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Abstract

Proof assistants based on higher-order logic frequently use first-order
automated theorem provers as proof search mechanisms. The recon-
struction of the proofs generated by common tools, such as MESON and
Metis, typically involves the use of the axiom of choice to simulate the
Skolemisation steps. In this paper we present a method to reconstruct
the proofs without introducing Skolem functions. This enables us to
integrate tactics that use first-order automated theorem provers in logics
that feature neither the axiom of choice nor the definite description
operator.

1 Introduction
Many first-order automated theorem provers (ATPs) operate on formulae with implicitly universally quantified
variables. To find proofs with such ATPs for formulae containing existential quantifiers, it is necessary to transform
the original problems: Skolemisation replaces existentially quantified variables with fresh function symbols that
depend at least on all universally quantified variables in the subformula, i.e. ∃x.t(x, y1, . . . , yn) (t being a term)
is replaced by t(f(y1, . . . , yn), y1, . . . , yn), where f is a fresh function symbol. In higher-order foundations it is
possible to express that a problem is satisfiable iff its Skolemised version is, by existentially quantifying over the
Skolem functions. Proving or even stating equisatisfiability cannot be done in first-order logic.

With the increasing interest in Isabelle [NPW02] object logics based on first-order logic, such as Isabelle/ZF
[Pau93] or Kaliszyk’s Mizar environment [KPU16], it is natural to provide built-in first-order automated theorem
proving methods for these logics. Tools including Metis [Hur03] and MESON [Har96] have provided such methods
for Isabelle/HOL. However, as the integration of these tools currently relies on higher-order features, they cannot
easily be used in Isabelle/FOL. Proof methods that support also FOL, such as blast [Pau99], work very well as a
human proof search mechanism, but are often insufficient to reconstruct deeper proofs [BKPU16].

We propose a new method to integrate first-order ATPs in interactive proof systems based on first-order logic.
The technique can be used with first-order provers that take a set of implicitly all-quantified formulae as input,
and whose proofs can be expressed as a set of formula copies together with the instantiations of the variables, and
a natural deduction proof on the formula copies that shows ⊥. This includes the most common first-order calculi
such as resolution, paramodulation (superposition), and tableaux. The method uses the information contained in
the Skolem terms to derive an ordering on instantiations, as opposed to the methods existing in Isabelle/HOL and
other HOL provers which recreate the Skolem functions directly in the higher-order logic. To show the practical
feasibility of the approach, we integrate a first-order tableaux prover in Isabelle/FOL.
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Contents: In section 2, we recall several basic concepts such as normal forms and Skolemisation. In section 3,
we present our method to construct a proof without Skolem functions from a proof with Skolem functions. In
section 4, we describe the implementation of our method as part of a larger proof search tactic for Isabelle. We
show in section 5 the limitations of our approach. Section 6 discusses the related work, and in section 7, we
conclude.

2 Preliminaries
We distinguish between quantifier logic and quantifier-free logic, where the former one is a logic with and the
latter one without any quantifiers, meaning that all variables are implicitly all-quantified. Typically, in a proof
assistant, we are given a problem in quantifier logic, of which we create an equisatisfiable problem for an ATP in
quantifier-free logic by Skolemisation.

For both logics we assume the existence of three disjoint sets: variables, functions, and predicates, where
every function and predicate has a fixed arity. Constants are functions with arity 0. Terms, atoms, literals, and
formulae are defined in the usual way. Implication is right-associative, i.e. a =⇒ b =⇒ c is interpreted as
a =⇒ (b =⇒ c).

Definition 1 (Substitution) A substitution is a function σ from variables to terms under the condition that
the fix point of σ exists, i.e. the substitution is non-circular.

We naturally extend substitutions to structures containing variables, such as terms and formulae.

Definition 2 (Normal forms) A formula is in negation normal form (NNF) iff negations are only applied to
atoms and the formula does not contain any implications. A formula is in prenex normal form (PNF) iff it has
the shape Q∗.P , where Q ∈ {∃,∀} is a quantifier and P is a quantifier-free formula.

For every first-order formula, we can find equivalent formulae in NNF and PNF.
To replace existential quantifiers in logic formulae, a frequently used method is Skolemisation. We will focus

only on outer Skolemisation [NW01].

Definition 3 (Skolemisation) A single outer Skolemisation step of a formula t is

Sk1(t) =
{
∀x1, . . . , xn.P [y := f(x1, . . . , xn)] if t = ∀x1, . . . , xn.∃y.P
t otherwise,

where f is a fresh function symbol. The final Skolemisation Sk(t) is the fixpoint of the single-step Skolemisation
Sk1(t). We call the set of fresh functions Skolem functions, and an application of a Skolem function a Skolem
term.

3 Proof deskolemisation
Deskolemisation is the process of creating formulae with existential quantifiers from a formula with Skolem
functions. In a similar way, proof deskolemisation is about creating a Skolem-free version of a proof with Skolem
functions.

Consider the following scenario: We are given a problem as a set of formulae with quantifiers, which we want
to use to produce a proof of ⊥. To pass the formulae to an ATP, we first convert them to PNF + NNF, yielding a
set of formulae F that can be shown without the axiom of choice to be equivalent to the original set of formulae.
Then, we Skolemize F and omit the universal quantifier prefixes, thus arriving at a set of formulae without
quantifiers. The ATP might return a proof of ⊥. Without loss of generality, we assume an ATP proof to be a set
of formulae F ′ consisting of arbitrarily many copies of the input formulae with disjoint variables, a substitution σ
from variables in F ′ to terms, and a natural deduction proof that uses σ(F ′) to show ⊥. We can easily represent
many proof types, such as tableaux or resolution, in this format.

As the substitution (as well as the natural deduction proof) may contain references to the Skolem functions,
which we do not introduce in quantifier logic, we want to eliminate such references.

The procedure consists of two steps: First, using the substitution σ, we create quantifier-free instances of the
formulae F in the quantifier logic. Next, the natural deduction proof from the ATP is converted to a proof in the
quantifier logic, which is then performed on the quantifier-free instances of F .



Table 1: Skolemisation of ∃x∀y.P (x, y) =⇒ ∀z∃w.¬P (z, w) =⇒
⊥.

# Quantifier formula Quantifier-free formula
t1 ∃x∀y.P (x, y) P (a, y)
t2 ∀z∃w.¬P (z, w) ¬P (z, f(z))

Consider the problem ∃x∀y.P (x, y) =⇒ ∀z∃w.¬P (z, w) =⇒ ⊥. Its quantifier-free version is shown in Table 1.
Assume that the ATP finds a proof of the problem, which contains only one step, namely the resolution of t1 with
t2, yielding a substitution σ = {y 7→ f(z), z 7→ a}1. The natural deduction proof of the quantifier-free formulae
could look as follows:

1 ¬P (a, f(a))

2 P (a, f(a))

3 ⊥ ¬E, 1, 2

In order to recreate the proof in quantifier logic, we instantiate the quantifier logic formulae. For this, formulae
cannot be simply processed in sequence, but the dependencies between the formulae need to be resolved switching
between the formulae until all quantifiers have been instantiated. The order is determined by the substitution: In
this example, we cannot immediately instantiate t2, because z depends on a which is a Skolem constant for which
we have not created an eigenvariable yet. However, we can eliminate the outermost existential quantifier of t1,
yielding an eigenvariable a for x and the new formula t3 = ∀y.P (a, y). In the second step, we cannot instantiate
the new formula t3, because y depends on f(z), which is a Skolem term for which we have not obtained an
eigenvariable yet. However, t2 can now be instantiated, because we have previously retrieved the eigenvariable a.
This yields t4 = ∃w.¬P (a,w). In a similar fashion, we can now obtain a new eigenvariable fa from t4, yielding
t5 = ¬P (a, fa), followed by an instantiation of t3, giving us the last formula t6 = P (a, fa). The first-order
resolution step can now be performed on t5 and t6, concluding the proof:

1 ∃x.∀y.P (x, y)

2 ∀z.∃w.¬P (z, w)

3 a ∀y.P (a, y)

4 ∃w.¬P (a,w) ∀E, 2

5 fa ¬P (a, fa)

6 P (a, fa) ∀E, 3

7 ⊥ ¬E, 5, 6

8 ⊥ ∃E, 4, 5–7

9 ⊥ ∃E, 1, 3–8

In the next subsections we will present the steps of the process.

3.1 Fixing unsubstituted variables

A variable x with σ(x) = x corresponds to a universal quantifier that is instantiated with a fresh variable. For
example, given the formulae ∀x.P (x) and ∀y.¬P (y), a possible substitution obtained from a first-order proof is
σ = {x 7→ y}. To prove ⊥, we need to instantiate ∀y.¬P (y) with an eigenvariable, say y′, yielding ¬P (y′).

This also treats the case where a Skolem term contains a variable x that is not substituted by some σ(x) 6= x.
As an example, take ∀xy.P (x, y) and ∀z.∃w.¬P (z, w), respectively its Skolemised version ∀z.¬P (z, f(z)). A proof

1Different substitutions are admissible for this example, for example {y 7→ f(a), z 7→ a}.
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with variables renamed

Figure 1: The clause connection calculus used in leanCoP.

might contain the substitution {x 7→ z, y 7→ f(z)}, where z is an argument of the Skolem term. However, this
does not create problems, because σ(z) = z, so by the previous paragraph, z will be instantiated by a fresh
eigenvariable.

3.2 Instantiating quantified formulae

The instantiation algorithm determines a sequence of quantifier eliminations, yielding quantifier-free formulae.
Special care is taken to produce different eigenvariables only for different Skolem terms, i.e. Skolem functions
applied to arguments that are not convertible with respect to the substitution. This is necessary for correctness of
the procedure. Conversely, we reuse existing eigenvariables for existentially quantified variables when all precedent
universal quantifiers were instantiated with equivalent terms. To that end, we find common prefixes of quantifier
instantiations and instantiate these common prefixes only once. Assuming the substitution is non-circular, it is
always possible to find a sequence of quantifier eliminations that respects the substitution, which follows from the
non-circularity of the substitution.

3.3 Proof lifting

The natural deduction proof in the quantifier-free logic with Skolem functions is lifted to a proof in the quantifier
logic. For this, every used instance of a quantifier-free formula is substituted by the instantiated version in
the quantifier logic, and Skolem terms are mapped to appropriate eigenvariables that were obtained in the
instantiation phase. In the end, one obtains a proof of ⊥ in the quantifier logic.

4 Implementation
We implemented the technique presented in section 3 as part of the integration of a first-order tableaux prover in
the Isabelle object logic FOL. The developed proof method IsaCoP2 integrates the ML version of the tableaux
prover leanCoP. In this section, we will give a short introduction to the prover and present its integration in
detail.

4.1 Tableau prover

For proof search we use the core reasoning procedure of the first-order tableaux prover leanCoP introduced by
Otten and Bibel [OB03, Ott08]. We translated it to Standard ML, based on a previous translation of Kaliszyk to
OCaml for HOL Light [KUV15].

leanCoP was chosen due to its very simple calculus (shown in Figure 1) which makes it easy to reconstruct
proofs once Skolem functions have been treated.

2The source code of IsaCoP is available under http://cl-informatik.uibk.ac.at/users/mfaerber/tactics.html.

http://cl-informatik.uibk.ac.at/users/mfaerber/tactics.html


4.2 Equality axioms

The core reasoning procedure of leanCoP does not have an inbuilt notion of equality, however the full version of
leanCoP supports equality, by inserting equality axioms into the problem. For that reason, before sending the
quantifier logic problem to leanCoP, we prove the following formulae and add them to the original problem:

• reflexivity of equality,
• transitivity of equality, and
• congruence axioms for every predicate P and every function f appearing in the problem (excluding Skolem

functions and equality itself), such as:

x1 = y1 =⇒ · · · =⇒ xn = yn =⇒ P (x1, . . . , xn) =⇒ P (y1, . . . , yn),
x1 = y1 =⇒ · · · =⇒ xn = yn =⇒ f(x1, . . . , xn) = f(y1, . . . , yn).

4.3 Translation to clausal form

To use a refutation-based prover on an Isabelle goal

A1 =⇒ · · · =⇒ An =⇒ C,

it is necessary to first negate the conjecture. To achieve conjecture directed proof search, leanCoP marks the
conjecture-related parts of the goal with a special symbol #:

¬C ∨ ¬# =⇒ A1 =⇒ · · · =⇒ An =⇒ # =⇒ ⊥.

Furthermore, it is necessary to translate the goal to a normal form PNF + NNF + CNF. This is achieved using
the Isabelle simplifier by rewriting with a fixed set of rules such as

¬(a ∧ b)↔ ¬a ∨ ¬b,
(∀x.P (x)) ∨Q↔ ∀x.(P (x) ∨Q).

The conversion of the goal to normal form is performed as proof steps inside the Isabelle logic, meaning that
every step is logically verified. In contrast, we do not perform Skolemisation inside the logic, because we do not
assume the axiom of choice. Instead, we convert the normal form to an equisatisfiable quantifier-free term by
introducing Skolem functions outside the logic. From the result, we extract the clauses from the quantifier-free
formulae and pass them to leanCoP.

4.4 Proof reconstruction

If leanCoP found a proof (consisting of a substitution and a tableaux proof), IsaCoP extracts all quantifier logic
formulae employed in extension steps and instantiates all quantifiers by the proof deskolemisation method shown
in section 3. Furthermore, the terms used inside the tableaux proof are converted to terms in the quantifier
logic, replacing Skolem terms by appropriate eigenvariables. Finally, the tableaux proof is converted to a natural
deduction proof, following the procedure used in MESON proof reconstruction [Har96]. We obtain a proof of ⊥,
showing that the negated conjecture is unsatisfiable, thus proving the conjecture.

5 Limitations
In this section, we shed light on some limitations of our approach, most notably the type of Skolemisation and
the usage of equality.

5.1 Optimised Skolemisation

Table 2: Inner Skolemisation example.

# Quantifier formula Quantifier-free formula
t1 ¬P (a, c) ¬P (a, c)
t2 ∀w.P (w, c) P (w, c)
t3 ∀xy.(P (x, y) ∧ ∃z.¬P (z, y)) P (x, y) ∨ ¬P (f(y), y)



We currently use outer Skolemisation, because optimised Skolemisation methods, such as inner Skolemisation,
may require creating different eigenvariables for syntactically equivalent Skolem terms. Consider for example
Table 2. The corresponding natural deduction proof for the quantifier-free formula might look as follows:

1 ¬P (a, c)

2 P (f(c), c)

3.1 P (a, c) ∨ ¬P (f(c), c)

3.2 P (f(c), c) ∨ ¬P (f(c), c)

4 P (a, c)

5 ⊥ ¬E, 4, 1

6 ¬P (f(c), c)

7 P (f(c), c)

8 ⊥ ¬E, 7, 6

9 ¬P (f(c), c)

10 ⊥ ¬E, 2, 9

11 ⊥ ∨E, 3.2, 7–10

12 ⊥ ∨E, 3.1, 4–11

Line 1 to 3.2 contain the instantiated versions of the quantifier-free formulae with Skolem functions. Note that
the second disjuncts of line 3.1 and 3.2 contain two occurrences of f(c), which in the quantifier logic proof will
be mapped to two different eigenvariables, namely some e1 when x is substituted to a, and some e2 when x is
substituted to f(c). This matters because line 10 depends on the correct instantiation done in line 2, where it is
not immediately clear without an analysis of the refutation whether e1 or e2 should be used in lieu of f(c) to
instantiate ∀w.P (w, c).

5.2 Equality

To use our reconstruction method, proofs in calculi with equality are not allowed to rewrite subterms of Skolem
terms. We respect this restriction in our implementation by not generating congruence axioms for Skolem
functions. To see what can go wrong when Skolem subterms are rewritten, consider the problem

∀x.∃y.P (x, y) ∧ ¬P (x, y) ∧ x = c.

The Skolemised version is
∀x.P (x, f(x)) ∧ ¬P (x, f(x)) ∧ x = c,

and instantiating it with a and b yields

P (a, f(a)) ∧ ¬P (a, f(a)) ∧ a = c,

P (b, f(b)) ∧ ¬P (b, f(b)) ∧ b = c.

Assume that the proof shows ⊥ using P (a, f(a)) and ¬P (b, f(b)), rewriting b to a. Reproducing this proof in
quantifier logic is difficult, because the Skolem terms do not exist in quantifier logic, so rewriting underneath a
Skolem term cannot be simply translated to quantifier logic.

6 Related work
The axiom of choice can be used to represent Skolem functions: Given a formula ∀x.∃y.P (x, y), it can be
Skolemised to ∀x.P (x, f(x)), and the Skolem function is then defined to be f = λx.εy.P (x, y) [HB39]. While



such reasoning can be in principle expressed in FOL-based logics, it creates an ugly dependency on the axiom of
choice, which is not assumed in Isabelle/FOL, and certain derived logics such as the Mizar environment do not
assume it in general.

Various approaches for reducing the reliance on the axiom of choice are discussed by Blanchette in the section
“Skolemization without Choice” of his Ph.D. thesis [Bla12]. In particular, he shows how to simulate Skolem
functions as (higher-order) schematic functions in Isabelle to reconstruct proofs of the automated theorem prover
Metis. Isabelle’s higher-order unifier can then frequently find the function that implements the Skolem function.

Another approach by de Nivelle [dN05] is about the translation of resolution proofs into first-order proofs:
He introduces Skolem relations to simulate the effect of Skolem functions. This approach relies on the less
controversial definite description operator. Such an operator is however still not provided for any first-order Mizar
type [KPU16].

Avigad [Avi03] adds new functions by building finite approximations thereof via a forcing argument. All these
approaches aim in some or the other way at introducing the Skolem functions in the logic where the proof is
carried out. Our method reconstructs proofs without introducing Skolem functions in the proof assistant.

A more general approach to reconstruct proofs in natural deduction calculi can be achieved by using expansion
trees [Mil83, Pfe87] which implicitly encode quantifier instantiations and also allow reconstruction of proofs that
do not rely on prenex normal form. We plan to adopt expansion trees in the future.

7 Conclusion
We showed a method to create instances of logic formulae without occurrences of Skolem functions from proofs
with Skolem functions. This allows reconstruction of ATP proofs with Skolem functions in first-order logic.
Furthermore, we implemented our approach as a proof tactic for Isabelle/FOL, using it to reconstruct proofs
from a tableaux prover. Further work can be done to improve the tactic, making it a contestant for existing
tactics: Treatment of lambda abstractions (which occur in a few places because FOL is encoded as an Isabelle
object logic), e.g. by translating them to combinators, and extension to logics beyond FOL. Furthermore, our
method might be usable to reconstruct also proofs from more powerful ATPs, such as E [Sch13] and Vampire
[KV13], provided one can obtain suitable substitutions from their proofs and one restricts the usage of equality,
see subsection 5.2. In the future, we would like to use expansion trees and to adapt a non-clausal prover [Ott11]
for proof search.
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