
as explained above. The strongest of these tactics – MESON – can in one second reconstruct 79.3% of
the minimized ATP proofs. While this is certainly useful, the performance of MESON reconstruction
drops below 40% as soon as the ATP proof uses at least seven premises. Since the service is getting
stronger and stronger, the ratio of MESON-reconstructable proofs is likely to get lower and lower.
That is why we have developed also a fine-grained reconstruction method – HH_RECON [23], which
uses the quite detailed TPTP proofs produced by Vampire and E. This method however still needs
an additional mechanism that maintains the TPTP proof as part of the user development: either
dedicated storage, or on-demand ATP-recreation, or translation to a corresponding fine-grained HOL
Light proof script. That is why HH_RECON is not yet included by default in the service.

2.6. Description of the Parallelization Infrastructure
An important aspect of the online service is its parallelization capability. This is needed to effi-
ciently process multiple requests coming in from the clients, and to execute the large number of
AI/ATP instances in parallel within a short overall wall-clock time limit. HOL Light uses a num-
ber of imperative features of OCaml, such as static lists of constants and axioms, and a number of
references (mutable variables). Also a number of procedures that are needed use shared references
internally. For example the MESON procedure uses list references for variables. This makes HOL
Light not thread safe. Instead of spending lots of time on a thread-safe re-implementation, the ser-
vice just (in a pragmatic and simple way, similar to the Mizar parallelization [38]) uses separate
processes (Unix fork), which is sufficient for our purposes. Given a list of HOL Light tasks that
should be performed in parallel and a timeout, the managing process spawns a child process for
each of the tasks. It also creates a pipe for communicating with each child process. Progress, failures
or completion information are sent over the pipe using OCaml marshalling. This means that it is
enough to have running just one managing instance of HOL Light loaded with Flyspeck and with
the advising infrastructure. This process forks itself for each client query, and the child then spawns
as many AI/ATP, minimization, reconstruction, and decision procedure instances as needed.

2.7. Use of Caching
Even though the service can asynchronously process a number of parallel requests, it is not immune
to overloading by a large number of requests coming in simultaneously. In such cases, each response
gets less CPU time and the requests are less likely to succeed within the 30 seconds of wall-clock
time. Such overloading is especially common for requests generated automatically. For example the
Wiki service that is being built for Flyspeck [34] may ask many queries practically simultaneously
when an article in the wiki is re-factored, but many of such queries will in practice overlap with
previously asked queries. Caching is therefore employed by the service to efficiently serve such
repeated requests.

Since the parallel architecture uses different processes to serve different requests, a file-system
based cache is used (using file-level locking). For any incoming request the first job done by the
forked process handling the request is to check whether an identical request has already been served,

18http://www.cl.cam.ac.uk/˜jrh13/hol-light/HTML/REWRITE_TAC.html
19http://www.cl.cam.ac.uk/˜jrh13/hol-light/HTML/SIMP_TAC.html

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REWRITE_TAC.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/SIMP_TAC.html
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and if so, the process just re-sends the previously computed answer. If the request is not found in
the cache, a new entry (file) for it is created, and any information sent to the client (apart from the
progress information) is also written to the cache entry. This means that all kinds of answers that
have been sent to the client can be cached, including information about terms that failed to parse or
typecheck, terms solved by ATP only, minimization results and replaying results, including decision
procedures. The cache stored in the filesystem has the additional advantage of persistence, and in
case of updating the service the cache can be easily invalidated by simply removing the cache entries.

3. Multiple Projects, Versions, and Their Online Update
The functions described in Section 2 allowed the users to experiment with ATP queries over the
fixed June 2012 version of Flyspeck. If Flyspeck already contained all of human mathematics in a
form that is universally agreed upon, such setting would be sufficient. However, Flyspeck is not the
only library developed with HOL Light, and Flyspeck itself has been updated considerably since
June 2012 with a number of new definitions, theorems and proofs. In general, there is no final word
on how formal mathematics should be done, and even more stable formalization libraries may be
updated, refactored, and forked for new experiments.

To support this, the current version of HOL(y)Hammer also allows online addition of new
projects and updating of existing projects (see Figure 2). This leads to a number of issues that are
discussed in this section. A particularly interesting and important issue is the transfer and re-use
of the expensively obtained problem-solving knowledge between the different projects and their
versions.

Another major issue is the speed of loading large projects. Checkpointing of OCaml instances
is used to save the load time, after HOL Light was bootstrapped. Checkpointing software allows the
state of a process to be written to disk, and restore this state from the stored image later. We use
DMTCP20 as our checkpointing software: it does not require kernel modifications, and because of
that it is one of the few checkpointing solutions that work on recent Linux versions.

3.1. Basic Server Infrastructure for Multiple Projects
Instead of just one default project, the server allows multiple projects identified by a unique project
name such as “Ramsey”, “Flyspeck” and “Multivariate Analysis”. A new project can be started by
an authorized user performing a password-protected upload of the project files via a HTTP POST
request. In the same way, an existing project can be updated.21 The server data specific for each
project are kept in its separate directory, which includes the user files, checkpointed images, fea-
tures and proof dependencies used for learning premise selection, and the heuristically HTML-ized
(hyperlinked) version of the user files. An overview of these project-specific data is given in Table 2.

Apart from the project-specific files, the service also keeps a spare checkpointed core HOL
Light image and additional files that typically contain the reusable information from various projects.
The core HOL Light image is used for faster creation of images for new projects. A new project can
also be cloned from an existing project. In that case, instead of starting with the core HOL Light
image, the new project starts with the cloned project’s image, and loads the new user files into them.
This saves great amount of time when updating large projects like Flyspeck. The server processing
of a new or modified project is triggered by the appropriate HTTP POST request. This starts the
internal project creator which performs on the server the actions described by Algorithm 1. The data
sizes and processing times for seven existing projects are summarized in Table 3 and Table 4.

20http://dmtcp.sourceforge.net
21Git-based interface to the projects already exists and will probably also be used for updating the projects with the standard
git-push command from users’ computers. This still requires installation of the Gitolite authentication layer on our server
and implementing appropriate Git hooks similar to those developed for the Mizar wiki in [2].

http://dmtcp.sourceforge.net
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FIGURE 2. The HOL(y)Hammer web with a query over Multivariate Analysis

3.2. Safety
Since HOL Light is implemented in the OCaml toplevel, allowing users to upload their own de-
velopment is equivalent to letting them run arbitrary programs on our server.22 This is inherently
insecure. A brief analysis of the related security issues and their possible countermeasures has been
done in the context of the WorkingWiki [45] collaborative platform.23 The easiest practical solution
is to allow uploads only by authorized users, i.e., users who are sufficiently trusted to be given shell

22And indeed, the basic infrastructure could be also used as a platform for interacting with any OCaml project.
23http://lalashan.mcmaster.ca/theobio/projects/index.php/WorkingWiki/Security

http://lalashan.mcmaster.ca/theobio/projects/index.php/WorkingWiki/Security
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TABLE 2. The data maintained for each HOL(y)Hammer project.

Data Description

User files User-submitted ML files. These data are additionally Git-managed in this directory.
Image1 Checkpointed HOL Light image preloaded with the user files and the HH functions.
Image2 An analogous image that uses proof recording to extract HOL proof dependencies.
Features Several (currently six) feature characterizations (see Section 2.1) of the project’s theorems.

HOL deps
The theorem dependencies from the original HOL proofs obtained by running the modified
proof recording kernel on the user files.

ATP deps
The theorem dependencies obtained by running ATPs in various ways and minimizing such
proofs. These data may be expensive to obtain, see 3.3 for the current re-use mechanisms.

Cache The request cache for the project.
Auxiliary Auxiliary files useful for bookkeeping and debugging.

HTML

Heuristically HTML-ized version of the user files, together with index pages for the files and
theorems. These files are available for browsing and they are also linked to the Gitweb web
interface, which presents the project and file history, allows comparison of different versions,
regular expression search over the versions, etc.

Algorithm 1 Project creation stages
1: Set up the directory structure for new projects.
2: Open a copy of the checkpointed core HOL Light image (or another project’s cloned image) and load it

with the user files and the HOL(y)Hammer functions.
3: Export the typed and variable-normalized statements of named theorems together with their MD5 hashes.
4: Export the various feature characterizations of the theorems.
5: Checkpoint the new image.
6: Re-process the user files with a proof-recording kernel that saves the (new) HOL proof dependencies.
7: Checkpoint the proof-recording image.
8: Add further compatible proof dependencies from related projects.
9: Run ATPs on the problems corresponding to the HOL dependencies, and minimize such proof data by

running the ATPs further.
10: Run the heuristic HTML-izer and indexer, and push the user files to Git.

TABLE 3. The processing times for seven HOL(y)Hammer projects in seconds.

Core Ramsey Model Gödel Complex Multivariate Flyspeck

Proof checking (min) 3 6 193 166 267 2716 21735
Proof recording (min) 10 14 225 215 578 3751 52002
Writing data 26 27 33 47 53 139 758
Writing ATP problems 38.56 45.35 51.14 73.37 72.12 139.12 650.15
Solving ATP problems 1582.8 1622.4 1882.2 2173.8 2284.8 9286.2 12034.2
HTML and Git 4 2 2 3 2 19 61
Image Restart 1.98 2.08 2.37 2.15 3.00 3.66 6.78

access. Asking queries to existing projects can still be done by anybody; the query is then just a
string processed by a time-limited function that always exits.

We have also briefly considered sandboxing for allowing anonymous user uploads, however it
adds a significant overhead to managing the server (HOL(y)Hammer currently runs in user mode),
while offering little protection in the case of HOL Light. Combination of chroot jail, an iptables fire-
wall, and disallowing users to write files, has been previously used by us in ProofWeb for multiple
proof assistants [18]. This offers a sufficient level of security for a number of proof assistants where
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TABLE 4. The data sizes for seven HOL(y)Hammer projects.

Core Ramsey Model Gödel Complex Multivariate Flyspeck

Normal image size (kB) 33892 40952 37584 38244 55424 77292 152460
Recording image size (kB) 50960 52692 48148 46000 58368 247848 365496
Unique theorems 2482 2544 2951 3408 3582 6798 22336
Unique constants 234 234 337 367 333 466 1765
Avrg. HOL proof deps. 12.13 12.27 11.09 14.44 17.96 12.26 21.86
ATP-proved theorems 1546 1578 1714 1830 2042 4126 8907
Usable ATP proofs 6094 6141 6419 6644 6885 11408 21733
Avrg. ATP proof deps. 6.86 6.86 6.77 6.67 6.94 6.36 6.52
Total distinct features 3735 3759 4693 5755 5964 11599 43858
Avrg. features/formula 24.81 24.61 26.05 35.61 39.05 38.15 67.61

Usable ATP proofs. Vampire, Epar and Z3 are used, and we keep all the different minimal proofs. This
means that the total number of ATP proofs can be higher than the number of theorems.

the ML access can be disabled, but it is not sufficient for HOL Light. Therefore also in ProofWeb,
running HOL Light was restricted to the users that are allowed to use a shell on the server [16].

3.3. Re-use of Knowledge from Related Projects
It has been shown in [25] that learning premise selection from minimized ATP proofs is better than
learning from the HOL proofs, and also that the two approaches can be productively combined,
resulting in further improvement of the overall ATP performance. However, obtaining the data from
ATP runs is expensive. For example, just running Vampire, Epar and Z3 on all Flyspeck problems
for 30 seconds takes (assuming 70% unsolved problems for each ATP) about 500 CPU hours. Even
with 50-fold parallelization, this takes 10 hours of wall-clock time. And this is just the initial ATP
pass. In [25] we also show that further MaLARea-style learning from such ATP data and re-running
of the ATPs with the premises proposed by the learning grows the set of ATP solutions by about
20%. Obviously, such additional passes cost a lot of further CPU time. One option is to sacrifice the
ATP data for speed, and only learn from the HOL data, sacrificing the final ATP performance on the
queries. However, there is a relatively efficient way how to re-use a lot of the expensive data that
were already computed.

Suppose that the user only updates an existing large project by adding a new file. Then it is quite
sufficient to (relatively quickly) obtain the minimized ATP proofs of the (ATP-provable) theorems
in the file that was added. Such ATP proofs are then added to the existing training data used for the
premise selectors. In general, the project can however be modified and updated in a more complicated
way, for example by adding/changing some files “in the middle”, modifying symbol definitions,
theorems, etc. Or it can be a completely new project, that only shares some parts with other projects,
restructuring some terminology, theorem names, and proofs. The method that we use to handle such
cases efficiently is recursive content-based encoding of the theorem and symbol names [37]. This is
the first practical deployment and evaluation of this method, which in HOL(y)Hammer is done as
follows:

1. The name of every defined symbol is replaced by the content hash (we use MD5) of its variable-
normalized definition containing the full types of the variables. This definition already uses
content hashes instead of the previously defined symbols. This means that symbol names are
no longer relevant in the whole project, neither white space and variable names.

2. The name of each theorem is also replaced by the content hash of its (analogously normalized)
statement.
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3. The proof-dependency data extracted in the content encoding from all projects are copied to a
special “common” directory.

4. Whenever a project P is started or modified, we find the intersection of the content-encoded
names of the project’s theorems with such names that already exist in other projects/versions.

5. For each of such “already known” theorems T in P , we re-use all its “already known” proofs D
that are compatible with P ’s proof graph. This means, that the names of the proof dependencies
of T in D must also exist in P (i.e., these theorems have been also proved in P , modulo the
content-naming), and that these theorems precede T in P in its chronological order (otherwise
we might get cyclic training data for P ).

There are two possible dangers with this approach: collisions in MD5 and dealing with types in
the HOL logic. The first issue is theoretical: the chance of unintended MD5 collisions is very low,
and if necessary, we can switch to stronger hashes such as SHA-256. The second issue is more
real: there is a choice of using content-encoding also for the HOL types, or just using their original
names. If original names are used, two differently defined types can get the same name in two
different projects, making the theorems about such types incompatible. If content encoding is used,
all types with the same definition will get the same content name. However, the HOL logic rejects
such semantic equality of the two types already in its parsing layer: two differently named types
are always completely different in the HOL logic.24 We currently use the first method (keeping the
original type names), however the second method might be slightly more correct. In both cases,
it probably would not be hard to add guards against the possible conflicts. In all cases, these issues
only influence the performance of the premise-selection algorithms. The theorem proving (and proof
reconstruction) is always done with the original symbols.

3.4. Analysis of the Knowledge Re-use for Flyspeck Versions
It is interesting to know how much knowledge re-use can be obtained with the content-encoding
method. We analyze this in Table 5 on the theorems (or rather unique conjuncts) coming from three
different Flyspeck SVN versions: 2887, 3006, and 3400. Note that the last version (3400) has not
been subjected to several learning/ATP passes. Such passes raised the number of ATP-proved the-
orems in the earlier versions by about 20%. The table shows that the number of reusable theorems
and proofs from the previous version is typically very high. This also means that more expensive
AI/ATP computations (e.g., use of higher time limits, MaLARea-style looping, and even BliStr-
style strategy evolution [39]) could be in the future added to the tasks done on the server in its idle
time, because the results of such computations will typically improve the success rates of all the
future versions of such large projects.

TABLE 5. The re-use of theorems and ATP proofs between four Flyspeck SVN versions

Version Unique thms In previous (%) ATP-proved (%) ATP proofs Reusable proofs (%)

2887 13647 N/A 7176 (53%) 20028 N/A
3006 13814 13480 (98%) 7235 (52%) 20081 19977 (99%)
3400 18856 12866 (93%) 8914 (47%) 21780 21320 (97%)

In previous. Theorems (conjuncts) that exist already in the previous version, and their percentage.
ATP proof. Vampire, Epar and Z3 are used, and we keep all the different minimal proofs. This means that

the total number of ATP proofs can be higher than the number of theorems.
Re-usable ATP proofs. The proofs from the previous version that are valid also in the current version.

24The second author could not resist pointing out that this issue disappears in set theory with soft types.
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A by-product of the content encoding is also information about symbols that are defined mul-
tiple times under different names. For the latest version of Flyspeck there are 39 of them, shown in
Table 6.

TABLE 6. 39 symbols with the same content-based definition in Flyspeck SVN 3400

face path / face contour reflect along / reflection
zero6 / dummy6 UNIV / predT
CROSS / * c node3 y / rotate3
EMPTY / pred0 APPEND / cat
func / FUN set components / set part components
ONE ONE / injective triple of real3 / vector to pair
supp / SUPP is no double joins / is no double joints
dirac delta / delta func unknown / NONLIN
o / compose node2 y / rotate2
I / LET END / mark term

4. Modes of Interaction with the Service
The standard web interface (Figure 2) displays the available projects, links to their documentation,
allows queries to the projects, and provides an HTML form for uploading and modifying projects.
Requests are processed using asynchronous DOM modification (AJAX): a JavaScript script makes
the requests in the background and updates a part of the page that displays the response. Each request
is first sent to the external PHP request processor, which communicates with the HOL(y)Hammer
server. A prototype of a web editor interacting both with HOL Light and with the online advisor is
described in [34].

FIGURE 3. Parallel asynchronous calls of the online advisor from Emacs.

Figure 3 shows an Emacs session with several HOL Light goals.25 The online advisor has been
asynchronously called on the goals, and just returned the answer for the fifth goal and inserted the

25A longer video of the interaction is at http://mws.cs.ru.nl/˜urban/ha1.mp4

http://mws.cs.ru.nl/~urban/ha1.mp4
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corresponding tactic call at an appropriate place in the buffer. The relevant Emacs code (customized
for the HOL Light mode distributed with Flyspeck) is available online26 and also distributed with
the local HOL(y)Hammer install. It is a modification of the similar code used for communicating
with the MizAR service from Emacs.

The simplest option (useful as a basis for more sophisticated interfaces) is to interact with the
service in command line, for example using netcat, as shown for two following two queries. The
first query is solved easily by INT_ARITH, while the other requires nontrivial premise and proof
search.
$ echo 'max a b = &1 / &2 * ((a + b) + abs(a - b))'
| nc colo12-c703.uibk.ac.at 8080

......

* Replaying: SUCCESS (0.25s): INT_ARITH_TAC

* Loadavg: 48.13 48.76 48.49 52/1151 46604

$ echo '!A B (C:A->bool).((A DIFF B) INTER C=EMPTY) <=> ((A INTER C) SUBSET B)'
| nc colo12-c703.uibk.ac.at 8080

* Read OK
..............

* Theorem! Time: 14.74s Prover: Z Hints: 32 Str:
allt_notrivsyms_m10u_all_atponly

* Minimizing, current no: 9
.* Minimizing, current no: 6

* Result: EMPTY_SUBSET IN_DIFF IN_INTER MEMBER_NOT_EMPTY SUBSET SUBSET_ANTISYM

5. The Local Service Description
The service can be also downloaded,27 installed and used locally, for example when a user is work-
ing on a private formalization that cannot be included in the public online service.28 Installing the
advisor locally proceeds analogously to the steps described in Algorithm 1. Two passes are done
through the user’s repository. In the first pass, the names of all the theorems available in the user’s
repository are exported, together with their features (symbols, terms, types, etc., as explained in Sec-
tion 2.1). In the second pass, the dependencies between the named theorems are computed, again
using the modified proof recording HOL Light kernel that records all the processing steps. Given
the exported features and dependencies, local advice system(s) (premise selectors) are trained out-
side HOL Light. Using the fast sparse learning methods described in Section 2.1, this again takes
seconds, depending on the user hardware and the size of the development. The advisors are then
run locally (as independent servers) to serve the requests coming from HOL Light. While the first
pass is just a fast additional function that can be run by the user at any time on top of his loaded
repository, the second pass now still requires full additional processing of the repository. This could
be improved in the future by checkpointing the proof-recording image, as we do in the online server.

The user is provided with a tactic (HH_ADVICE_TAC) which runs all the mechanisms de-
scribed in the Section 2 on the current goal locally. This means that the functions relying on external
premise selection and ATPs are tried in parallel, together with a number of decision procedures. The
ATPs are expected to be installed on the user’s machine and (as in the online service) they are run
on the goal translated to the TPTP format, together with a limited number of premises optimized
separately for each prover. By default Vampire, Eprover and Z3 are now run, using three-fold par-
allelization.

26https://raw.github.com/JUrban/hol-advisor/master/hol-advice.el
27http://cl-informatik.uibk.ac.at/users/cek/hh/
28The online service can already handle private developments that are not shown to the public.

https://raw.github.com/JUrban/hol-advisor/master/hol-advice.el
http://cl-informatik.uibk.ac.at/users/cek/hh/
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The local installation in its simple configuration is now only trained using the naive Bayes
algorithm on the training data coming from the HOL Light proof dependencies and the features
extracted with the standard method. As shown in [25], the machine learning advice can be strength-
ened using ATP dependencies, which can be also optionally plugged into the local mode. Further
strengthening can be done with combinations of various methods. This is easy to adjust; for example
a user with a 24-CPU workstation can re-use/optimize the parallel combinations from Table 1 used
by the online service.

5.1. Online versus Local Systems
The two related existing services are MizAR and Sledgehammer. MizAR has so far been an online
service (accessible via Emacs or web interface), while Sledgehammer has so far required a local in-
stall (even though it already calls some ATPs over a network). HOL(y)Hammer started as an online
service, and the local version has been added recently to answer the demand by some (power)users.
The arguments for installing the service locally are mainly the option to use the service offline (pos-
sibly using one’s own large computing resources), and to keep the development private. As usual,
the local install will also require the tools involved to work on all kinds of architectures, which is
often an issue, particularly with software that is mostly developed in academia.

As described in Section 2, the online service now runs 7 different AI/ATP instances and 4 de-
cision procedures for each query. When counting the individual ATP strategies (which may indeed
be very orthogonal in systems like Vampire and E), this translates to about 70 different AI/ATP
attempts for each query. If the demands grows, we can already now distribute the load from the
current 48-CPU server to 112 CPUs by installing the service on another 64-CPU server. The old
resolution-ATP wisdom is that systems rarely prove a result in higher time limits, since the search
space grows very fast. A more recent wisdom (most prominently demonstrated by Vampire) how-
ever is that using (sufficiently orthogonal) strategy scheduling makes higher time limits much more
useful.29 And even more recent wisdom is that learning in various ways from related successes and
failures further improves the systems’ chances when given more resources. All this makes a good
case for developing strong online computing services that can in short bursts focus a lot of power on
the user queries, which are typically related to many previous problems. Also in some sense, the cur-
rently used AI/ATP methods are only scratching the surface. For example, further predictive power
is obtained in MaLARea [42] by computing thousands of interesting finite models, and using eval-
uation in them as additional semantic features of the formulas. ATP prototypes like MaLeCoP [43]
can already benefit from accumulated fine-grained learned AI guidance at every inference step that
they make. The service can try to make the best (re-)use of all smaller lemmas that have been proved
so far (as in [21, 35]). And as usual in machine learning, the more data are centrally accumulated
for such methods, the stronger the methods become. Finally, it is hard to overlook the recent trend
of light-weight devices for which the hard computational tasks are computed by large server farms
(cloud computing).

6. Conclusion and Future Work
We believe that HOL(y)Hammer is one of the strongest AI/ATP services currently available. It
uses a toolchain of evolving large-theory methods that have been continuously improved as more
and more AI/ATP experiments and computations have been recently done, in particular over the
Flyspeck corpus. The combinations that jointly provide the greatest theorem-proving coverage are
employed to answer the queries with parallelization of practically all of the components. The paral-
lelization factor is probably the highest of all existing ATP services, helping to focus the power of
many different AI/ATP methods to answer the queries as quickly as possible. The content-encoding

29In [25], the relative performance of Vampire in 30 and 900 seconds is very different.
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mechanisms allow to re-use a lot of the expensive theorem-proving knowledge computed over earlier
projects and versions. And the checkpointing allows reasonably fast update of existing projects.

At this moment, there seems to be no end to better premise selection, better translation methods
for ATPs (and SMTs, and more advanced combined systems like MetiTarski [1]), better ATP meth-
ods (and their AI-based guidance), and better reconstruction methods. Future work also includes
broader updating mechanisms, for example using git to not just add, but also delete files from an
existing project. A major issue is securing the server for more open (perhaps eventually anonymous)
uploads, and maybe also providing encryption/obfuscation mechanisms that guarantee privacy of
the non-public developments.30 An interesting future direction is the use of the service with its large
knowledge base and growing reasoning power as a semantic understanding (connecting) layer for
experiments with tools that attempt to extract logical meaning from informal mathematical texts.
Mathematics, with its explicit semantics, could in fact pioneer the technology of very deep parsing
of scientific natural language writings, and their utilization in making stronger and stronger auto-
mated reasoning tools about all kinds of scientific domains.
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