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Abstract. New proof assistant developments often involve concepts sim-
ilar to already formalized ones. When proving their properties, a human
can often take inspiration from the existing formalized proofs available in
other provers or libraries. In this paper we propose and evaluate a num-
ber of methods, which strengthen proof automation by learning from
proof libraries of different provers. Certain conjectures can be proved
directly from the dependencies induced by similar proofs in the other
library. Even if exact correspondences are not found, learning-reasoning
systems can make use of the association between proved theorems and
their characteristics to predict the relevant premises. Such external help
can be further combined with internal advice. We evaluate the proposed
knowledge-sharing methods by reproving the HOL Light and HOL4 stan-
dard libraries. The learning-reasoning system HOL(y)Hammer, whose
single best strategy could automatically find proofs for 30% of the HOL
Light problems, can prove 40% with the knowledge from HOL4.

1 Introduction

As Interactive Theorem Prover (ITP) libraries were developed for decades, today
their size can often be measured in tens of thousands of facts [4, 19]. The theorem
provers typically differ in their logical foundations, interfaces, functionality, and
the available formalized knowledge. Even if the logic and the interface of the
chosen prover are convenient for a user’s purpose, its library often lacks some
formalizations already present in other provers’ libraries. Her only option is then
to manually repeat the proofs inside her prover. She will then take ideas from the
previous proofs and adapt them to the specifics of her prover. This means that in
order to formalize the desired theory, the user needs to combine the knowledge
already present in the library of her prover, with the knowledge present in the
other formalization.

We propose an approach to automate this time-consuming process: It consists
of overlaying the two libraries using concept matching and using learning-assisted
automated reasoning methods [15], modified to learn from multiple libraries and
able to predict advice based on multiple libraries. In this research we will focus
on sharing proof knowledge between libraries of proof assistants based on higher-
order logic, in particular HOL4 [23] and HOL Light [9]. Extending the approach
to learning from developments in provers that do not share the same logic lies
beyond the scope of this paper.



Once a sufficient number of matching concepts is discovered, theorems and
proofs about these concepts can be found in both libraries, and we can start to
implement methods for using the combined knowledge in future proofs. To this
end, we will use the AI-ATP system HOL(y)Hammer [15]. We will propose various
scenarios augmenting the learning and prediction phases of HOL(y)Hammer to
make use of the combined proof library. In order to evaluate the approach, we
will simulate incrementally reproving a prover’s library given the knowledge of
the library of the other prover. The use of the combined knowledge significantly
improves the proof advice quality provided by HOL(y)Hammer. Our description
of the approach focuses on HOL Light and HOL4, but the method can be applied
to any pair of provers for which a mapping between the logics is known.

1.1 Related work

As reuse of mathematical knowledge formalizations is an important problem, it
has already been tackled in a number of ways. In the context of higher-order logic,
OpenTheory [12] provides cross-prover packages, which allow theory sharing and
simplify development. These packages provide a high-quality standard library,
but need to be developed manually. The Common HOL Platform [1] provides a
way to re-use the proof infrastructure across HOL provers.

Theory morphisms provide a versatile way to prove properties of objects of
the same structure. The idea has been tried across Isabelle formalizations in
the AWE framework by Bortin et al. [5]. It also serves as a basis for the MMT
(Module system for Mathematical Theories) framework [22].

With our method, this principle was developed in both directions. We first
search for similar properties of structures to find possible morphism between dif-
ferent fields. We then use these conjectured morphisms to translate the properties
between the two fields. Our main idea is that we don’t prove the isomorphism
which is often a complex problem but we learn from the knowledge gained from
the derived properties. Moreover, even when the two fields are not completely
isomorphic, the method often gives good advice. Indeed, suppose the set of reals
in one library were incorrectly matched to the set of rationals in the other, we
can still rely on properties of rationals that are also true for reals.

A direct approach is to create translations between formal libraries. This can
only be applied when the defined concepts have the same or equivalent defini-
tions. The HOL/Import translation from HOL4 and HOL Light to Isabelle/HOL
implemented by Obua and Skalberg [20] already mapped a number of concepts.
This was further extended by the second author [13] to map 70 concepts, includ-
ing differently defined real numbers. HOL Light has also been translated into
Coq by Keller and Werner [18]. It is the first translation between systems based
on significantly different logics. In each of these imports, the mapping of the
concepts has been done manually.

Compared with manually defined translations, our approach can find the
mappings and the knowledge that is shared automatically. It can also be used to
prove statements that are slightly different and in some cases even more general.
Additionally, the proof can use preexisting theorems in the target library. On



the other hand, when a correct translation is found by hand, it is guaranteed
to succeed, while our approach relies on AI-ATP methods which fail for some
goals. The possibility of combining the two approaches is left open.

Overview The rest of this paper is organized as follows. In Section 2, we in-
troduce the AI-ATP system HOL(y)Hammer and describe automatic recognition
of similar concepts in different formal proof developments. In Section 3, we pro-
pose a number of scenarios for combining the knowledge of multiple provers. In
Section 4, we evaluate the ability to reprove the HOL4 and HOL Light libraries
using the combined knowledge. In Section 5 we conclude and present an outlook
on the future work.

2 Preliminaries

2.1 HOL(y)Hammer

HOL(y)Hammer [16] is an AI-ATP proof advice system for HOL Light and HOL4.
Given a user conjecture, it uses machine learning to select a subset of the accessi-
ble facts in the library, that are likely to prove the conjecture. It then translates
the conjecture together with the selected facts to the input language of one of
the available ATP systems to find the exact dependencies necessary to prove
the theorem in higher-order logic. This method is also followed by the system
Sledgehammer [21].

In this section we shortly describe how HOL(y)Hammer processes conjec-
tures, as we will augment some of these steps in Section 3. First, we describe
how libraries are exported. Then, we explain how the exported objects and de-
pendencies are processed to find suitable lemmas. Finally, we briefly show how
the conjecture can be proven from these lemmas. More detailed descriptions of
these steps are presented in [15, 7].

Export We will associate each ITP library with the set of constants and theo-
rems that it contains. In particular, the type constructors will also be regarded
as constants in this paper. As a first step, we define a format for representing
formulas in type theory, as we aim to support formulas from various provers. A
subset of this format is chosen to represent the higher-order logic statements in
HOL Light and HOL4. Each object is exported in this format with additional in-
formation about the theory where it was created. The theory information will let
us export incompatible developments (i.e. ones that can not be loaded into the
same ITP session or even originate from different ITPs) into HOL(y)Hammer [14].
Additionally, we can fully preserve the names of the original constants in the ex-
port. Finally, the dependencies of each theorem (i.e the set of theorems which
were directly used to proved it) are extracted. This last step is achieved by
patching the kernels of HOL4 and HOL Light.



Premise selection The premise selection algorithm takes as input an (often
large) set of accessible theorems, a conjecture, and the information about previ-
ous successful proofs. It returns a subset of the theorems that is likely to prove
the conjecture. It involves three phases: feature extraction, learning, and predic-
tion.

The features of a formula are a set of characteristics of the theorem, which
we represent by strings. Depending on the choice of characterization, it can
simply be the list of the constants and types present in the formula, or the string
representation of the normalized sub-terms of the formula, or even features based
on formula semantics [17]. The feature extraction algorithm takes a formula as
input and computes this set.

A relation between the features of conjectures and their dependencies is in-
ferred from the features of all proved theorems and their dependencies by the
learning algorithm. This step effectively finds a function that given conjecture
characteristics finds the premises that are likely to be useful to prove this con-
jecture. Prediction refers to the evaluation of this function on a given conjecture.

These phases will be influenced by the concept matching (see Section 2.2)
and differentiated in each of the scenarios (see Section 3).

Translation and reconstruction A fixed number of most relevant predicted
lemmas (all the experiments in this paper fix this number to 128, as it has given
best results for HOL in combination with E-prover [7]) are translated together
with the conjecture to an ATP problem. If an ATP prover is able to find a proof,
various reconstruction methods are attempted. The most basic reconstruction
method is to inspect the ATP proof for the premises that were necessary to
prove the conjecture. This set is usually sufficiently small, so that certified ITP
proof methods (such as MESON [8] or Metis [11]) can prove the higher-order
counterpart of the statement and obtain an ITP theorem.

2.2 Concept Matching

Concept matching [6] allows the automatic discovery of concepts from one proof
library or proof assistant in another. An AI-ATP method can benefit from the
library combination only when some of the concepts in the two libraries are
related: Without such mappings the sets of features of the theorems in each
library are disjoint and premise selection can only return lemmas from the library
the conjecture was stated in. As more similar concepts are matched (for example
we conjecture that the type of integers in HOL4 h4/int and the type of integers in
HOL Light hl/int describe the same type), the feature extraction mechanism will
characterize theorems talking about the matched concepts by the same features.
As a consequence, we will also get predicted lemmas from the other library. We
will discuss how such theorems from a different library can be used without
sacrificing soundness in Section 3.

For a step by step of the concept matching algorithm, we will refer to our
previous work [6] and only present here a short summary and the changes that



improve the matching for the scenarios proposed in this paper. Our algorithm is
implemented for HOL4 and HOL Light, but we believe the procedure can work
for any pair of provers based on similar logics such as Coq [10] and Matita [2].

Summary Our matching algorithm is based on the properties (such as associa-
tivity, commutativity, nilpotence, . . . ) of the objects of our logic (constants and
types). If two objects from two libraries share a large enough number of relevant
properties, they will eventually be matched, even though they may have been
defined or represented differently. In the description of the procedure, we will
consider every type as a constant. Initially, the set of matched constants con-
tains only logical constants. First, we give a highest weight for rare properties
with a lot of already matched constants. Second, we look at all possible pairs
of constants and find their shared properties. The final score for a pair of con-
stant is the sum of their weights amortised by the total number of properties of
each constant. The two constants with the highest similarity score are matched.
The previous two steps are repeated until there are no more shared properties
between unmatched constants.

Improvements and Limitations The similarity scoring heuristic can be eval-
uated more efficiently than the ones presented in [6] and is able to map more
constants correctly: Thanks to a better representation of the data the time taken
to run our implementation of the matching algorithm on the standard library
of HOL Light (including complex and multivariate) and the standard library of
HOL4 was decreased from 1 hour to 5 minutes. By computing only the initial
property frequencies and using them together with the proportion of matched
constants to influence the weight of each property in the iterative part the time
can be further decreased to 2 minutes. The algorithm now returns 220 correct
matches instead of the 178 previously obtained and 15 false positives (pairs that
are matched but do not represent the same concept) instead of 32. The better
results are a consequence of the inclusion of types in the properties and the
updated scoring function.

The proposed approach can only match objects that have the same structure.
In the case of the two proof assistants we focus on, it can successfully match the
types of natural numbers, integers or real number, however it is not able to
match the dedicated HOL Light type hl/complex to the complex numbers of
HOL4 represented by pairs of real numbers h4/pair(h4/real,h4/real). This
issue could be partially solved by the introduction of a matching between sub-
terms combined with a directed matching. The type hl/complex could then be
considered as pair of reals in HOL4. For the reverse direction, we would need to
know if the pair of reals was intended to represent a pair of reals or a complex.
One idea to solve this problem could be to create a matching substitution that
also depends on the theorems. These general ideas could form a basis for a future
extension of the matching algorithm.



3 Scenarios

In this section we propose four ways an AI-ATP system can benefit from the
knowledge contained in a library of a different prover. We will call these meth-
ods “scenarios” and we will call the library of a different prover “external”. All
four scenarios require the base libraries to already be matched. This means,
that we have already computed a matching substitution from the theorems of
both libraries and in all the already available facts in the libraries, the matched
constants are replaced by their common representatives.

Throughout our scenarios, we will rely on the notion of equivalent theorems
to map lemmas from one library to the other. This notion is defined below, as
well as some useful notations.
Definition 1 (Equivalent theorems). Two theorems are considered equiva-
lent if their conjunctive normal forms are equal modulo the order of conjuncts,
disjuncts, and symmetry of equality. Given a theorem t, the set of the theorems
equivalent to it in the library lib will be noted E(lib, t).
Remark 1. This definition only makes sense if the two libraries can be repre-
sented in the same logic. This is straightforward if the two share the same logic.
Definition 2 (Notations).
Given a library, we define the following notations:
– Dep(t) stands for the set of lemmas from which a theorem t was proved. We

call them the dependencies of t. This definition is not recursive, i.e. the set
does not include theorems used to prove these lemmas.

– The function Learn() infers a relation between conjectures and sets of rele-
vant lemmas from the relation between theorems and their dependencies.

– Pred(c, L) is the set of lemmas related to a conjecture c predicted by the
relation L.
In each scenario, each library plays an asymmetric role. In the following, the

library where we want to prove the conjecture, is called the internal or the initial
library. In contrast, the library from which we get extra advice from, is called
the external library. In this context, using HOL(y)Hammer alone without any
knowledge sharing is our default scenario, naturally named “internal predictions”.
We illustrate each selection method by giving an example of a theorem that
could only be reproved by its strategy. These examples are extracted from our
experiments described in Section 4.

Scenario 1: External Dependencies The first scenario assumes that the
proof libraries are almost identical. We compute the set of theorems equivalent
to the conjecture in the external library. For all of their dependencies, we return
the lemmas in the library equivalent to these dependencies. The scenario is
presented in Fig 1. This scenario would work very well, if the corresponding
theorem is present in the external library and a sufficient corresponding subset
of its dependencies is already present in the initial library. As this is often not
the case (see Section 4), we will use an AI-ATP method next.



conjecture S1 := E(lib2, conjecture)

S2 :=
⋃

t∈S1
Dep(t)S3 :=

⋃
t∈S2

E(lib1, t)

1

2

3

internal library external library

Fig. 1: Finding lemmas from dependencies in the external library.

Example 1. The theorem REAL SUP UBOUND in HOL4 asserts that each element
of a bounded subset of reals is less than its supremum. The equivalent theorem
in HOL Light has 3 dependencies: the relation between < and ≤ REAL NOT LT,
the antisymmetry of < REAL LT REFL and the definition of supremum REAL SUP.
Each of them have one equivalent in HOL4. The resulting problem was translated
and solved by an ATP and the 3 lemmas appeared in the proof.

c := conjecture c := conjecture

L2 := Learn()

S2 := P red(c, L2)S3 :=
⋃

t∈S2
E(lib1, t)

1
2

3

4

internal library external library

Fig. 2: Learning and predicting lemmas in the external library

Scenario 2: External Predictions The next scenario is depicted in Fig 2. The
steps are as follows: We translate the conjecture to the external library (step 1).
We predict the relevant lemmas in the external library (steps 2 and 3). We map
the predicted lemmas back to the initial library using their equivalents (step 4).
To sum up, this scenario proposes an automatic way of proving a conjecture
providing that the external library contains relevant lemmas that have equiva-
lents in the internal library. One advantage of this scenario over the standard
“internal predictions” is that the relation between features and dependencies is
fully developed in the external library, yielding better predictions.

In our experiments, the translation step is not needed because the matching
is already applied and the logic of our provers are the same.

Example 2. The theorem LENGTH FRONT from the HOL4 theory rich list states
that the length of a non-empty list without its last element is equal to its length



minus one. The subset of predicted lemmas used by the ATP were 6 theorems
about natural numbers and 6 theorems about list. These theorems are HOL4
equivalents of selected HOL Light lemmas.

c := conjecture c := conjecture

L2 := Learn()L1 := Learn()

S3 := P red(c, L1 + L2)

1
22

3

internal library

external library

Fig. 3: Learning in both libraries and predicting lemmas in the internal library.

Scenario 3: Combined Learning In this and the next scenario we will
combine the knowledge from the external library with the information already
present in the internal library. The scenario is presented in Fig 3. First, the
conjecture is translated to the external prover. Second, the features suitable for
proving the conjecture are learned from the dependencies between the theorems
in both systems. Third, lemmas from the original library containing these fea-
tures are predicted. In a nutshell, this scenario defines an automatic method,
that enhances the standard “internal predictions” by including advice from the
external library about the relevance of each feature.

Example 3. This example and the next one are using advice from HOL4 in HOL
Light which means that the roles of the two provers are reversed compared to the
first two examples. The HOL Light theorem SQRT DIV asserts that the square root
of the quotient of two non-negative reals is equal to the quotient of their square
roots. In this scenario no external theorems are translated but learning form the
HOL4 proofs still improved the predictions directly made in HOL Light. The proof
found for this theorem is based on the dual theorems for multiplication SQRT MUL
and inversion SQRT INV and basic properties of division real div, multiplication
REAL MUL SYM, inversion REAL LE INV EQ and absolute value REAL ABS REFL.

Scenario 4: Combined Predictions The last and most developed scenario,
shown in Fig 4, associate the strategies from the two preceding scenarios, effec-
tively learning and predicting lemmas from both libraries. The first and second
steps are the same as in “combined learning”. The third step predicts lemmas in
both libraries from the whole learned data. Finally, we map back the external
predictions and return them together with the internal predictions.



c := conjecture c := conjecture

L2 := Learn()

S2 := P red(c, L1 + L2)

L1 := Learn()

S′
2 := P red(c, L1 + L2)

S3 := S′
2 ∪

⋃
t∈S2

E(lib1, t)

1
2

3

2
3

44

internal library

external library

Fig. 4: Learning and predicting lemmas from both libraries.

Example 4. Let n, m, p be natural numbers.
The HOL Light theorem HAS SIZE DIFF declares that if a set A has n elements
and B is a subset of A that has m elements then the difference B \A has n−m
elements. The first two lemmas necessary for the proof were directly found in
HOL Light. One is the definition of the constant HAS SIZE which asserts that a
set has size p if and only if it is finite and has cardinality p. The other CARD DIFF
is almost the same as the theorem to be proved but stated for the cardinality of
finite sets. The missing piece FINITE DIFF is predicted inside the HOL4 library.
Its equivalent in HOL Light declares that the difference of two finite sets is a
finite set, which allows the ATP to conclude.

3.1 Unchecked scenarios

In each of the previous scenarios, the final predicted lemmas come from the ini-
tial library. This means that our approach is sound with respect to the internal
prover. The application of the matching substitution on one library renames
the constants in all theorems injectively because no non-trivial matching is per-
formed between two constants of the same library.

We will now consider the possibility of returning matched lemmas from the
external library even if they do not have an equivalent in the internal one. This
means giving advice to the user in the form: “your conjecture can be proved
using the theorems th1 and th2 that you already have and an additional hypoth-
esis with the given statement which you should be able to prove.” To verify that
these scenarios are well-founded, a user would need to prove the proposed hy-
potheses. That could be achieved by either importing the theorems or applying
the approach recursively. If a constant contained in these lemmas is matched in-
consistently then each method would fail to reprove the lemmas, preserving the
coherence of the internal library. We do not yet have an import mechanism from
HOL4 to HOL Light (and conversely) or a recursive mechanism for our scenarios.
In this recursive approaches, the predicted facts in the external library should be



restricted to those proved before the conjecture when it has an equivalent in the
external library. Otherwise, a loop in the recursive algorithm may be created.

We will still evaluate the “unchecked” scenarios to see what is the maximum
added value such mechanisms could generate.

4 Evaluation

We perform all the experiments on a subset of the standard libraries of HOL
Light and HOL4. The HOL4 dataset includes 15 type constructors, 509 constants,
and 3935 theorems. The HOL Light dataset contains 21 type constructors, 359
constants and 4213 theorems. The subsets were chosen to include a variety of
fields ranging from list to real analysis. The most similar pairs of theories are
listed by their number of common equivalent classes of theorems in Table 1. The
number of theorems in each theory is indicated in parenthesis.

HOL4 theory HOL Light theory common theorems

pred set(434) sets(490) 128
real(469) real(291) 81
poly(87) poly(142) 72
bool(177) theorems(90) 61

transc(229) transc(355) 58
arithmetic(385) arith(245) 57

integral(83) transc(355) 48
Table 1: The seven most similar pairs of theories by their number of common
equivalent classes of theorems according to our matching

The matching, predictions, and the preparation of the ATP problems have
been done on a laptop with 4 Intel Core i5-3230M 2.60GHz processors and 3.6
GB RAM. All ATP problems are evaluated on a server with 48 AMD Opteron
6174 2.2 GHz CPUs, 320 GB RAM and 0.5 MB L2 cache per CPU. A single core
is assigned to each ATP problem. The ATP used is E-prover version 1.8 running
in the automatic mode with a time limit of 30 seconds.

Simulation We will try to prove each theorem in an environment, where infor-
mation is restricted to the one that was available when this theorem was proved.
This amounts to:

– forgetting that it is a theorem and the knowledge of its dependencies,
– finding the subset of facts in the library that are accessible from this theorem,
– computing the matching with the other library based on this subset only,
– predicting lemmas from this subset (plus the other library in the “unchecked”

scenarios).



For the purpose of our simulation, the external library is always completely
known, as we suppose that it was created previously. In reality, the two libraries
were developed in parallel, with many HOL4 theories available before similar
formalizations in HOL Light have been performed.

In Fig. 5, we show the evolution of the number of matched constants and
compare it to the number of declared constants in the theory during the in-
cremental reproving of two theories. The first graph shows that the number of
matched constants stagnate whereas the declared constants continue to increase
in the second half of the theory. This suggests that theories formalizing the same
concepts may be developed in different directions for each prover. The second
graph indicates a better coverage of the HOL Light theory lists. In the begin-
ning, the number of matched constants grows even more rapidly than the number
of declared constants because new matches are found for constants defined in
previous theories.
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Fig. 5: Evolution of the number of matched constants in the HOL4 theory list
and in the HOL Light theory lists

Scenario checked(%) unchecked(%)

empty 4.19
external dependencies 5.06 (23.50) 10.75 (49.94)
external predictions 17.49 34.42

external any 18.07 34.74
internal predictions 43.57
combined learning 44.03

combined predictions 44.59 53.46
any 50.06 55.73

any checked or unchecked 62.80
Table 2: Percentage of reproved theorems in the HOL4 library (internal) with
the knowledge from the HOL Light library (external).



Scenario checked(%) unchecked(%)

empty 3.14
external dependencies 6.08 (29.22) 10.11 (48.63)
external predictions 12.74 33.94

external any 13.55 34.32
internal predictions 30.92
combined learning 35.13

combined predictions 35.56 44.06
any 40.19 47.07

any checked or unchecked 54.71
Table 3: Percentage of reproved theorems in the HOL Light library (internal)
with the knowledge from the HOL4 library (external).

In the first column, scenarios are listed based on their predicted lemmas.
empty: no lemmas
external dependencies: dependencies of equivalent external theorems
external predictions: external lemmas from external advice
external any: problems solved by any of the two previous scenarios
internal predictions: internal lemmas from internal advice
combined learning: internal lemmas from external and internal advice
combined predictions: external and internal lemmas from external and inter-
nal advice
any: problems solved by at least one scenario of the same column
In the second column, we restrict ourself from using external theorems that do
not have an internal equivalent, where as we allow it in the third column. The
last line combines all the problems solved by at least one checked or unchecked
scenario.

Results The success rates for each scenario and each proof assistant are com-
piled in Tables 2 and 3. The scenario “empty” gives the number of facts provable
without lemmas and is fully subsumed by the other methods.

The external dependencies scenario is the only one that is not directly com-
parable to the others, as it was performed only on the theorems that have an
equivalent in the other library (876 in HOL Light and 847 in HOL4). The per-
centage of theorems proved by this strategy relative to its experimental subset
is shown in parentheses. This strategy is quite efficient on its subset but con-
tributes weakly to the overall improvement. These results are combined with the
“external predictions” scenario to evaluate what can be reproved with external
help only. In HOL4, the combined learning and predictions increases the num-
ber of problems solved over the initial “internal predictions” approach only by
one percent. The improvement is sharper in HOL Light. It suggests that HOL4
provides a better set for the learning algorithm. The improvement provided by
all scenarios can be combined to yield a significant gain compared to the perfor-
mance of HOL(y)Hammer alone, namely additional 6.5% of all HOL4 and 9.3%



of all HOL Light theorems. Another 10–15% could be added by the “unchecked”
scenarios.

Results by theory In Table 4, we investigate the performance of the “external
dependencies” scenario on the largest theories in our dataset. Some theories
only minimally benefit from the external help. This is the case for rich list
and iterate, where only few correct mappings could be found. We can see
asymmetric results in pairs of similar theories. For example, the real theory
in HOL Light can be 72.16% reproved from HOL4 theories whereas the similar
theory in HOL4 does not benefit as much. This suggest that the real theory
HOL4 is more dense than its counterpart. A similar effect is observed for the
transc formalization. The theories pred set and sets seem to be comparably
dense.

Scenario real pred set list arithmetic rich list transc

external dependencies 30.91 24.65 10.23 18.18 1.52 5.24

Scenario sets analysis transc int iterate real

external dependencies 25.51 27.1 25.91 52.61 5.47 72.16
Table 4: Reproving success rate in the six largest theories in HOL4 using HOL
Light and the “checked external dependencies” scenario, as well as in the six
largest HOL Light theories using HOL4.

5 Conclusion

We proposed several methods for combining the knowledge of two ITP systems
in order to prove more theorems automatically. The methods adapt the premise
selection and proof advice components of the HOL(y)Hammer system to include
the knowledge of an external prover. In order to do it, the concepts defined in
both libraries are related through an improved matching algorithm. As the con-
stants in two libraries become related, so are the statements of the theorems.
Machine learning algorithms can combine the information about the dependen-
cies in each library to predict useful dependencies more accurately.

We evaluated the influence of an external library on the quality of advice,
by reproving all the theorems in a large subset of the HOL4 and HOL Light
standard libraries. External knowledge can improve the success from 43% to
50% in HOL4 and from 30% to 40% in the number of HOL Light solved goals.
This number could reach 54% for HOL4 and 62% for HOL Light if we include the
“unchecked” scenarios, where the user is not only suggested known theorems,
but also hypotheses left to prove. Proving such proposed lemmas, either with



the help of a translation or by calling an AI-ATP method with shared knowledge
is left as future work.

The proposed approach evaluated the influence of an external proof assistant
library for the quality of learning and prediction. An extension of the approach
could be used inside a single library: mappings of concepts inside a single library,
such as those the work of Autexier and Hutter [3], could provide additional
knowledge for a learning-reasoning system.
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