
Certified Connection Tableaux Proofs
for HOL Light and TPTP

Cezary Kaliszyk
University of Innsbruck

cezary.kaliszyk@uibk.ac.at

Josef Urban
Radboud University Nijmegen

josef.urban@gmail.com
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Abstract
In recent years, the Metis prover based on ordered paramodulation
and model elimination has replaced the earlier built-in methods for
general-purpose proof automation in HOL4 and Isabelle/HOL. In
the annual CASC competition, the leanCoP system based on con-
nection tableaux has however performed better than Metis. In this
paper we show how the leanCoP’s core algorithm can be imple-
mented inside HOL Light. leanCoP’s flagship feature, namely its
minimalistic core, results in a very simple proof system. This plays
a crucial role in extending the MESON proof reconstruction mech-
anism to connection tableaux proofs, providing an implementation
of leanCoP that certifies its proofs. We discuss the differences be-
tween our direct implementation using an explicit Prolog stack,
to the continuation passing implementation of MESON present in
HOL Light and compare their performance on all core HOL Light
goals. The resulting prover can be also used as a general purpose
TPTP prover. We compare its performance against the resolution
based Metis on TPTP and other interesting datasets.

Categories and Subject Descriptors I.2.3 [Deduction and The-
orem Proving]: Inference engines; F.4.1 [Mathematical Logic]:
Mechanical theorem proving

Keywords leanCoP, HOL Light, connection tableaux, certified
proofs, automated reasoning, interactive theorem proving

1. Introduction and Related Work
The leanCoP [26] automated theorem prover (ATP) has an unusu-
ally good ratio of performance to its implementation size. While its
core algorithm fits on some twenty lines of Prolog, starting with
CASC-21 [35] it has regularly beaten Otter [22] and Metis [8] in
the FOF division of the CASC ATP competitions. In 2014, lean-
CoP solved 158 FOF problems in CASC-J7,1 while Prover9 [21]
solved 95 problems. On the large-theory (chainy) division of the
MPTP Challenge benchmark2, leanCoP’s goal-directed calculus

1 http://www.cs.miami.edu/˜tptp/CASC/J7/WWWFiles/
DivisionSummary1.html
2 http://www.cs.miami.edu/˜tptp/MPTPChallenge/
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beats also SPASS 2.2 [41], and further AI-style strengthening by
integrating into leanCoP learning-based guidance trained on such
larger ITP corpora is an interesting possibility [39].

Compact ATP calculi such as leanTAP [2] and MESON [20]
have been used for some time in Isabelle [27, 28] and HOLs [5]
as general first-order automation tactics for discharging goals that
are already simple enough. With the arrival of large-theory “ham-
mer” linkups [10, 13, 18, 29, 37, 40] between ITPs, state-of-the-
art ATPs such as Vampire [16] and E [32], and premise selec-
tion methods [17], such tactics also became used as a relatively
cheap method for reconstructing the (minimized) proofs found by
the stronger ATPs. In particular, Hurd’s Metis has been adopted
as the main proof reconstruction tool used by Isabelle’s Sledge-
hammer linkup [3, 30], while Harrison’s version of MESON could
reconstruct in 1 second about 80% of the minimized proofs found
by E in the first experiments with the HOLyHammer linkup [11].

Since HOL Light already contains a lot of the necessary in-
frastructure for Prolog-style proof search and its reconstruction,
integrating leanCoP into HOL Light in a similar way as MESON
should not be too costly, while it could lead to interesting strength-
ening of HOL Light’s first-order automation and proof reconstruc-
tion methods. In the main part of this paper (Section 3) we describe
how this was done, resulting in an OCaml implementation of lean-
CoP and a general leanCoP first-order tactic in HOL Light. Sec-
tion 4 then compares their performance with MESON, Metis and
the Prolog version of leanCoP in several scenarios, showing quite
significant improvements over MESON and Metis. However, first
(Section 2) we have to introduce leanCoP and its calculus.

2. leanCoP and Its Calculus
leanCoP is an automated theorem prover for classical first-order
logic based on a compact Prolog implementation of the clausal
connection (tableaux) calculus [19, 26] with several simple strate-
gies that significantly reduce the search space on many problems.
In contrast to saturation-based calculi used in most of the state-
of-the-art ATPs (E, Vampire, etc.), connection calculi implement
goal-oriented proof search. Their main inference step connects a
literal on the current path to a new literal with the same predicate
symbol but different polarity. The formal definition (derived from
Otten [25]) of the particular connection calculus relevant in lean-
CoP is as follows:

DEFINITION 1. [Connection calculus] The axiom and rules of the
connection calculus are given in Figure 1. The words of the calcu-
lus are tuples “C,M,Path” where the clause C is the open sub-
goal,M is a set of clauses in disjunctive normal form (DNF) trans-
formed from axioms ∧ conjecture with added nullary predicate ]3

3 We suppose that ] is a new predicate that does not occur anywhere in
axioms and conjecture.



to all positive clauses4, and the active path Path is a subset of a
path through M . In the rules of the calculus C,C′ and C′′ are
clauses, σ is a term substitution, and L1, L2 is a connection with
σ(L1) = σ(L2). The rules of the calculus are applied in an ana-
lytic (i.e. bottom-up) way. The term substitution σ is applied to the
whole derivation.

The connection calculus is correct and complete [19] in the fol-
lowing sense: A first-order formula M in clausal form is valid iff
there is a connection proof for “¬],M, {}”, i.e., a derivation for
“¬],M, {}” in the connection calculus so that all leaves are ax-
ioms. The following Prolog predicate prove/5 implements the
axiom, the reduction and the extension rule of the basic connec-
tion calculus in leanCoP. The code will be explained in more detail
later. The comments (gap for ...) in the code represent optimizations
that will be filled in and explained in the following subsections.

1 % prove(Cla,Path,PathLim,Lem,Set)
2 prove([Lit|Cla],Path,PathLim,Lem,Set) :-
3 % gap for regularity (Section 2.2)
4 (-NegLit=Lit;-Lit=NegLit) ->
5 ( % gap for lemmata (Section 2.3)
6 %
7 member(NegL,Path),
8 unify_with_occurs_check(NegL,NegLit)
9 ;

10 lit(NegLit,NegL,Cla1,Grnd1),
11 unify_with_occurs_check(NegL,NegLit),
12 % gap for iterative deepening (Section 2.1)
13 %
14 prove(Cla1,[Lit|Path],PathLim,Lem,Set)
15 ),
16 % gap for restricted backtracking (Section 2.4)
17 prove(Cla,Path,PathLim,Lem,Set).
18 prove([],_,_,_,_).

The tuple “C,M,Path” in connection calculus is here represented
as follows:

• C representing the open subgoal is a Prolog list Cla;
• the active path Path is a Prolog list Path;
• M is written into Prolog’s database before the actual proof

search starts in a such way that for every clause C ∈M and for
every literalC ∈M the fact lit(Indexing L,L,C1,Grnd)
is stored, where C1=C\{L} and Grnd is g if C is ground, oth-
erwise Grnd is n. Indexing L is same as L modulo all its
variables which are fresh (there is no twice or more occurrences
in Indexing L) everywhere in Indexing L and it is used
for fast finding the right fact in database without affecting the
logically correct L by standard Prolog unification without oc-
curs check.

• Atoms are represented by Prolog atoms, negation by “−”.
• The substitution σ is stored implicitly by Prolog.

PathLim is the current limit used for iterative deepening, Lem is
the list of usable (previously derived) lemmas, Set a list of options,
and Proof is the resulting proof. This predicate succeeds (using
iterative deepening) iff there is a connection proof for the tuple
represented by Cla, the DNF representation of the problem stored
in Prolog’s database using the lit predicate, and a Path with
|Path| <PathLim where PathLim is the maximum size of the
active Path. The predicate works as follows:

Line 18 implements the axiom, line 4 calculates the complement
of the first literal Lit in Cla, which is used as the principal
literal for the next reduction or extension step. The reduction rule
is implemented in lines 7, 8 and 17. At line 7 and 8 it is checked
whether the active path Path contains a literal NegL that unifies

4 Thus by default all positive clauses are used as possible start clauses.

axiom: {},M, Path

reduction rule: C,M,Path ∪ {L2}
C ∪ {L1},M, Path ∪ {L2}

where there exists a unification substitution σ such that
σ(L1) = σ(L2)

extension rule: C
′ \ {L2},M, Path ∪ {L1} C,M,Path

C ∪ {L1},M, Path
where C′ is a fresh copy of some C′′ ∈ M such that L2 ∈
C′and σ(L1) = σ(L2) where σ is unification substitution.

Note that the σ used in the reduction and extension rules must be
applied on all literals in all derivations except the literals in the set
M because these literals are not affected by any substitution σ.

Figure 1. The basic clause connection calculus used in leanCoP.

with the complement NegLit of the principal literal Lit. In this
case the alternative lines after the semicolon are skipped and the
proof search for the premise of the reduction rule is invoked in
line 17. The extension rule is implemented in lines 10, 11, 14
and 17. Lines 10 and 11 are used to find a clause that contains
the complement NegLit of the principal literal Lit. Cla1 is the
remaining set of literals of the selected clause and the new open
subgoal of the left premise. The proof search for the left premise
of the extension rule, in which the active path Path is extended by
the principal literal Lit, is invoked in line 14, and if successful, we
again continue on line 17.

Compared with standard tableaux or some sequent calculi, con-
nection calculi are not confluent.5 To achieve completeness, an ex-
tensive use of backtracking is required. leanCoP uses two simple
incomplete strategies (namely options scut and cut) for restrict-
ing backtracking that significantly reduces the search space [25]
without affecting the ability to find proofs in most tested cases (see
Section 4).

Another major problem in connection calculi is the integra-
tion of equality. The paramodulation method that is widely used in
saturation-based ATPs is not complete for goal-oriented approach
of connection calculi. Therefore equality in leanCoP and similar
ATPs is usually managed by adding the axioms of equality (reflex-
ivity, symmetry, transitivity and substitutivity).

To obtain the clausal form, leanCoP uses its own implementa-
tion of clausifier introducing definitions (the def option), which
seems to perform better with leanCoP’s core prover than other stan-
dard clausifiers (TPTP2X using the option -t clausify:tptp,
FLOTTER [23] and E) or direct transformation into clausal form
(nodef option in leanCoP) [25]. In the following subsections, we
summarize several further methods used by leanCoP that improve
its performance.

2.1 Iterative deepening
Prolog uses a simple incomplete depth-first search strategy to ex-
plore the search space. This kind of incompleteness would result
in a calculus that hardly proves any formula. In order to obtain a
complete proof search in the connection calculus, iterative deepen-
ing on the proof depth, i.e. the size of the active path, is performed.
It is achieved by inserting the following lines into the code:

(12)( Grnd1=g -> t rue ; l ength(Path,K),
K<PathLim -> t rue ;

(13) \+ pathlim -> a s s e r t(pathlim), f a i l ),

where the Prolog predicate \+ Goal succeeds only if Goal fails
(negation as failure). The whole prover runs in the following itera-

5 Bad choice of connection might end up in a dead end.



tive sense starting from PathLimit= 1:

prove(PathLim,Set) :-
r e t r a c t(pathlim) ->
PathLim1 i s PathLim+1,
prove(PathLim1,Set).

When the extension rule is applied and the new clause is not
ground, i.e. it does not contain any variable, it is checked whether
the size K of the active path exceeds the current path limit PathLim
(line 12). In this case the dynamic predicate pathlim/0 is written
into the Prolog’s database (line 13) indicating the need to increase
the path limit if the proof search with the current path limit fails.
If the proof search fails and the predicate pathlim can be found
in the database, then PathLim is increased by one and the proof
search starts again.

2.2 Regularity Condition Optimization
DEFINITION 2. A connection proof is regular iff no literal occurs
more than once in the active path.

Since the active path corresponds to the set of literals in a branch
in the connection tableau representation, a connection tableau proof
is regular if in the current branch no literal occurs more than once.
The regularity condition is integrated into the connection calculus
in Figure 1 by imposing the following restriction on the reduction
and extension rule: ∀L′ ∈ C ∪ {L1} : σ(L′) /∈ σ(Path)

LEMMA 2.1. A formula M in clausal form described above is
valid iff there is a regular connection proof for “¬],M, {}”

Regularity is correct, since it only imposes a restriction on the
applicability of the reduction and extension rules. The complete-
ness proof can be found in [19, 26]. The regularity condition must
be checked whenever the reduction, extension or lemma rule is
applied. The substitution σ is not modified, i.e. the regularity con-
dition is satisfied if the open subgoal does not contain a literal that
is syntactically identical with a literal in the active path. This is
implemented by inserting the following line into the code:

(3) \+ (member(LitC,[Lit|Cla]),
member(LitP,Path),
LitC==LitP),

Here the code inside negation succeeds if the open subgoal
[Lit|Cla] contains a literal LitC that is syntactically identical
(built-in predicate ==/2 in Prolog) with a literal LitP in the active
path Path. The built-in predicate member/2 is used to enumerate
all elements of a list.

2.3 Lemmata optimization
The set of lemmata is represented by the list Lem. The lemma rule
is implemented by inserting the following lines:

(5) ( member(LitL,Lem), Lit==LitL
(6) ;

In order to apply the lemma rule, the substitution σ is not modi-
fied, i.e. the lemma rule is only applied if the list of lemmata Lem
contains a literal LitL that is syntactically identical with the lit-
eral Lit. Furthermore, the literal Lit is added to the list Lem of
lemmata in the (left) premise of the reduction and extension rule
by adapting the following line:

(15) prove(Cla,Path,PathLim,[Lit|Lem],Set).

In the resulting implementation, the lemma rule is applied before
the reduction and extension rules.

2.4 Restricted backtracking
In Prolog the cut (!) is used to cut off alternative solutions when
Prolog tries to prove a goal. The Prolog cut is a built-in predicate,
which succeeds immediately when first encountered as a goal. Any
attempt to re-satisfy the cut fails for the parent goal, i.e. other al-
ternative choices are discarded that have been made from the point
when the parent goal was invoked. Consequently, restricted back-
tracking is achieved by inserting a Prolog cut after the lemma,
reduction, or extension rule is applied. It is implemented by insert-
ing the following line into the code:

(16) ( member(cut,Set) -> ! ; t rue ),

Restricted backtracking is switched on if the list Set contains the
option cut. The restricted start step is used if the list Set in-
cludes the option scut. In this case only the first matching clause
to starting ¬] literal is used. Restricted backtracking and restricted
start step lead to an incomplete proof search. In order to regain
completeness, these strategies can be switched off when the search
reaches a certain path limit. If the list Set contains the option
comp(Limit), where Limit is a natural number, the proof search is
stopped and started again without using incomplete search strate-
gies.

3. OCaml Implementation
In this section, we first discuss our implementation6 of leanCoP in
OCaml and its integration in HOL Light: the transformation of the
higher-order goal to first order and the proof reconstruction. After
that we compare our implementation to Harrison’s implementation
of MESON.

3.1 leanCoP in OCaml

Otten’s implementation of leanCoP uses the Prolog search, back-
tracking, and indexing mechanisms to implement the connection
tableaux proof search. This is a variation of the general idea of us-
ing the “Prolog technology theorem prover” (PTTP) proposed by
Stickel [33], in which connection tableaux takes a number of ad-
vantages from its similarity to Prolog.

In order to implement an equivalent program in a functional
programming language, one needs to use either an explicit stack
for keeping track of the current proof state (including the trail of
variable bindings), or continuation passing style. We choose to do
the former, namely we add an explicit todo (stack), subst (trail)
and off (offset in the trail) arguments to the main prove func-
tion. The stack keeps a list of tuples that are given as arguments to
the recursive invocations of prove , whose full OCaml declaration
(taking the open subgoal as its last argument) then looks as follows:

let rec lprove off subst path limit lemmas todo = function
[] -> begin ... end
| ((lit1 :: rest_clause) as clause) -> ... ;;

The function performs the proof search to the given depth, and if
a proof has not been found, it returns unit. It takes special attention
to traverse the tree in the same order as the Prolog version. In
particular, when the global option ”cut” (restricting backtracking)
is off, it performs all the backtrackings explicitly, while if ”cut” is
on, the parts of backtracking avoided in Prolog are also omitted.
When a proof is found, the exception ‘Solved’ is raised: no further
search is performed and the function exits with this exception.

The OCaml version and the Prolog version (simplified and with
symbols renamed for clarity of comparison) are displayed together
in Fig. 2. The algorithm proceeds as follows:

6 Available online at http://cl-informatik.uibk.ac.at/
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l e t rec prove path lim lem stack = function (lit :: cla) ->

i f not ((exists (fun litp -> exists (substeq litp) path))
(lit :: cla)) then (

l e t neglit = negate lit i n

i f not (exists (substeq lit) lem &&
(prove path lim lem stack cla; cut)) then (

i f not (fold_left (fun sf plit -> sf ||
try (unify_lit neglit plit; prove path lim (lit :: lem)
stack cla; cut) with Unify -> sf) false path) then (

l e t iter_fun (lit2, cla2, ground) = i f lim > 0 || ground then
try l e t cla1 = unify_rename (snd lit) (lit2, cla2) i n
prove (lit :: path) (lim - 1) lem (( i f cut then lim e l s e -1),
path, lim, lit :: lem, cla) :: stack) cla1 with Unify -> () i n

try iter iter_fun (try assoc neglit lits with Not_found -> [])
with Cut n -> i f n = lim then () e l s e r a i s e Cut n)))

| [] -> match stack with
(ct, path, lim, lem, cla) :: t ->

prove path lim lem t cla; i f ct > 0 r a i s e (Cut ct)

| [] -> r a i s e Solved;;

prove([Lit|Cla],Path,PathLim,Lem,Set) :-

\+ (member(LitC,[Lit|Cla]), member(LitP,Path),
LitC==LitP),

(-NegLit=Lit;-Lit=NegLit) -> (

member(LitL,Lem), Lit==LitL
;

member(NegL,Path),
unify_with_occurs_check(NegL,NegLit)
;

lit(NegLit,NegL,Cla1,Grnd1),
unify_with_occurs_check(NegL,NegLit),
( Grnd1=g -> t rue ;

l ength(Path,K), K<PathLim -> t rue ;
\+ pathlim -> a s s e r t(pathlim), f a i l ),

prove(Cla1,[Lit|Path],PathLim,Lem,Set)
), ( member(cut,Set) -> ! ; t rue ),

prove(Cla,Path,PathLim,[Lit|Lem],Set).

prove([],_,_,_,_,[]).

Figure 2. The simplified OCaml and Prolog code side by side. The explicit trail argument and the computation of the resulting proof have
been omitted for clarity, and some symbols were renamed to better correspond to each other. White-space and order of clauses has been
modified to exemplify corresponding parts of the two implementations. Function substeq checks equality under the current context of
variable bindings. Note that the last-but-one line in the Prolog code was merged into each of the three cases in the OCaml code. See the
function lprove in file leancop.ml on our web page for the actual (non-simplified) OCaml code.

1. If nonempty, decompose the current open subgoal into the first
literal lit and the rest cla.

2. Check for intersection between the current open subgoal and
path.

3. Compute the negation of lit.

4. Check if lit is among the lemmas lem, if so try to prove cla.
If cut is set, no other options are tried.

5. For each literal on the path, if neglit unifies with it, try to
prove cla. If the unification succeeded and cut is set, no other
options are tried.

6. For each clause in the matrix, try to find a literal that unifies
with neglit, and then try to prove the rest of the newly
created subgoal and the rest of the current open subgoal. If the
unification and the first proof succeeded and cut is set, no other
options are tried.

7. When the current open subgoal is empty, the subproof is fin-
ished (the axiom rule).

In Otten’s implementation, the behaviour of the program with
cut set is enabled by the use of the Prolog cut (!). Implementing
it in OCaml amounts to a different mechanism in each of the three
cases. In point 4 in the enumeration above, given that a single
lemma has been found, there is no need to check for other lemmas.
Therefore a simple List.exists call is sufficient to emulate
this behaviour in OCaml. No backtracking over other possible
occurrences of the lemma is needed here, and it is not necessary
to add in this case the literal again into the list of lemmas as is done
in the Prolog code (last-but-one line).

In point 5, multiple literals on the path may unify with differ-
ent substitutions. We therefore use a list fold mechanism which
changes the value whenever the unification is successful and cut
is set. In point 6, we need to change our behaviour in between two
successive calls to prove. As the first call takes the arguments to

the second call on the stack, we additionally add a cut marker on
the stack and handle an exception that can be raised by the call on
the stack.

Whenever the clause becomes empty, all the tuples in the stack
list need to be processed. For each tuple, the first component is
the cut marker: if it is set, the Cut exception is raised with a
depth level. The exception is handled only at the appropriate level.
This directly corresponds to the semantics of the cut operator in
Prolog [34].

What remains to be implemented is efficient equality checking
and unification. Since we want to integrate our mechanism in HOL
Light, we reuse the first order logic representation used in the im-
plementation of HOL Light’s MESON procedure: the substitutions
are implemented as association lists, and applications of substitu-
tions are delayed until an actual equality check or a unification step.

3.2 leanCoP in HOL Light

In order to enable the OCaml version of leanCoP as a proof tactic
and procedure in HOL Light, we first need to transform a HOL
goal to a leanCoP problem and when a proof has been found
we replay the proof in higher-order logic. In order to transform a
problem in higher-order logic to first-order logic without equality,
we mostly reuse the steps of the transformation already used by
MESON, additionally ensuring that the conjecture is separated
from the axioms to preserve leanCoP’s goal-directed approach.
The transformation starts by assuming the duplicated copies of
polymorphic theorems to match the existing assumptions. Next the
goal axioms → conjecture is transformed to (axioms ∧ ]) →
(conjecture ∧ ]) with the help of a special symbol, which we
define in HOL as: ] = >. Since the conjecture is refuted and the
problem is converted to CNF, the only positive occurrence of ] is
present in a singleton clause, and the negative occurrences of ] are
present in every clause originating from the conjecture. The CNF
clauses directly correspond to the DNF used by the Prolog version
of leanCoP. Since no steps distinguish between the positivity of



literals, the two can be used interchangeably in the proof procedure.
We start the FOL algorithm by trying to prove ¬].

Since the final leanCoP proof may include references to lem-
mas, the reconstruction cannot be performed the same way as it is
done in MESON. There, a tree structure is used for finished proofs.
Each subgoal either closes the branch (the literal is a negation of
a literal already present on the path) or is a branch extension with
a (possibly empty) list of subgoals. In leanCoP, each subgoal can
refer to previous subgoals, so the order of the subgoals becomes
important. We therefore flatten the tree to a list, which needs to be
traversed in a linear order to reconstruct the proof.

We define a type of proof steps, one for each proof step in the
calculus. Each application of a lemma step or path step constructs
a proof step with an appropriate first-order term. For an applica-
tion of a tableaux extension step we use Harrison’s contrapositive
mechanism: we store the reference to the actual transformed HOL
theorem whose conclusion is a disjunction together with the num-
ber of the disjunct that got resolved.7

type proof = Lem of fol_atom
| Pat of fol_atom
| Res of fol_atom * (int * thm);;

A list of such proof steps together with a final substitution and
an initially empty list of already proved lemmas are the complete
input to the proof reconstruction procedure. The reconstruction
procedure always looks at the first step on the list. First, a HOL
term is constructed from the FOL term with the final substitution
applied. This step is straightforward, as it amounts to reversing the
mapping of variables and constants applied to transform the HOL
CNF to FOL CNF, with new names invented for new variables.
Next, we analyze the kind of the step. If the step is a path step,
the theorem tm ` tm is returned, using the HOL ASSUME proof
rule. If the step is a lemma step, the theorem whose conclusion is
equal to tm is found on the list of lemmas and returned. Finally, if
the proof step is an extension step, we first find the disjuncts of the
HOL theorem in the proof step apart from the one that got matched.
We then fold over this list, at every step calling the reconstruction
function recursively with the remaining proof steps and the list of
lemmas extended by each of the calls. The result of the fold is the
list of theorems [` tm1,` tm2, ...,` tmn] which gets matched
with the contrapositive theorem ` tm1 ∧ . . . ∧ tmn → tmg

using the HOL proof rule MATCH MP to obtain the theorem ` tmg .
Finally, by matching this theorem to the term tm the theorem ` tm
is obtained.

As the reconstruction procedure traverses the list, it produces
the theorem that corresponds to the first goal, namely ... ` ¬]. By
unfolding the definition of ], we obtain ... ` ⊥ which concludes
the refutation proof.

3.3 Comparison with MESON

The simplified OCaml code of the core HOL Light’s MESON
algorithm as described in [6] is as follows:

l e t rec mexpand rules ancestors g cont (env,n,k) =
i f n < 0 then failwith "Too deep" e l s e
try tryfind (fun a -> cont (unify_literals

env (g,negate a),n,k))
ancestors

with Failure _ -> tryfind (fun rule ->
l e t (asm,c), k = renamerule k rule i n
itlist (mexpand rules (g::ancestors)) asm cont

(unify_literals env (g,c),n - length asm, k ))
rules;;

l e t puremeson fm =
l e t cls = simpcnf(specialize(pnf fm)) i n

7 Contrary to the name, the HOL Light type fol atom implements a
literal: it is either positive or negative.

l e t rules = itlist ((@) ** contrapositives) cls [] i n
deepen (fun n -> mexpand rules [] False (fun x -> x)

(undefined,n,0); n)
0;;

The toplevel puremeson function proceeds by turning the in-
put formula into a clausal form, making contrapositives (rules)
from the clauses, and then repeatedly calling the mexpand func-
tion with these rules using iterative deepening over the number of
nodes permitted in the proof tree.

The mexpand function takes as its arguments the rules, an
(initially empty) list of goal ancestors, the goal g to prove
(initially False, which was also added to all-negative clauses
when creating contrapositives), a continuation function cont for
solving the rest of the subgoals (initially the identity), and a tuple
consisting of the current trail env, the number n of additional
nodes in the proof tree permitted, and a counter k for variable
renaming.

If the allowed node count is not negative, mexpand first tries to
unify the current goal with a negated ancestor, followed by calling
the current continuation (trying to solve the remaining goals) with
the extended trail. If all such unification/continuation attempts fail
(i.e., they throw Failure), an extension step is tried with all rules.
This means that the head of a (renamed) rule is unified with the
goal g, the goal is appended to the ancestors and the mexpand is
called (again using list folding with the subsequently modified trail
and continuation) for all the assumptions of the rule, decreasing the
allowed node count for the recursive calls.

The full HOL Light version of MESON additionally uses a
smarter (divide-and-conquer) policy for the size limit, checks the
goal for being already among the ancestors, caches continuations,
and uses simple indexing. Below we enumerate some of the most
important differences between the leanCoP algorithm and MESON
and their implementations in HOL Light. Their practical effect is
measured in Section 4.

• leanCoP computes and uses lemmas. The literals that corre-
spond to closed branches are stored in a list. Each call to the
main prove function additionally looks for the first literal in
the list of lemmas. This can cost a linear number of equality
checks if no parts of the proof are reused, but it saves computa-
tions if there are repetitions.

• Both algorithms use iterative deepening; however the depth and
termination conditions are computed differently.

• MESON is implemented in the continuation passing style, so
it can use an additional optimization: caching of the contin-
uations. If any continuations are repeated (at the same depth
level), the subproof is not retried. Otten’s leanCoP uses a direct
Prolog implementation which cannot (without further tricks) do
such repetition elimination. The implementation of leanCoP in
OCaml behaves the same.

• leanCoP may use cut after the lemma step, path step or suc-
cessful branch closing in the extension step. Implementing this
behaviour in OCaml exactly requires multiple Cut exceptions
– one for each depth of the proof.

• The checking for repetitions is done in a coarser way in ME-
SON than in leanCoP, allowing leanCoP to skip some work
done by MESON.

• The search is started differently in leanCoP and in MESON.
leanCoP starts with a conjecture clause, which likely con-
tributes to its relatively good performance on larger problems.



4. Experimental Setup and Results
For the experiments we use HOL Light SVN version 199 (Septem-
ber 2014), Metis 2.3, and leanCoP 2.1. Unless noted otherwise, the
systems are run on a 48-core server with AMD Opteron 6174 2.2
GHz CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU. Each
problem is always assigned one CPU.

The systems are compared on several benchmarks, correspond-
ing to different modes of use: goals coming from HOL Light it-
self, the general set of problems from the TPTP library, and the
large-theory problems extracted from Mizar [36]. The first set of
problems is important; however, since these problems come from
HOL Light itself, they are likely naturally biased towards MESON.
The Mizar problems come from the two MPTP-based benchmarks:
the MPTP Challenge and MPTP2078 [1]. These are large-theory
problems coming from a different ITP, hence they do not introduce
the implicit bias as the HOL Light problems, while coming from a
more relevant application domain than the general TPTP problems.

For HOL Light, we evaluate (with 5 second time limit) on
two sets of problems. First, we look at 872 MESON-solved HOL
Light goals that were made harder by removing splitting. In this
scenario the tactic is applied to a subgoal of a proof, which is
a bit similar to the Judgement-Day [3] evaluation used for Isa-
belle/Sledgehammer, where the goals are however restricted to the
solvable ones. Table 1 shows the results. Second, we evaluate on
the top-level goals (with their dependencies already minimized)
that have been solved with the HOLyHammer system [14], i.e., by
using the strongest available ATPs. This set is important because
tactics such as MESON, Metis and now also leanCoP can be tried
as a first cheap method for reconstructing the proofs found by the
stronger ATPs. The results are shown in Table 2. In both cases, the
OCaml implementation of leanCoP performs best, improving the
MESON’s performance in the first case by about 11%, and improv-
ing on Metis on the second set of problems by about 45%.

Table 3 shows the results of the evaluation on all 7036 FOF
problems coming from TPTP 6.0.0, using 10 second time limit.
Here the difference to Metis is not so significant, probably be-
cause Metis implements ordered paramodulation, which is useful
for many TPTP problems containing equality. The improvement
over MESON is about 17%. Table 4 and Table 5 show the results
on the small (heuristically minimized) and large MPTP Challenge
problems. The best version of the OCaml implementation of lean-
CoP improves by 54% on Metis and by 90% on MESON on the
small problems, and by 88% on Metis and 100% on MESON on
the large problems. Here the goal directedness of leanCoP is prob-
ably the main factor.

Finally, to get a comparison also with the best ATPs on a larger
ITP-oriented benchmark (using different hardware), we have done
a 10s evaluation of several systems on the newer MPTP2078 bench-
mark (used in the 2012 CASC@Turing competition), see Table 6
and Table 7. The difference to Metis and MESON on the small
problems is still quite significant (40% improvement over ME-
SON), while on the large problems the goal-directedness again
shows even more (about 90% improvement). While Vampire’s
(version 2.6) SInE heuristic [7] helps a lot on the larger prob-
lems [38], the difference there between E (1.8) and our version of
leanCoP is not so great as one could imagine given the several or-
ders of magnitude difference in the size of their implementations.

5. Conclusion and Future Work
We have implemented an OCaml version of the leanCoP compact
connection prover, and the reconstruction of its proofs inside HOL
Light. This proof-reconstruction functionality can be also used to
certify in HOL Light an arbitrary TPTP proof produced by lean-
CoP, thus turning leanCoP into one of the few ATPs whose proofs

Prover Theorem (%) Unique

mlleancop-cut-comp 759 (87.04) 2
mlleancop-nocut 759 (87.04) 2
plleancop-cut 752 (86.23) 0
plleancop-nc 751 (86.12) 0
metis-23 708 (81.19) 26
meson 683 (78.32) 4

any 832 (95.41)

Table 1. Core HOL Light MESON calls without splitting (872
goals), 5 s per goal

Prover Theorem (%) Unique

mlleancop-cut-comp 1178 (75.70) 12
mlleancop-nocut 1162 (74.67) 0
meson 1110 (71.33) 39
plleancop-nc 1085 (69.73) 0
plleancop-cut 1084 (69.66) 0
metis-23 814 (52.31) 16

any 1260 (80.97)

Table 2. HOL Light dependencies (1556 goals, 5 s)

Prover Theorem (%) Unique

mlleancop-cut-conj 1669 (23.72) 73
plleancop-cut-conj 1648 (23.42) 21
plleancop-cut 1622 (23.05) 34
mlleancop-cut 1571 (22.32) 9
metis-23 1562 (22.20) 261
meson 1430 (20.32) 28
plleancop-nocut 1358 (19.30) 25
mlleancop-nocut 1158 (16.45) 3

any 2433 (34.57)

Table 3. TPTP (7036 goals with at least one conjecture, 10 s)

Prover Theorem (%) Unique

pllean-cut-conj 103 (40.87302) 2
pllean-cut 99 (39.28571) 8
mlleancop-cut-conj 91 (36.11111) 2
mlleancop-cut 79 (31.34921) 0
mlleancop-nocut 76 (30.15873) 0
pllean-nc 62 (24.60317) 1
metis-23 59 (23.41270) 3
meson-infer 48 (19.04762) 0

any 124 (49.20635)

Table 4. Bushy (small) MPTP Challenge problems (252 in total),
10 s)



Prover Theorem (%) Unique

pllean-cut-conj 61 (24.20635) 5
mlleancop-cut-conj 60 (23.80952) 9
pllean-cut 57 (22.61905) 4
mlleancop-nocut 47 (18.65079) 0
mlleancop-cut 47 (18.65079) 0
metis-23 32 (12.69841) 3
meson-infer 30 (11.90476) 0
pllean-nc 26 (10.31746) 0

any 83 (32.93651)

Table 5. Chainy (large) MPTP Challenge problems (252 in total),
10 s)

Prover Theorem (%)

Vampire 1198 (57.65)
e18 1022 (49.18)
mlleancop-cut-conj 613 (29.49)
pllean-cut-conj 597 (28.72)
metis-23 564 (27.14)
mlleancop-cut 559 (26.90)
pllean-cut 544 (26.17)
pllean-comp7 539 (25.93)
mlleancop-nocut 521 (25.07)
pllean-nc 454 (21.84)
meson-infer 438 (21.07)
any 1277 (61.45)

Table 6. Bushy (small) MPTP2078 problems (2078 in total), 10 s)

Prover Theorem (%)

Vampire 634 (30.51)
e18 317 (15.25)
mlleancop-cut-conj 243 (11.69)
pllean-cut-conj 196 (9.43)
pllean-cut 170 (8.18)
pllean-comp7 159 (7.65)
mlleancop-nocut 150 (7.21)
mlleancop-cut 146 (7.02)
meson-infer 145 (6.97)
metis-23 138 (6.64)
pllean-nc 126 (6.06)
any 693 (33.34)

Table 7. Chainy (large) MPTP2078 problems (2078 in total), 10 s)

enjoy LCF-style verification in one of the safest LCF-based sys-
tems. The performance of the OCaml version on the benchmarks
is comparable to the Prolog version, while it always outperforms
Metis and MESON, sometimes very significantly on the relevant
ITP-related benchmarks.

We provide a HOL Light interface that is identical to the one
offered by MESON, namely we provide two tactics and a rule.
LEANCOP TAC and ASM LEANCOP TAC are given a list of helper
theorems, and then try to solve the given goal together (or the
given goal and assumptions, respectively). The LEANCOP rule,
given a list of helper theorems acts as a conversion, i.e., given
a term statement it tries to prove a theorem whose conclusion
is identical to that of the term. The benchmarks show that these
are likely the strongest single-step proof-reconstructing first-order

tactics available today in any ITP system. The compatibility with
MESON also means that the new tactics can readily strengthen larger
systems like PRocH [11] that attempt to replay more complicated
ATP proofs in HOL Light by multiple calls to such one-step tactics.

Interesting future directions include re-using parts of the OCaml
implementation to develop a reasonably strong internal intuitionis-
tic prover for systems like Coq, based on leanCoP’s intuitionis-
tic cousin ileanCoP [24], possible porting of the code to Standard
ML for ITP systems such as HOL4 and Isabelle and their (upcom-
ing) hammers [4, 29], and also experiments with integrating our
fast OCaml-based learning methods [9, 10, 12, 15] to learn internal
guidance of leanCoP’s inferencing as a replacement for the so far
relatively slow externally provided guidance used in the MaLeCoP
prototype [39].
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[37] J. Urban and J. Vyskočil. Theorem proving in large formal mathe-
matics as an emerging AI field. In M. P. Bonacina and M. E. Stickel,
editors, Automated Reasoning and Mathematics: Essays in Memory
of William McCune, volume 7788 of LNAI, pages 240–257. Springer,
2013. .

[38] J. Urban, K. Hoder, and A. Voronkov. Evaluation of automated
theorem proving on the Mizar Mathematical Library. In ICMS, pages
155–166, 2010.
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