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Abstract

Large formal mathematical knowledge bases en-
code considerable parts of advanced mathematics
and exact science, allowing deep semantic com-
puter assistance and verification of complicated
theories down to the atomic logical rules. An es-
sential part of automated reasoning over such large
theories are methods learning selection of relevant
knowledge from the thousands of proofs in the cor-
pora. Such methods in turn rely on efficiently com-
putable features characterizing the highly struc-
tured and inter-related mathematical statements.

In this work we (i) propose novel semantic features
characterizing the statements in such large seman-
tic knowledge bases, (ii) propose and carry out their
efficient implementation using deductive-Al data-
structures such as substitution trees and discrimina-
tion nets, and (iii) show that they significantly im-
prove the strength of existing knowledge selection
methods and automated reasoning methods over the
large formal knowledge bases. In particular, on a
standard large-theory benchmark we improve the
average predicted rank of a mathematical statement
needed for a proof by 22% in comparison with state
of the art. This allows us to prove 8% more theo-
rems in comparison with state of the art.

1 Introduction: Reasoning in Large Theories

In the conclusion of his seminal paper on Al [Turing, 19501,
Turing suggests two alternative ways how to eventually build
learning (AI) machines: (i) focusing on an abstract activ-
ity like chess, and (ii) focusing on learning through physi-
cal senses. Both these paths have been followed with many
successes, but so far without producing Al competitive in the
most advanced application of human intelligence: scientific
thinking. The approach we follow is to try to learn that from
large bodies of computer-understandable scientific reasoning.

In the last decade, large corpora of complex mathematical
(and scientific) knowledge and reasoning have been encoded

*Supported by the Austrian Science Fund (FWF): P26201.
"Supported by NWO grant nr. 612.001.208.
Supported by the Czech Grant Agency, GACR P103/12/1994.

Josef Urban'
Radboud University

JiFi Vyskoéil*
Czech Technical University in Prague

in a fully computer-understandable form. In such encodings,
the mathematical knowledge consisting of definitions, the-
orems, proofs and theories is explained in complete detail,
allowing the computers to fully understand the semantics of
such complicated objects and to verify correctness of the long
reasoning chains with respect to the formal inference rules of
the chosen logical framework (set theory, type theory, etc.).

Recent highlights of this development include the formal
encoding and verification of two graduate textbooks leading
to the proof of the Odd Order theorem (“‘every finite group of
odd order is solvable”) [Gonthier et al., 2013], the formal ver-
ification of the 300-page book leading the proof of the Kepler
conjecture [Hales, 2012], and verification of the seL.4 operat-
ing system microkernel [Klein et al., 2010].

This means that larger and larger parts of mathematics and
mathematical thinking can now be analyzed, explored, as-
sisted, and further developed by computers in ways that are
impossible in domains where complete semantics is missing.
The computers can not only use inductive Al methods (such
as learning) to extract ideas from the large corpora, but they
can also combine them with deductive Al tools such as au-
tomated theorem provers (ATPs) to attempt formal proofs of
new ideas, thus further growing the body of verified scientific
knowledge (which can then again be further learned from, and
so on ad infinitum). In fact, this has started to happen recently.
Large formal corpora built in expressive logics of interactive
theorem provers (ITPs) such as Isabelle [Nipkow and Klein,
2014], Mizar [Grabowski et al., 2010] and HOL Light [Harri-
son, 1996] have been translated to first-order logic, and ATPs
such as Vampire [Kovdcs and Voronkov, 20131, E [Schulz,
2002] and Z3 [de Moura and Bjgrner, 2008] are used to prove
more and more complicated lemmas in the large theories.

Since existing ATP calculi perform poorly when given
thousands to millions of facts, a crucial component that
makes such ATP assistance practical are heuristic and learn-
ing Al methods that select a small number of most relevant
facts for proving a given lemma [Kiihlwein er al., 2012].
This means that we want to characterize all statements in
the knowledge bases by mathematically relevant features that
will to a large extent allow to pre-compute the most promising
combinations of formulas for proving a given conjecture. In
some sense, we are thus trying to make a high-level approxi-
mation of the proof-search problem, and to restrict the fragile
local decisions taken by the underlying ATP search by such



high-level knowledge about what makes sense globally and
what is likely a blind alley.! The question is how to design
efficient features that will make such global approximative
methods as good as possible. This is the subject of this paper.

Contributions

1. Semantic features for characterizing mathematical
statements. We propose matching, abstraction and unifica-
tion features and their combinations as a suitable means for
characterizing statements in large mathematical corpora writ-
ten in expressive logical frameworks (Section 4).

2. Fast semantic feature-extraction mechanisms. The cru-
cial idea making the use of semantic features feasible is that
such features often correspond to the nodes of fast deductive-
Al data-structures such as substitution trees and discrimina-
tion nets. We implement and optimize such feature extraction
mechanisms and demonstrate that they scale very well even
on the largest formal corpora, achieving extraction times be-
low 100 seconds for over hundred thousand formulas (Sec-
tions 5 and 6).

3. Improved Premise-Selection Performance. We evaluate
the performance of the semantic features when selecting suit-
able premises for proofs and compare them to the old features
using standard machine-learning metrics such as Recall, Pre-
cision, AUC, etc. The newly proposed features improve the
average predicted rank of a mathematical statement needed
for a proof by 22% in comparison with the best old features.
4. Improved Theorem-Proving Performance. We
compare the overall performance of the whole feature-
characterization/learning/theorem-proving stack for the new
and old features and their combinations. The improved
machine-learning performance translates to 8% more the-
orems proved automatically over the standard MPTP2078
large-theory benchmark, getting close to the ATP perfor-
mance obtained by using human-selected facts (Section 7).

2 The Large-Theory Setting:
Premise Selection and Learning from Proofs

The object of our interest is a large mathematical corpus, un-
derstood as a set I' of formally stated theorems, each with
zero or more proofs.> Examples of such corpora are the
Mizar Mathematical Library (MML),? the Isabelle Archive
of Formal Proofs (AFP),* and the Flyspeck (Formal Proof
of the Kepler Conjecture) development® done in HOL Light.
Such large corpora contain tens to hundreds of thousands of
proved statements. To be able to do many ATP experiments,®
smaller benchmarks have been defined as meaningful subsets

!Obviously, when developed, such guiding methods can be also
tried directly inside the ATP calculi. See for example the hints
method [Veroff, 19961, a similar work done for E [Schulz, 20001,
and the MaLeCoP system [Urban et al., 2011].

>We treat axioms and definitions as theorems with empty proof.
In general, a theorem can have several alternative proofs.

*http://mizar.org/

*nttp://afp.sourceforge.net/

Shttps://code.google.com/p/flyspeck/

8 A large number of ATP experiments is expensive. The ATPs are
usually run with time limits between 1 second and 300 seconds.
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Figure 1: Theorem proving over large formal corpora. The cor-
pus contains many lemmas that can be used to prove a new conjec-
ture (user query). The corpus comes with many formal proofs that
can be mined, i.e., used to learn which lemmas (premises) are most
relevant for proving particular conjectures (queries). The strength
of the learning methods depends on designing mathematically rele-
vant features faithfully characterizing the statements. When a new
conjecture is attempted, the learners trained on the corpus rank the
available lemmas according to their estimated relevance for the con-
jecture, and pass a small number (cutoff segment) of the best-ranked
lemmas to ATP systems, which then attempt a proof.

Relevant Lemmas
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of the large corpora. Here we rely on the MPTP2078 bench-
mark [Alama ef al., 2014] used in the 2012 CASC@Turing
ATP competition [Sutcliffe, 2013] of the Alan Turing Cente-
nary Conference.’

In this setting, the task that we are interested in is to auto-
matically prove a new conjecture given all the available theo-
rems. Because the performance of existing ATP methods de-
grades considerably [Urban et al., 2010; Hoder and Voronkov,
2011] when given large numbers of redundant axioms, our re-
search problem is to estimate the facts that are most likely to
be useful in the final proof. Following [Alama et al., 2014]
we define:

Definition 1 (Premise selection problem). Given an ATP A,
a corpus I' and a conjecture ¢, predict those facts from I that
are likely to be useful when A searches for a proof of c.

The currently strongest premise selection methods use ma-
chine learning on the proofs of theorems in the corpus, such
as naive Bayes, distance-weighted k-nearest neighbor, ker-
nel methods, and basic ensemble methods [Kiihlwein et al.,
2012; Kiihlwein et al., 2013; Kaliszyk and Urban, 2013b;
2013a; 2014]. Tt is possible that a particular fact is useful
during a proof search without being used in the final formal
proof object. Such cases are however rare and hard to de-
tect efficiently. Therefore the relation of being useful during
the proof search is usually approximated by being used in the
final proof. Additionally, the learning setting is usually sim-
plified by choosing at most one (“best”) proof for each the-
orem ¢ [Kuehlwein and Urban, 20131, and representing the
proof of ¢ as a set of theorems P(c) used in the proof. The
query and update speed is important: in the ITP setting there
are a number of alternative (usually less automated) theorem-
proving techniques that can be used if full automation is weak
or slow. Likewise, the learning systems should quickly digest
and adapt to new theorems and proofs. The overall large-
theory setting is shown in Figure 1.

"http://www.turingl00.manchester.ac.uk/



Assuming a method F' for extracting mathematically rel-
evant features characterizing the theorems, this setting leads
to the following multi-label learning task: Each proved the-
orem ¢ € I produces a training example consisting of F'(c)
and P(c), i.e., given the features F'(¢) we want the trained
predictor to recommend the labels P(c) . The learning meth-
ods mentioned above are typically used as rankers: given
the features of a new conjecture ¢, the highest ranked (using
heuristically determined thresholds) labels for F'(c) are given
to an ATP, which then attempts a proof. To maximize the ATP
performance, usually a portfolio of several most complemen-
tary learning methods, feature characterizations and ranking
thresholds is used, and the (typically exponentially behaving)
ATP is run in a strategy-scheduling mode [Tammet, 1997],
i.e., with several shorter time limits over such complemen-
tary predictions rather than using the whole time limit for the
most promising method.

3 Previously Introduced Features

The most commonly used features for characterizing math-
ematical statements in large theories are just their sym-
bols [Hoder and Voronkov, 2011; Meng and Paulson,
2009]. In addition to that, large-theory ATP systems like
HOL(y)Hammer [Kaliszyk and Urban, 2014], Sledgeham-
mer [Kiihlwein et al., 2013] and MalLARea [Urban et al.,
2008] have so far used features that represent:
e Types, i.e., type constants, type constructors, and type
classes [Kaliszyk and Urban, 2014]
Term walks of length 2 [Kiihlwein et al., 2013]
Subterms [Urban et al., 2008]
Validity in a pool of finite models [Urban et al., 2008]
Meta-information such as the theory name and presence
in various databases [Kiihlwein ef al., 2013]
The normalizations for term and type variables that have
been tried so far include:
e Replacing variables by their (variable-normalized)
types [Kaliszyk and Urban, 2014]
e Using de Bruijn indices [Urban er al., 2008]
e Renaming all variables to a unique common vari-
able [Urban et al., 2008]
e Using the original variable names (this is useful when
the same variable names are used for similar purposes)
Except from validity in finite models, all these features
can be extracted in a linear time and are thus easy to use.
Since their distribution may be quite uneven, normalizing
them by methods like TF-IDF® is relatively important be-
fore handing them over to fast-but-simple learners such as
distance-weighted k-NN (used here for evaluation). Since the
MPTP2078 is untyped and already comes with variables re-
named to de Bruijn indices, we do not use the type enhance-
ments and original variable names here. Validity in a large
pool of finite models requires finding a diverse set of models
in which the formulas are then evaluated. Even though such
features may approximate the semantics really well, they are
in general much more expensive to compute than the rest, and
for that reason we also avoid them here.

8Readers might wonder about latent semantics [Deerwester et
al., 1990]. So far this does not raise the performance significantly.

4 New Semantic Features for Reasoning

A formal proof is usually defined as a sequence (resp. DAG)
of formulas where each of them is either an axiom or is de-
rived from earlier formulas (resp. DAG parents) by an appli-
cation of an inference rule. In various ITP and ATP systems
such inference rules differ, however a crucial and very fre-
quent idiom of (not just) mathematical reasoning is the rule
of Universal Instantiation, allowing to instantiate a general
statement in a concrete context.

Scenario 1. To give the first simple example, the com-
mutativity of addition (CA): X +Y =Y 4 X may be ap-
plied to prove that (L1): 1 +2 = 2 4 1, by matching 1
with X and 2 with Y. Assume that somebody already proved
1+2=2+1byreferringto X +Y =Y + X, and a new
conjecture to prove is (L2): 3 + 7 = 7 4 3. When using only
the features introduced previously (see Section 3), the feature
overlap between these two instances will be the same as with
(L3): 5+ 8 = 4 + 9 (which might have been proved very
differently). In other words, none of the features captures the
fact that L1 and L2 are closer to each other in the instantiation
lattice than to L3, and thus have a higher chance of sharing a
common proof pattern.

A complete way how to remedy this would be to use all
(variable-normalized) generalizations of a term as its features.
However, the lattice of all generalizations of a term is typi-
cally exponentially large wrt. the size of the term (see Figure
2). Fortunately, in this simple scenario, we can replace such
full enumeration of generalizations of a given term ¢ with a
much smaller set: the set Genr(t) of all terms in our corpus
I" that generalize t. Indeed, since CA was used to prove L1, it
must be in the corpus I'. Therefore CA itself is in Genrp(L1)
and also in Genp(L2), introducing a new common matching
feature for L1 and L2, but not for L3. Extraction of all such
matching features for large corpora can be efficiently imple-
mented using ATP indexing datastructures called discrimina-
tion trees (D'IT), which we briefly discuss in Section 5.

Scenario 2. Now imagine a more complicated (but still
quite common) case: L1 is in the corpus, but has a more com-
plicated proof, and CA is not in the corpus (yet). For example,
1 and 2 are defined as von Neuman ordinals, where addition
is the standard ordinal addition which is not commutative in
general. Since CA is not in I, it is neither in its discrimina-
tion tree, and L1 and L2 will not get the common matching
feature corresponding to CA. But it is still quite likely that the
proof of L1 is relevant also for proving L2: if we are lucky,
the proof is sufficiently general and actually derives the com-
mutativity of ordinal addition for finite ordinals behind the
scenes. This means that quite often the common matching
feature is still interesting, even if not explicitly present in I".

One might again first try to use brute force and attempt
to generate all common generalizations for all pairs of terms
in I'. Again, see Figure 2 for an example when such lattice
is exponentially large. It is however no longer possible to
rely just on the terms that already are in I' as in the previous
case, and some method for generating some common match-
ing features seems needed in this case. We have proposed
and implemented two kinds of heuristic solutions. The first
inserts for each term ¢ a small number of more general terms



Figure 2: The lattice of least general generalization of four specific
ground terms. To calculate the number F' of such least general gen-
eralizations for some n, we have to count all nodes in every layer
using the following equation (counting from the bottom layer to the

top): F(n) = (3) + (3) +---+ (") +(2) = 3 (3) from which

we get by the Binomial theorem: F'(n) = 2" — n — 1. So many
generalization cannot be effectively extracted and used as features
for more than a hundred of such terms.

into DT, typically by generalizing the term only linearly-
many times, see Section 5 for details. Some of such gener-
alization methods actually corresponds to the internal nodes
of DTr. The second solution collects such (differently opti-
mized) generalization nodes explicitly, using another kind of
efficient ATP indexing datastructure called substitution tree
(STr), described in more detail in Section 6 (see Figure 4).
This means that just by building STt, we naturally obtain for
each term ¢ in I" a set of (some) generalizing features of ¢: the
set ST{Ame(t) of the ancestors of ¢ in STr. Even the substi-
tution tree however cannot (reasonably) guarantee that every
two terms in I' have there their least general generalization
(Igg). Such requirement would again result in exponential
size for examples such as Figure 2.

Scenario 3. Finally, what substitution trees can guarantee
(and are usually used for in ATP) is efficient retrieval of all
unifying terms. The easiest semantic motivation for collect-
ing such features comes from the resolution rule, which is the
basis of many ATP procedures. Given formulas p(X,a) and
p(a,X) == False, the resolution rule derives F'alse by
unifying p(X, a) and p(a, X). Note that the two unifying lit-
erals do not match in any direction, however they will always
have a nontrivial lgg.

5 Discrimination Trees for Matching and
Generalization Features

Selection of candidate clause-heads that unify, match, or sub-
sume a given goal is a central operation in automated deduc-
tion. In order to perform such selection efficiently, all major
theorem provers use term indexing techniques [Robinson and
Voronkov, 2001]. Discrimination trees, as first implemented
by [Greenbaum, 1986], index terms in a trie, which keeps sin-
gle path-strings at each of the indexed terms (Figure 3 taken
from [Robinson and Voronkov, 2001]). A discrimination tree
can be constructed efficiently, by inserting each term in the
traversal preorder. Since discrimination trees are based on
path indexing, retrieval of generalizations is straightforward,

Figure 3: Discrimination Tree containing the terms f(g(a, *), ¢),

f(g(x,0), %), f(g(a,b),a), f(g(x,¢),b), and f(x, *).

but retrieval of unifiable terms is more involved.

To address Scenario 1, we create a discrimination net with
all the available terms in the corpus inserted in the net. Effi-
cient implementation is needed, since the largest mathemati-
cal corpora contain millions of terms. The result of a lookup
then corresponds to first order matching. This means that all
terms in the corpus that are more general than the queried one
are returned. In order to extend this to generalizations that are
shared between terms, but not yet in the net (Scenario 2), we
do heuristic generalizations. This consists of selecting a sub-
term of the term and replacing it by a variable. We consider
several strategies for selecting the subterms to generalize:

e repeated right-most inner-most

e repeated left-most inner-most

e all positions

e combinations of above (quadratic in the size of the term),

including combination of the previous one with itself.

To avoid redundant generation of generalizations of terms
that are already in the net, the generation of subterms and
their right-most inner-most generalizations is done together.
We first iterate over the term top-down, and for each subterm
level we try to insert its generalizations iteratively. If a par-
ticular generalization is already present in the net, we do not
compute any further generalizations, but instead proceed to
the next subterm. This optimization brings the sum of feature
extraction times for all formulas below 100s for the largest
formal mathematical corpus available (MML1147) contain-
ing millions of terms, see Section 7 (Table 2).

6 Substitution Trees for Unification and
Generalization Features

Substitution trees [Graf, 1995] are a term indexing technique
which is based on unifiability checking, rather than simple
equality tests. In order to do so, substitution trees keep sub-
stitutions in the nodes. This allows for substitution trees to
be smaller than other indexing techniques. Since the traver-
sal order is not fixed, substitution trees need to compute the
common generalizations of terms during insertion.

Our implementation is using the so called linear substi-
tution trees in the same way as described in [Graf, 1996;
Robinson and Voronkov, 2001]. The retrieval from a sub-
stitution tree may require more backtracking steps than in



[ROOT=subset(B,C)]

Figure 4: A substitution tree of the terms: subset(A,B), subset(a,b),
subset(a,c), subset(C,C), subset(a,a). For term subset(a,c) then there
is a path containing the following generalized terms (from the root
to the leaf): ROOT, subset(B,C), subset(a,E), subset(a,c).

Name Description

SYM Constant and function symbols
TRMg Subterms, all variables unified
TRM o Subterms, de Bruijn normalized

MAT & Matching terms, no generalizations
MAT,. Repeated gener. of rightmost innermost constant
MAT; Repeated gener. of leftmost innermost constant
MAT1 Gener. of each application argument
MAT2 Gener. of each application argument pair
MATy Union of all above generalizations

PAT Walks in the term graph

ABS Substitution tree nodes

UNI All unifying terms

Table 1: Summary of all the features used.

other indexing techniques, but the retrieval of unifiable terms
is straightforward: it amounts to following all the paths that
contain substitutions compatible with the given term. This
is simpler than for example implementing unification on dis-
crimination trees [Hoder and Voronkov, 2009].

To get interesting generalizations as features of a term ¢
that is already inserted in the tree, we extract a path from the
root to the leaf. Each node on such path represents general-
ization of the term ¢ (Figure 4).

7 Experimental Analysis

Benchmark Data and Evaluation Scenario

The MPTP2078 benchmark consists of 2078 related large-
theory problems (conjectures) extracted from the Mizar li-
brary. These problems contain 4494 unique formulas used
as conjectures and axioms. The formulas and problems have
a natural linear ordering derived from their (chronological)
order of appearance in the Mizar library. As usual in such
large-theory evaluations [Kaliszyk and Urban, 2014], we em-
ulate the scenario of using AI/ATP assistance in interactive
theorem proving: For each conjecture C' we assume that all
formulas stated earlier in the development can be used to
prove C. This scenario results in large ATP problems that
have 1877 axioms on average. Such problems are typically
difficult to solve without techniques for pre-selection of the
most relevant axioms (cf. Table 4).

For each conjecture C' we also use its ITP (human-written)
proof to extract only the premises needed for the ITP proof of
C,ie., P(C).9 This proof information is used in three ways:

°In general, we can also use ATP proofs of the previous theorems

(i) to train the machine learners on all previous proofs for
each conjecture C, (ii) to compare the premises predicted by
such trained machine learners with the actual proof premises
P(C), and (iii) to construct the small ATP problem for C,
which (unlike the large version) contains as axioms only the
(few) premises P(C') — and in this way, the ATP is very sig-
nificantly advised by the human author of the ITP proof.

Speed and Machine-Learning Performance

The features that we evaluate are summarized in Table 1. We
limit the evaluation to two fast learning methods: distance-
weighted k£-NN and naive Bayes, however the latter performs
significantly worse. Table 2 shows the numbers of features
obtained on MPTP2078, the feature-extraction and learning
speeds on such MPTP2078 features. To see how the feature
extraction process scales, we have also tested the methods
on the whole MML library (version 1147) containing 146500
formulas. Note that practically all the extraction methods
scale well to this corpus (we did not run UNI, due to its size),
typically taking less than 100 seconds to process the whole
corpus. This means that computing the features of a new
conjecture which is being proved over the (already memory-
loaded) corpus will take only miliseconds. Such times are
negligible in comparison with standard ATP times (seconds).

Table 3 shows the standard machine learning (k-NN) eval-
uation, comparing the actual (needed) ITP proof premises of
each conjecture C' (i.e., P(C')) with the predictions of the ma-
chine learners trained on all ITP proofs preceding C'. The av-
erage rank of a needed premise on MPTP2078 decreases from
53.03 with the best old feature method TRM( (formulas char-
acterized by all their subterms with all variables renamed to
just one) to 43.43 with the best new method MAT (using the
set of all matching terms as features, without any generaliza-
tions). This is a large improvement of the standard machine-
learning prediction: thanks to better features, the ranking of
needed premises is improved by 22.1%. The best combina-
tion of features (sym|rmo|matg [ans) improves this to 41.97. This
is a big difference for the ATP search, evaluated next.

Method 100Cover Prec Recall AUC Rank
MAT & 0.918 17.711 23412 0.9561 4343
MAT; 0918 17.711 234.69  0.9557 43.83
MAT; 0.918 17.702  235.04 0.9555 43091
MAT,. 0.917 17.7 234.31 0.9557 43.84
MAT2 0.917 17.708 23537 09554  44.06

ABS 0.917 17.686  237.89 09542  44.11

PAT 0.916 17.64 235.2 0.9557  44.13

MATy 0.916 17.672  236.31 0.9551 444

TRMg 0.903 17.425 28146 09447  53.03

UNI 0.891 16.822 257.1 0.9465  51.83

SYM 0.884 17.137 326,67 09325 63.21

TRM4, 0.861 16.801 378.9 09156  75.52
SYM|TRMq |MAT & | ABS 0.922 17.737 227.7 0.9587  41.97

Table 3: Machine Learning evaluation: 100Cover = average ratio of
the proof premises present in the first 100 advised premises; Prec =
precision; Recall = average number of premises needed to recall the
whole training set; AUC = area under ROC curve; Rank = average
rank of a proof premise. The methods are sorted by their 100Cover.

alongside with their ITP proofs for the learning, however we will not
complicate the evaluation setting here.



Method Speed (sec) Number of features Learning and prediction (sec)
MPTP2078  MMLI1147 unique knn naive Bayes
SYM 0.25 10.52 30996 2603 0.96 11.80
TRM ¢ 0.11 12.04 42685 10633 0.96 24.55
TRMg 0.13 13.31 35446 6621 1.01 16.70
MAT & 0.71 38.45 57565 7334 1.49 24.06
MAT,. 1.09 71.21 78594 20455 1.51 39.01
MAT; 1.22 113.19 75868 17592 1.50 37.47
MAT; 1.16 98.32 82052 23635 1.55 41.13
MATo 5.32 4035.34 158936 80053 1.65 96.41
MATy 6.31 4062.83 180825 95178 1.71 112.66
PAT 0.34 64.65 118838 16226 2.19 52.56
ABS 11 10800 56691 6360 1.67 23.40
UNI 25 N/A 1543161 6462 21.33 516.24

Table 2: Feature numbers and learning speed on MPTP2078, and extraction speed on MPTP2078 and MML1147

Evaluation of the Theorem-Proving Performance

First we measure the performance of unaided ATPs running
for 60 seconds on the large and small versions of the prob-
lems, see Table 4. While Vampire outperforms E, particu-
larly on the large problems, we choose E for the complete
evaluation which includes premise selection, because the ma-
chine learning advice will not interact with the SInE selection
heuristics [Hoder and Voronkov, 2011] used by Vampire very
frequently on the large problems.

The complete evaluation then proceeds as follows. For
each of the best new and old premise-selection methods we
create six versions of ATP problems, by taking the top-
ranking segments of 8, 16, 32, 64, 128, and 256 predicted
premises, and we run E on such problems for 10 seconds.
Each problem thus takes again at most 60 seconds altogether,
allowing us to compare the results also with the 60-second un-
aided ATP runs on the large and small problems. Table 5 then
compares the ATP performance (measured as a union of the
six slices), also adding the best-performing combination of
the old and new features. The best new method MAT solves
80 problems (8%) more than the best old method TRM(, and
the best-performing combination solves 103 (10%) problems
more. This is getting close to the performance of E on the
human-advised premises (1210 in Table 4). The behaviour
of the ATP with respect to the number of premises used is
depicted in Figure 5, showing even higher improvements.

ATP E1.8 Vampire 2.6 73
Problem set  large  small  large small  small
Proved 573 1210 907 1319 1065

Table 4: Unaided ATPs on the large and small problems.

8 Conclusion

We have shown that even when dealing with the largest for-
mal corpora, one can have efficient features that encode im-
portant semantic relations and thus make the selection of rel-
evant knowledge much more precise. The newly introduced
semantic features significantly improve selection of relevant
knowledge from large formal mathematical corpora.

This improvement is 22% in terms of the average predicted
rank, while the combination of the new and old features helps

Method Proved (%) Theorems
MAT & 54.379 1130
MAT,- 54.331 1129
MAT; 54.283 1128

PAT 54.235 1127

MAT 53.994 1122

MAT1 53.994 1122

MAT2o 53.898 1120

ABS 53.802 1118

TRMg 50.529 1050

UNI 50.241 1044

SYM 48.027 998

TRMq 43.888 912
SYM|TRMq |MAT g | ABS 55.486 1153

Table 5: E 1.8 prover on the large problems filtered by learning-
based premise selection using different features. The methods are
sorted by the number of theorems proved.
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Figure 5: ATP (E 1.8) performance (in % of all large problems) for
selected premise numbers and features.

to increase the intelligence of the advising algorithms to a
level that is nearly equal to that of the human formalizers
when comparing the final ATP performance. In particular,
the best new method MATg proves 8% more theorems auto-
matically than the best old method. The cost of manually pro-
ducing these proofs is very high: The Flyspeck project took
about 25 person-years and the Mizar library about 100-150
person-years. So the reported improvements just for these
two corpora translate to 2 and 8—12 person-years respectively.

There is a large number of directions for future work,
including employing such semantic features also for in-
ternal guidance in systems like MalLeCoP and in res-
olution/superposition ATPs, re-using their efficient term-
indexing datastructures.
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