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Abstract The success rates of automated theorem provers in large the-
ories highly depend on the choice of given facts. Premise selection is the
task of choosing a subset of given facts, which is most likely to lead to
a successful automated deduction proof of a given conjecture. Premise
selection can be viewed as a multi-label classification problem, where
machine learning from related proofs turns out to currently be the most
successful method. Random forests are a machine learning technique
known to perform especially well on large datasets. In this paper, we
evaluate random forest algorithms for premise selection. To deal with
the specifics of automated reasoning, we propose a number of extensions
to random forests, such as incremental learning, multi-path querying,
depth weighting, feature IDF (inverse document frequency), and integ-
ration of secondary classifiers in the tree leaves. With these extensions,
we improve on the k-nearest neighbour algorithm both in terms of pre-
diction quality and ATP performance.

1 Introduction

An increasing number of interactive theorem provers (ITPs) provide proof auto-
mation based on translation to automated theorem provers (ATPs): A user given
conjecture together with a set of known facts in a more complicated logic of the
ITP is translated to the logic of an ATP. If a proof is found by the ATP, it can be
used to prove the conjecture in the ITP either by providing a precise small set of
facts sufficient to prove the conjecture or the ATP proof can be used to recreate
a skeleton of an ITP proof. To increase the success rate of the procedure, it is
useful to identify a subset of theorems1 that is most likely to produce a proof.
This process is called premise selection (or relevance filtering) and is used in
most ATP translation tools [AHK+14], e.g. Sledgehammer/MaSh [KBKU13] for
Isabelle/HOL [NPW02], or HOL(y)Hammer [KU15] for HOL Light [Har96], or
MizAR [KU13a] for Mizar [NK09].

Premise selection is also used in ATPs, for example the Sumo Inference En-
gine (SInE) [HV11] improves the prediction quality of the Vampire theorem
prover [KV13] when working with large theories and its algorithm has also been
implemented as a part of E-Prover [Sch13]. Nonetheless, as the complexity of
1 As in premise selection we do not distinguish between axioms and lemmas, we de-
note their union as theorems. Furthermore, we denote the theorems used in a proof
attempt as premises.
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the translations to ATP highly depends on the lemmas to be translated, often
only a subset of the lemmas is translated: For example in higher-order logic, if a
constant f is always used with the same arity, e.g. f(a, b) and f(c, a), it can be
directly translated as FOL function f(x, y). However, if f appears with different
arities, e.g. in f(a) and f(a, b), f cannot be translated as FOL function, and
apply functors are necessary. Similarly, if a polymorphic constant only appears
fully instantiated, its translation can be a FOL constant rather than a FOL
function. Furthermore, the success rates of the ATPs depend significantly on the
translation applied [BBP11], so avoiding unnecessary lemmas can shorten proof
time by a better than linear factor. Premise selection for automated reasoning
in ITPs is also different from that in ATPs due to a large knowledge base of pre-
viously proven theorems. The dependencies extracted both from ITP and ATP
proofs can be used to further enhance premise selection.

Many algorithms used for premise selection stem from machine learning. To
the best of our knowledge, one popular machine learning algorithm not yet tried
in premise selection are random forests. In this paper we evaluate offline and
online random forests for premise selection and propose a number of extensions
to random forests that improve final ATP performance. Specifically we:

– investigate offline [AGPV13] and online [SLS+09] random forests for premise
selection,

– improve an offline random forest algorithm with incremental learning,
– add multi-path querying and depth weighting to improve multi-label output,
– integrate k-NN in the leaves of the random forest trees,
– evaluate the proposed extensions experimentally, confirming that random

forests offer better prediction quality than previously used algorithms, and
more theorems can be proven automatically by the ATPs.

Related work The Meng-Paulson relevance filter (MePo) [MP06] integrated in
Isabelle/HOL as part of Sledgehammer was one of the first premise selectors for
ITPs. It is an iterative algorithm, which counts function symbols in clauses and
compares them to the function symbols in the conjecture to prove. In contrast
to many other premise selectors, MePo does not consider the dependencies used
to prove similar theorems.

Naive Bayes as implemented by the SNoW framework [CCRR99] was the first
machine learning algorithm used in an automated reasoning loop, and thanks
to dependencies, the prediction quality improved upon syntactic tools [Urb04].
Simple Perceptron networks have also been evaluated for HOL(y)Hammer pre-
dictions [KU14], and their results are weak but complementary to other methods.

Machine learning algorithms such as k-nearest neighbours [ZZ05] and Na-
ive Bayes were integrated into Sledgehammer as part of MaSh (Machine learn-
ing for Sledgehammer) [KBKU13], significantly improving ATP performance on
the translated problems. The single most powerful method used for premise se-
lection in HOL(y)Hammer, MizAR, and Sledgehammer/MaSh is a customized
implementation of k-NN [KU13b]. Stronger machine-learning methods that use
kernel-based multi-output ranking (MOR [AHK+14] and MOR-CG [Kü14]) were
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Figure 1: Excerpt from a decision tree trained on the Isabelle dataset. Leaf nodes
have unique identifiers t[yn]*, which encode their position in the tree. The
branch node with feature even(plus) has a positive leaf node with four the-
orems, namely even_sum, odd_plus_odd (two times), and odd_plus_even – all
having features plus and even(plus). The theorem plus_int_code_3 has fea-
tures plus and plus(Pos), but neither even(plus) nor plus(Neg)(Pos).

found to perform better, but were too slow to be of practical use for premise
selection in large theories so far.

Decision trees are another machine learning method that can be used for
premise selection: A binary decision tree is either a leaf L(S) with data S or a
branch B(l, f, r) with a criterion (also called feature) f and two subtrees l and
r. Querying a branch B(l, f, r) involves querying l if the criterion f is fulfilled,
otherwise querying r. Querying a leaf L(S) returns S. A part of an example tree
used in premise selection is shown in figure 1: Here, a criterion is the presence
of certain symbols in a theorem, such as plus, and the data in the leaves are
theorems that are relevant if the tree path to them corresponds to the symbols
of the conjecture we seek to prove. We explain building and querying of decision
trees in more detail in sections 3 and 4.

Random forests [Bre01] are a family of bagging algorithms [Bre96] known for
fast prediction speed and high prediction quality for many domains [CNm06].
Many different versions of random forests [AGPV13,Bre96,LRT14,SLS+09] have
been proposed. In general, a random forest chooses random subsets of data to
build independent decision trees, whose combined predictions form the predic-
tion of the forest. Random forests are used in applications where large amounts
of data needs to be classified in a short time, such as the automated proposal
of advertisement keywords for web pages [AGPV13] or prediction of object po-
sitions in real-time computer graphics [SLS+09].



2 Premise Selection

The goal of premise selection (sometimes also referred to as relevance filtering)
is: Given a set of theorems T (i.e. a theorem corpus) and a conjecture c, find
a set of premises P ⊆ T such that an ATP is likely to find a proof of P ` c
[AHK+14].

To find relevant premises, one can use information from previous proofs which
premises were used to prove conjectures. We found that the following informal
assumptions can be used to build fairly accurate premise selectors, when theor-
ems are suitably characterised by features:

– Theorems sharing many features or rare features are similar.
– Theorems are likely to have similar theorems as premises.
– Similar theorems are likely to have similar premises.
– The fewer premises a theorem has, the more important they are.

The above assumptions can be encoded as a multi-label classification problem in
machine learning. First we encode a given theorem corpus T as machine learning
input: Every proven theorem s ∈ T gives rise to a training sample 〈s, ϕ(s), λ(s)〉,
which consists of the theorem s, the set of features ϕ(s) and the set of labels λ(s).
The labels are the premises that were used to prove s.

The features ϕ(s) are a characterisation of a theorem s. For example we
can choose to characterise theorems by the constants and types present in their
statements. The features of a set of samples S are ϕ(S) :=

⋃
s∈S ϕ(s). We define

those samples of S having or not having a certain feature f as

Sf := {s | f ∈ ϕ(s)} ,
S¬f := S\Sf .

Example 1. The sample corresponding to the HOL Light theorem ADD_SYM stat-
ing ` ∀mn.m+ n = n+m is 〈ADD_SYM, ϕ(ADD_SYM), λ(ADD_SYM)〉 with:

ϕ(ADD_SYM) = {+,=,∀, num, bool}
λ(ADD_SYM) = {ADD_CLAUSES,ADD,ADD_SUC,REFL_CLAUSE,FORALL_SIMP,num_INDUCTION}

Samples encode the relationship between features and labels, i.e. which fea-
tures occur in conjunction with which labels, both of which can be represented
internally as sparse vectors. With this representation, we can view premise se-
lection as an instance of a multi-label classification problem [TK07].

Definition 1 (Multi-label classifier). Given a set of samples S, a multi-label
classifier trained on S is a function r that takes a set of features ϕ and returns
a list of labels [l1, . . . , ln] sorted by decreasing relevance for ϕ.

Using multi-label classification, we can obtain suitable premises from a set
of theorems S for a conjecture c as follows:

1. Obtain a multi-label classifier r for S.
2. Compute ϕ(c), the features of the conjecture.
3. Return r(ϕ(c)), the list of labels predicted by the classifier.



2.1 Quality measures

To evaluate the quality of predicted premises, we can compare them to the
actual premises from our training samples. We first introduce a notation: Given a
sequence of distinct elements X = [x1, . . . , xn], we denote Xe

i = [xi, xi+1 . . . , xe].
Furthermore, when it is clear from the context, we treat sequences as sets, where
the set elements are the elements of the sequence.

The first quality measure is n-Precision, which is similar to Precision [Sor10],
but considers only the first n predictions. It computes the percentage of premises
from the training sample appearing among the first n predicted premises, which
corresponds to our passing only a fixed maximal number of premises to ATPs.
If not stated otherwise, we use 100-Precision in our evaluations.

Definition 2 (n-Precision). n-Precision for a sequence of predictions P and
a set of labels L is

Precn(P,L) =
|L ∩ Pn1 |
|L|

.

The second measure, AUC, models the probability that for a randomly drawn
label l ∈ L and a randomly drawn labelm /∈ L, l appears in the predictions before
m.

Definition 3 (AUC [Faw04]). Given a sequence of predictions P and a set of
labels L, the area under ROC curve (AUC) for the predictions is

AUC(P,L) =

{∑|P |
n=1 |L∩P

n
1 |

|L|·|P\L| if |L| · |P\L| > 0

1 if |L| · |P\L| = 0.

2.2 Evaluation

We now explain how to evaluate predictor performance on a set of samples.
For this, we define a subset of the samples as evaluation samples, for which
the classifier will predict premises by iterating over all samples in order and
predicting λ(e) for each evaluation sample e before learning e, as illustrated in
figure 2. We can evaluate the quality of the predictions in two ways: First, they
can be compared to the actual labels of the evaluation samples, using the a
quality measure from section 2.1. Second, the predictions can be translated to
an ATP problem and given to an automated prover.

2.3 Used datasets

We use the Mizar MPTP2078 dataset [AHK+14] updated to Mizar 8.1.02 [KU13a]
using α-normalised subterms as features, the Isabelle 2014 theory HOL/Probability
together with its dependencies [KBKU13], and the core library of HOL Light
SVN version 193 [KU15]. The statistics are shown in table 1.



e1 e2 . . .

1. learn

2. predict λ(e1)
for ϕ(e1)

3. learn

4. predict λ(e2)
for ϕ(e2)

. . .

Figure 2: In an evaluation, an arbitrary number of samples is learned in a white
block until an evaluation sample e is encountered, for which labels λ(e) are
predicted.

Dataset Samples Evaluation
samples

Features Avg. labels
per sample

Avg. features
per sample

Mizar 3221 2050 3773 8.8 14.2
HOL Light 2548 2247 4331 2.6 13.4
Isabelle 23442 1656 31308 4.2 23.1

Table 1: Datasets used in the evaluation.

3 Existing algorithms

In this section we describe offline and online random forests and evaluate them
in the context of ITP premise selection.

Multi-Label Learning with Millions of Labels Agrawal et al. [AGPV13]
use random forests to learn large amounts of data, in order to obtain relevant
advertising keywords for web pages. Their algorithm builds several decision trees
on random subsets of the data as follows: Given a set of samples S to learn and
the minimal number of samples µ which a leaf has to contain (we describe this in
section 4.3), it returns a decision tree. The algorithm first determines a splitting
feature (explained in section 4.4) for S, which is a feature f that splits S in
two sets Sf (samples having f) and S¬f (samples not having f). If |Sf | < µ
or |S¬f | < µ, the algorithm returns a leaf node containing S, otherwise the
algorithm recursively calculates subtrees for Sf and S¬f and combines them
into a branch node with the splitting feature f .

This approach has several disadvantages when used for premise selection:
While we need to learn data quickly and query only a few times after each learn-
ing phase, the algorithm of Agrawal is optimised to answer queries in logarithmic
time, whereas its learning phase is relatively slow. Furthermore, the algorithm
is an offline algorithm, meaning that in order to learn new samples, it is ne-
cessary to rebuild all trees. We found that our implementation of this method
was several magnitudes slower than k-NN even for small datasets, rendering it



impracticable for incremental learning. Furthermore, the prediction quality was
lower than expected: For the first 200 evaluation samples of the Mizar dataset,
a random forest with 4 trees and 16 random features evaluated at every tree
branch achieved an AUC of 82.96% in 1m22sec, whereas k-NN achieved an AUC
of 95.84% in 0.36sec. In section 4, we show how to improve the prediction quality
and speed of this algorithm for premise selection.

On-line Random Forests Saffari et al. [SLS+09] present an online random
forest algorithm, in which all trees in the forest are initially leaf nodes. When
learning a new sample, it is added to all trees with a probability determined by a
Poisson distribution with λ = 1 [OR01]. Adding a sample to a leaf node consists
of adding the sample to the samples in the leaf node. As soon as the number of
samples in a leaf node exceeds a certain threshold or a sufficiently good splitting
feature for the sample set is found, the leaf node splits into a feature node and
two leaf nodes. When adding a sample to a feature node, the sample gets added
to the left or to the right child of the node, according to whether or not it has
the node’s feature.

The method introduces a bias in that features which appear in early learned
samples will be at the tree roots. Saffari et al. solve this problem by calculat-
ing the quality of predictions from each tree (OOBE, out-of-bag error) and by
periodically removing trees with a high OOBE. However, this introduces a bias
towards the latest learned samples, which is useful for computer graphics ap-
plications such as object tracking, but undesirable for premise selection, as the
advice asked from a predictor will frequently not correspond to the last learned
theorems. Therefore, we do not use the approach of [SLS+09], but adapt its use
of probability distributions to create online versions of bagging algorithms in
section 4.2.

4 Adaptations to Random Forests for Premise Selection

In this section, we describe the changes we made to the algorithms described in
section 3 to obtain better results for premise selection.

4.1 Sample selection

When learning new samples S, one needs to determine which trees learn which
samples. In [AGPV13], each tree in a forest randomly draws n samples from S.
This approach may introduce a bias, namely that some samples are drawn more
often than others, while some samples might not be drawn (and learned) at all.
Therefore, instead of each tree drawing a fixed number of samples to learn, in
our approach, each sample draws a fixed number of trees by which it will be
learned, where we call this fixed number sample frequency. This approach has
the advantage that by definition, every sample is guaranteed to be learned as
often as all other samples.



4.2 Incremental update

We present two methods to efficiently update random forests incrementally: The
first one is a method applicable to all kinds of classifiers, the second one is an
optimised update procedure for decision trees.

Onlining bagging algorithms Given a bagging algorithm (such as random
forests) whose individual predictors (in our scenario the decision trees of the
forest) learn a random subset of samples offline, we show a method for decreasing
the runtime of learning new data incrementally. The method is based on the
observation that, when learning only a small number of new samples (compared
to the number of samples already learned), most predictors will not include any
of those new samples, thus they do not need to be updated. To model this, let r
be a binomially distributed random variable r ∼ B(s, P ), where s is the number
of samples in each predictor and P = nnew

nnew+nold
is the probability of drawing

a new sample from the common pool of new and old samples. r then models
the number of new samples drawn by a predictor. Each predictor evaluates the
random variable r, and if its value rp is 0, the predictor can remain unchanged.
Only if rp is greater than 0, the predictor is retrained with rp samples from the
set of new samples and s− rp samples from the set of old samples.

While this method gives a performance increase over always rebuilding all
predictors, it still frequently retrains whole predictors. As training a decision tree
is a very expensive operation, this method is clearly suboptimal for our setting,
therefore we present a method to update trees efficiently in the next section.

Tree update We show an improved version of the first algorithm given in
section 3, which updates trees with new samples. Given a tree t and a set of
new samples S, the algorithm calculates S′, which is the union of S with all the
samples in the leaf nodes of t, and a splitting feature f for S′. If t is a node
with f as a splitting feature, we recursively update both subtrees of t with Sf
and S¬f respectively. Otherwise, we construct a new tree for S′: If |S′f | < µ or
|S′¬f | < µ, we return a leaf node with S′, otherwise we construct subtrees for S′f
and S′¬f and return a branch node with f as splitting feature.

This algorithm returns the same trees as the original algorithm, but can
be significantly faster in case of updates; for example, predicting advice for
the whole Mizar dataset takes 21m27sec with this optimisation and 57m22sec
without.

4.3 Tree size

At each step of the tree construction, the given set of samples S is split in two by
a splitting feature. A leaf containing S is created if one of the two resulting sets
contains fewer samples than the minimum number of samples µ. We evaluated
three functions to calculate µ, which depend on the samples of the whole tree,
namely µlog(S) = log |S|, µsqrt(S) =

√
|S|, and µconst(S) = 1. In [AGPV13] only

µlog is used.
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Figure 3: Feature histogram for the Mizar MPTP2078 dataset [AHK+14]. For ex-
ample, there are 2026 features which occur only a single time among all samples,
and only 34 that occur ten times.

4.4 Feature selection

We determine a splitting feature for a set of samples S in two steps: First, one
selects a set of features F ⊆ ϕ(S) to evaluate, then, one evaluates each of the
features in F to obtain a suitable splitting feature.

Obtaining evaluation features In [AGPV13], the evaluation features are
obtained by randomly drawing with replacement (meaning you draw an element
from a set, then place it back in the set) a set of features ϕR from ϕ(S), where
nR = |ϕR| is a user-defined constant. When we applied the method in the context
of premise selection, we frequently obtained trees of small height with many
labels at each leaf, because many features occur relatively rarely in our datasets,
see figure 3. Taking larger subsets of random features alleviates this problem,
but it also makes the evaluation of the features slower. To increase performance,
we determine for each feature in ϕR how evenly it divides the set of samples in
two, by evaluating

σ(S, f) :=
||Sf | − |S¬f ||

|S|
.

The best output of σ(S, f) for a feature is 0, which is the case when a feature
splits the sample set S in two sets of exactly the same size, and the worst
output is 1, when the feature appears either in all samples or in none. In the
evaluation phase, we consider only nσ features ϕσ of ϕR that yield the best values
for σ(S, f). The motivation behind this is to preselect features which are more
likely candidates to become splitting features, thus saving time in the evaluation
phase.

Evaluating features The best splitting feature for a set of samples S should
be a feature f which makes the samples in Sf and S¬f more homogenous com-
pared to S [AGPV13]. Common measures to determine splitting features are



information gain and Gini impurity [RS04]. Furthermore, to obtain a tree that
is not too high, it is desirable for a splitting feature to split S evenly, such that
Sf and S¬f have roughly the same number of labels.

In general, we look for a function s(S, f), which determines the quality of f
being a splitting feature for S. The best splitting feature can then be obtained
by argminf∈ϕσ s(S, f). We evaluated two concrete implementations for s(S, f):

1. σ(S, f): While σ optimally divides S into two evenly sized sets Sf and S¬f ,
it does not take into account their homogenicity.

2. G(S, f) = 1
|S| (|Sf |g(Sf ) + |S¬f |g(S¬f )): The Gini impurity [AGPV13] g

measures the frequency of each label among a set of samples, and gives
labels with very high or very low frequency a low value. That means that
the more similar the samples are (meaning they possess similar labels), the
lower the Gini impurity.

Definition 4 (Gini impurity). Gini impurity g(S) of a set of samples S is

g(S) =
∑
l∈λ(S)

pS(l) (1− pS(l))

pS(l) =
∑
s∈S

pS(l|s)p(s), pS(l|s) =
|λ(s) ∩ {l} |
|λ(s)|

, pS(s) =
|λ(s)|∑

s′∈S |λ(s′)|

4.5 Querying a tree

Querying a tree with features F corresponds to finding samples S from the tree
maximising P (S|F ). We show a multi-path querying algorithm, as well as a
method to obtain labels from the samples with classifiers such as k-NN.

Multi-path querying To query a decision tree with features F , a common
approach is to recursively go to the left subtree l of a branch node B(l, f, r)
if f ∈ F and to the right if not, until encountering a leaf L(S), upon which
one returns S. We found that this approach frequently missed samples with
interesting features when these did not completely correspond to the features
we queried for. This is why we considered a different kind of tree query, which
we call multi-path querying (MPQ) in contrast to single-path querying (SPQ).
MPQ considers not only the path with 100% matching features, but also all
other paths in the tree. At each branch node where the taken path differs from
that foreseen by the splitting feature of the node, we store the depth d of the
node, as illustrated in figure 4. The output of a multi-path query for a tree t and
features F is mqF (t, 0, ∅), defined as follows:

mqF (t, d, E) =


(S, d,E) t = L(S)

mqF (l, d+ 1, E) ∪mqF (r, d+ 1, E ∪ {d}) t = B(l, f, r) ∧ f ∈ F
mqF (r, d+ 1, E) ∪mqF (l, d+ 1, E ∪ {d}) t = B(l, f, r) ∧ f /∈ F
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Figure 4: Multi-path query example, where the tree is an excerpt from an actual
random forest tree generated from the Isabelle/HOL Probability dataset. Query
features are {tSet.set, Set.member}. The numbers next to the branches indicate
the depth of wrongly taken decisions, which are accumulated and shown below
the samples at the bottom.

Depth weighting We want to assign to each tree leaf a weight, which indicates
how well the features F correspond to the features along the path from the root
of the tree to the leaf. To do this, we consider the depths of the branch nodes
where we took a different path than foreseen by F , and calculate for each of the
depths a weight, which we later combine to form a branch or sample weight.

For each e ∈ E, where (S, d,E) ∈ mqF (t, 0, ∅), we calculate a depth weight,
where the constant µ represents the minimal weight: eascending(d, e) = µ+ (1 −
µ)
(
e
d

)
, edescending(d, e) = 1−(1−µ)

(
e
d

)
, einverse(d, e) = 1− 1−µ

e+1 , and econst(d, e) =
µ. Using the depth weights, we calculate a weight for each sample:

wt(s) =
∑

(S,d,E)∈mqF (t,0,∅), s∈S

∏
e∈E

ei(d, e).

Classifier in leaves Regular decision trees with single-path querying return all
the labels of the chosen branch. To order the results from multiple branches in a
tree, which is necessary with multi-path querying, we run a secondary classifier
on all the leaf samples of the tree. The secondary classifier is modified to take into
account the weight of each branch. In our experiments, the secondary classifier is
a k-NN algorithm adapted for premise selection (IDF, premise relevance inversely
proportional to the number of premises [KU13b]), which we modified to accept
sample weights: k-NN will give premises that appear in samples with higher
weights precedence over those from samples with lower weights. In default k-NN,
all samples would have weight 1, while in our secondary classifier the weight of a
sample s is given by wt(s), which stems from the path to s in the decision tree.



4.6 Querying a forest

We query a forest with a set of features F by querying each tree in the forest
with F , combining the prediction sequences

−→
L of all trees. For each label l, we

calculate its rank in a prediction sequence L = [l1, . . . , ln] as:

%(l, L) =

{
i if l = li and li ∈ L
m otherwise

Here,m is a maximal rank attributed to labels that do not appear in a prediction
sequence. Then, for each label, we calculate its ranks R(l) = ]

L∈
−→
L
%(l, L) for all

prediction sequences. We sort the labels by the arithmetic, quadratic, geometric,
or the harmonic mean of R(l) in descending order to obtain the final prediction
sequence.

5 Experiments

We implemented the algorithms from section 4 in Haskell.2 Our experimental
results for the Mizar dataset are given in table 2: Random forests give best results
when combined with multi-path querying and path-weighted k-NN+IDF classi-
fier in the leaves. Both considering Gini impurity and taking random subsets of
features decrease the prediction quality, while having a very negative impact on
runtime. Different sample selection methods (samples draw trees vs. trees draw
samples) have a large impact when using small sample frequencies, but when
using higher sample frequencies, the difference is negligible. In this evaluation,
we simulated single-path querying (SPQ) by a constant depth weight with µ = 0
(meaning that all non-perfect tree branches receive the minimal score 0). Run-
ning this method takes longer than real SPQ, but gives a good upper bound on
SPQ’s prediction quality. Random forests have a longer runtime than k-NN, but
still, the average prediction time for our test set is below one second, which is
sufficient for premise selection.

To produce the number of proven theorems in table 3, we predict max.
128 (for Mizar, for HOL Light 1024) premises for each conjecture, translate
the chosen facts (if no PS: all previous facts) together with the conjecture to
TPTP first-order formulas [Sut09] and run E-Prover 1.8 [Sch13] using automatic
strategy scheduling with 30 seconds timeout.

Alama et al. [AHK+14] have reported 548 proven theorems with Vampire
(timeout = 10s) without external premise selection, which their best premise
selection method (MOR-40/100) increases to 824 theorems (+50.4%). On our
data, E (timeout = 10s) without premise selection proves only 414 theorems,
increasing with timeout = 30s to 653 theorems (+57.7%) and with timeout =
10s and RF premise selection to 962 (+132.3%).

In table 4, we compare ATP runtime required to prove the same number of
2 Source and detailed statistics (also for HOL Light and Isabelle datasets) are available
at http://cl-informatik.uibk.ac.at/~mfaerber/predict.html.

http://cl-informatik.uibk.ac.at/~mfaerber/predict.html


Configuration 100-Prec
[%]

AUC
[%]

Runtime
[min]

Avg. time per
prediction [s]

k-NN + IDF 87.5 95.39 0.5 0.02
RF (IDF) 88.0 95.68 32 0.93
RF (no IDF) 77.8 91.40 25 0.75
RF (single-path query) 53.7 60.86 37 1.07
RF (sample freq. = 2, trees draw s.) 65.6 72.76 2 0.05
RF (sample freq. = 2, samples draw t.) 88.0 95.59 4 0.10
RF (random features nR = 32) 88.0 95.65 151 4.41
RF (Gini impurity, nσ = 2) 88.0 95.65 97 2.84
RF (Gini impurity, nσ = 16) 88.0 95.62 220 6.44
RF (eascending) 88.0 95.72 36 1.07
RF (edescending) 88.1 95.66 39 1.15
RF (einverse) 88.0 95.68 38 1.12
RF (econst) 88.1 95.81 37 1.08
RF (arithmetic mean) 87.5 95.49 33 0.98
RF (geometric mean) 88.0 95.67 35 1.01
RF (quadratic mean) 87.4 95.34 33 0.97
RF (100 trees, sample freq. = 50) 88.5 95.85 137 4.01
RF (24 trees, sample freq. = 12) 88.5 95.83 31 0.90
RF (24 trees, sample freq. = 12, econst) 88.6 95.91 22 0.66

Table 2: Results for Mizar dataset. By default, we use 4 trees with a sample
frequency of 16, samples draw trees. The minimal sample function is µlog, we do
not use Gini impurity, and we use eInverse with µ = 0.8. The final prediction is
obtained by running k-NN with IDF over the weighted leaf samples of each tree,
combining results with the harmonic mean.

k-NN
AUC

RF
AUC

k-NN
Prec

RF
Prec

k-NN
proved

RF proved Total

Mizar 0.9539 0.9591 0.875 0.886 931 959 (+3.0%) 2050
HOL Light 0.9565 0.9629 0.919 0.929 789 823 (+4.3%) 2247

Table 3: Results of k-NN and random forest predictions for two different datasets.
For random forests, we used the best configuration from table 2, i.e. 24 trees,
sample frequency 12, and constant depth weight.

Classifier Classifier runtime E timeout E runtime Total runtime

k-NN 0.5min 15sec 341min 341min
RF 22min 10sec 252min 272min

Table 4: Comparison of runtime necessary to achieve the same number of proven
theorems (969) for the Mizar dataset.
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Figure 5: Comparison of k-NN with random forests by number of evaluation
samples on Mizar dataset.

theorems using k-NN and RF predictions. While RF classification requires more
runtime than k-NN, the ATP timeout can be decreased by more than 25%,
resulting in overall runtime reduction of about 20%.

Number of evaluation samples In figure 5, we show how the prediction quality
develops for the Mizar dataset as more data is learned: For this purpose, we
calculated statistics for the predictions of just our first evaluation sample, then
for the first two, etc. When comparing the output of our random forest predictor
(24 trees, sample frequency 12, constant depth weight) with k-NN, we see that
it consistently performs better.

6 Conclusion

We evaluated several random forest approaches for ATP premise selection: Without
modifications, the algorithms return worse predictions than the current state-
of-the-art premise selectors included in HOL(y)Hammer, MizAR, and Sledge-
hammer/MaSh, and the time needed to select facts from a larger database is
significant. We then proposed a number of extensions to the random forest al-
gorithms designed for premise selection, such as incremental learning, multi-path
querying, and various heuristics for the choice of samples, features and size of the
trees. We combined random forests with a k-NN predictor at the tree leaves of
the forest, which increases the number of theorems from the HOL Light dataset
that E-Prover can successfully reprove over the previous state-of-art classifier
k-NN by 4.3%. We showed that to attain the same increase with k-NN, it is
necessary to run E-Prover for 50% longer.

In scenarios where the number of queries is large in comparison with the
number of learning phases, the random forest approach is an effective way of im-
proving prediction quality while keeping runtime acceptable. This is the case for
usage in systems such as HOL(y)Hammer and MizAR, but not for Sledgeham-
mer, where data is relearned more frequently. The performance of random forests



could still be improved by recalculating the best splitting feature only after hav-
ing seen a certain minimal number of new samples since the last calculation of
the best feature. This would improve learning speed while not greatly altering
prediction results, because it is relatively unlikely that adding few samples to a
big tree change the tree’s best splitting feature. Further runtime improvements
could be made by parallelising random forests.
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