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Abstract—The Mizar Mathematical Library is one of the
largest collections of machine understandable formal proofs
encompassing many areas of today mathematics including results
from algebra, analysis, topology, and lattice theory. The Mizar
system has so far been the only tool able to completely process,
certify, and make use of these developments. In this paper,
we present the progress in the development of an independent
certification mechanism of Mizar proofs based on the Isabelle
logical framework. The approach allows rechecking the Mizar
formal proofs based on a more succinct and more precisely
specified formal infrastructure. Additionally, it necessitates a
full formal specification of the mechanisms that ensure the
correctness of the defined objects, in particular, the proofs that
such mechanisms are correct. The development already covers
an important part of the Mizar library foundations. We improve
the mechanism for defining Mizar structures and show that it
permits simpler validation of proof developments involving such
objects. To demonstrate this, we perform a complete translation
of the Mizar net of basic algebraic structures including their
attributes and certify all the corresponding proofs in Isabelle.

I. INTRODUCTION

Computer certified formal proofs are today one of the most
important techniques used in formal methods. They are

used to guarantee the correctness of compilers [1], operating
systems [2], hardware [3], as well as to certify mathematical
results that involve computation [4]. The Mizar system [5] is
one of the oldest computer systems used to certify proofs. Its
library, the Mizar Mathematical Library [6] (MML) contains
today more than 1200 articles and 60000 proved theorems
mainly about mathematics. The Mizar system has so far been
the only tool able to process, fully certify, and make use of
these formal proof developments.

Algebraic structures are one of the basic building blocks of
formal proofs. They are crucial both for the foundations of
mathematics and of computer science. This can be witnessed
by the formal proof libraries of various interactive proof
systems. Indeed, the standard library of Isabelle/HOL [7]
defines more than three hundred type classes used in most
of its Archive of Formal Proofs [8]. Coq uses its records
which include properties in its algebraic foundations, both
in the standard library [9], its constructive repository [10],
and in the small scale reflection libraries [11] used as a
foundation for the Four-Color theorem and the Odd-Order
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theorem proofs. Finally, the MML [6] includes more than
a hundred structures which together with different attributes
correspond to thousands of different algebraic structures. 74%
of the Mizar articles depend directly or indirectly on algebraic
structures, including the most important domains of mathe-
matics developed in MML, such as topological spaces, vector
spaces, lattices, and fuzzy sets [12].

In this paper, we discuss the progress in our project at-
tempting to certify the MML independently. We make use of
the Isabelle logical framework [13] to specify the foundations
of Mizar [14]. We further define a number of mechanisms
that help to translate the Mizar definitions and proofs [15].
We investigate the set theoretic representation of algebraic
structures and certify them in the Isabelle logical framework
object logic corresponding to the Mizar foundations as well
as translate a significant part of the Mizar algebraic structure
foundations. After shortly introducing logical frameworks and
Isabelle (Section II), as well as Mizar and the corresponding
object logic (Section III), the particular contributions of this
paper are:

• We provide an infrastructure for more elegant proofs of
Mizar structure correctness conditions including struc-
tures with multiple fields (Section IV);

• We formalize all basic algebraic Mizar structures in
Isabelle/Mizar together with their defining properties in-
cluding structures that include other structures as com-
ponents, such as a structure over a field and show that
the defined Mizar structures are correctly handled in
the presence of attributes and in particular that proofs
about such defined algebraic structures can be concise
and elegant (Section V).

II. LOGICAL FRAMEWORKS AND ISABELLE

N early all interactive proof assistants today rely on one
fixed logic. This allows optimizing a system for that

foundations. However, a number of systems focused on mod-
eling actual logical systems. These are referred to as logical
frameworks, and later a number of such systems became
useful not only for modeling the logic but also to work in
the specified logic, referred to as object logic. The three
major logical frameworks are Isabelle [7], Twelf [16], and
MMT [17].



Isabelle is today one of the proof systems with the largest
libraries of formally proved theorems. It is based on a simple
type theory with a shallow polymorphism that is implemented
in a manually checked kernel. The meta logic provides the
user with a set of primitives that makes it convenient to define
object logics. The most developed object logics are higher-
order logic, untyped set theory, and Lamport’s temporal logic
of actions.

An Isabelle formalization consists of one or more theory
files. A theory is a collection of definitions, proved theorems,
and notations that allow nicer presentation of terms. An
Isabelle definition introduces a new identifier that is equal
or equivalent (equal as a boolean predicate) to a definition
body. A theorem or lemma consists of the statement and
the proof. For most of the proved theorems presented in the
rest of the paper, we will omit the proofs, they are fully
included in the development. Each abbreviation allows for
convenient input or output syntax for more complicated terms,
without introducing new definitions. These are useful if such
a definition would always need to be unfolded and is nicer
presented as folded to the user. Most Isabelle proofs are today
written in the declarative Isar style [18]. There, intermediate
statements are introduced using the have keyword and justified
using proof methods. For the rest of the paper, the methods
and tactics used for the justifications are not essential, it is
important to note their correspondence to proof steps that are
considered obvious for humans. Finally the assume keyword
introduces assumptions in proof blocks and show is used to
denote the goal that is local to the proof block that is to be
checked by Isabelle.

III. MIZAR AND CORRESPONDING OBJECT LOGIC

M izar is one of the pioneering systems for mathematics
formalization that is widely-used and still under active

development. The Mizar project from its beginning aimed to
make a system for human readable formalization of mathe-
matics, where:
• the proof style was designed to imitate style occurring in

the informal mathematical practice,
• the type system tries to express how mathematicians use

mathematical objects and how they categorize them.
Therefore, Mizar uses a rich type system and proof style,

which makes formalization of mathematics more intuitive and
human-readable than in other systems [19], where the main
idea of proofs is easy to observe [20]. Such situation occurs
especially if the author of a formal proof puts additional
effort to manually improve readability or uses dedicated tools
[21] that optimize the NP-complete problems of improving
legibility [22]. Therefore, it is not surprising that the solutions
used in Mizar have been an inspiration to implement the
analogical solutions in other systems.

One of these pioneering works in this field was made by
J. Harrison [23] who explored the Mizar language. The result
of this work was the environment Mizar Mode for HOL
enabling writing proofs in a Mizar declarative way [24]. The
similar solutions were implemented in other procedural proof

assistants, e.g., Declare [25], Isar language for Isabelle [18],
Mizar-light for HOL Light [26], miz3 for HOL Light [27],
MMode for Coq or declarative proof language (DPL) for Coq
[28]. However, the similarity between these environments and
Mizar system generally is limited to a few rules that are similar
to the rules of the S. Jaśkowski natural deduction style [29],
responsible for the universal quantifier introduction, the thesis
indication, the implication elimination, the introduction of the
reasoning by cases. It is worth emphasizing that the way of
justification of the reasoning steps in these environments is
based on tactics of the particular system that are very different
from Mizar by (its equivalent can be found only in Mizar
Mode for HOL [23]).

Another significant advantage of the project Mizar, from
the point of view of other formal systems, is the library
of mathematical knowledge formalized in the Mizar system,
MML. However, the exploration of these data requires the
sophisticated language constructions and types of Mizar that
do not have close equivalents in other systems.

The largest translation of Mizar has been done by Urban
[30] to the TPTP first-order language. Although this translation
has covered the important part of the MML, it does not
constitute the accurate representation of the Fraenkel operator
and scheme [29]. Additional work on this solution has enabled
the creation of the extensive theorems database of Mizar
Problems for Theorem Proving (MPTP) that is used in the
process of comparing the performance of leading systems of
automatic theorem proving, as well as during the machine
learning of the MizAR proof advice system [31].

Kunčar [32] has attempted to recover the Mizar system in
the type system of HOL Light. This approach has enabled
the translation of the first few simpler theories as transparent
higher-order logic theories, however it is not applicable to
the whole MML where the more advanced features of the
Mizar system type are used. Difficult to reconstruct, are Mizar
type mechanisms that check whether some type is a subtype
of another type, generate the type of term base on types of
subterm, which eliminate inconsistent instantiations and in
consequence speed up the verification process. Additionally,
two equal terms in Mizar can possess two incompatible types
(e.g., see reconsider [33]).

The statements of the theorems in the whole MML have
been exported to the MMT logical framework [34]. This allows
the use of various MMT services for MML, such as searching
the library or providing proof advice, however does not include
an independent verification of the proofs or proof automation.

Isabelle already has an object logic Isabelle/ZF [35] based
on set theory. Already the foundational axioms of ZF differ
from those of Tarski-Grothendieck, and the type system intro-
duced by Mizar is very different from any of the existing object
logics in Isabelle. Furthermore, the library of Isabelle/ZF and
the automation provided is quite different from that of the
proposed research.

We defined an object logic that provides Mizar-like foun-
dations in [14]. Here, we briefly remind its construction. As
the foundations of Mizar are based on Jaśkowski first-order



natural deduction, we start with the Isabelle/FOL object logic.
We introduce one meta-level type for Mizar sets and one for
Mizar types. We introduce the constants that correspond to
sets being of particular types and to combine types (the Mizar
soft type system allows intersection types [36]), the indefinite
description operator, as well as the axioms that specify these
constants. With the Isabelle syntax mechanisms, we allow
defining Mizar like syntax for statements and definitions,
which can later be used to specify the Tarski-Grothendieck
foundations of set theory and translate the first few articles of
the MML.

IV. STRUCTURE REQUIREMENTS

Formalizations of computer systems often need to refer
to mathematical structures. In informal computer science

practice, such proofs typically use ordered tuples for such
structures. For example 〈G,+, 0〉 could be an additive group
and 〈G, ·, 1〉 a multiplicative one. In the informal approach,
the expression “the group 〈G,+, 0〉” provides two kinds of
information simultaneously: a signature and its properties.
The signature says that it is a structure containing the set
G, a binary operation + and a given element of the set 0.
The properties are given as three group axioms. A formal
approach to reason about such structures taken by the Mizar
system attempts to avoid independent definitions of variants
of structures (such as semi-group, monoid, or abelian groups)
by specifying the signature separately from the adjectives that
correspond to the properties of the structure.

A. Structure Element Interpretation

Every Mizar structure signature called structured type is
defined as a set of assignments. Each assignment is of the
form sel → spec, where sel is a unique structure element
label (called selector in the Mizar language) and spec is
the specification of the type of the respective element of
the structure. The signature of a group is the addLoopStr
structure. It is specified in MML as follows:

struct (ZeroStr,addMagma) addLoopStr (#
carrier -> set,
addF -> BinOp of the carrier,
ZeroF -> Element of the carrier #);

where for example addF -> BinOp of the carrier denotes
that + is a binary operation on the field carrier. The list
of structures given in parentheses immediately after the struct
keyword, namely ZeroStr, addMagma are the names of
previously defined structures which contain the element 0
(ZeroStr) and a set with the binary operator (addMagma)
respectively.

An Isabelle formalization of a structure type gives rise to
a structure prototype. Each instance of the prototype will
be a partial function, with the value corresponding to the
selector having the respective type specified in the structure
prototype. Definitions of this kind, even if common in informal
practice, contain a recursive call. The specification can refer
to other parts of the structure (in the above example addF

in addLoopStr is a binary operation of the carrier). To
specify this in Isabelle we further need a meta-level function
which for a given object of structured type and a selector as
arguments returns the term present in the object:

definition TheSelectorOf (the - of - 190) where
func the sel of Term → object means λit.
for T be object st [sel, T] in Term holds it = T

In order to use such functions in the context of structures,
the actual specifications cannot be simply types, but rather
functions that for a given object of a structured type as an
argument returns the type. In particular, the addF element
specification needs to be defined as λS. BinOp-of the
carrier of S. To achieve a more Mizar like formulation
addF -> BinOP-of’ the’ carrier we further intro-
duce abbreviations for the types with arguments:

abbreviation TheS (the ′′ -) where
TheS ≡ λselector Term. the selector of Term

abbreviation BinOp-of (BinOp-of ′′ -) where
BinOp-of ′ X ≡ λit. BinOp-of X(it)

This allows representing all assignments of the form
selector → specification as a unary predicate (correspond-
ing to the Isabelle definitions of attributes) which describes
all partial functions that are the instances of the structure
prototype. To allow the computation of the selector of it we
add the condition that the selector is in its domain.

definition field (- → - 91) where
sel → spec ≡ define-attr (λit.
the sel of it be spec(it) & sel in dom it)

We can finally define actual structure prototypes. A new
structure prototype in Isabelle corresponds to a Mizar mode
(non-empty type) which is a partial function that satisfies all
the constraints specified in the fields:

abbreviation(input) struct (struct - - [10,10] 10)
where struct Name Fields ≡
(Name ≡ define-mode(λit.
it be Function & it is Fields))

The original addLoopStr can now be fully formally spec-
ified, using a syntax that is very similar to the Mizar original,
while at the same time allowing a complete certification:

definition struct addLoopStr
(# carrier → set ′;
addF → BinOp-of ′ the ′ carrier;
ZeroF → Element-of ′ the ′ carrier #)

B. Non-emptiness of Structure Types

A definition of a structure prototype in Mizar provides
not only the information about the types of the elements
described by the signature but also ensures that there is
at least one element of the structure type. For this, the
Mizar checker verifies that all the defined structure spec-
ifications are non-empty. In Isabelle, we need to actually
give a formal proof that the structure exists. We can achieve
this by using the Hilbert choice operator ε, providing for
each assignment of the form selector → specification the



pair 〈selector, ε(specification)〉. In case of the considered
addLoopStr structure prototype, we can use:

term {[carrier, the set]}∪
{[addF, the BinOp-of the set]}∪
{[ZeroF, the Element-of the set]}

Proofs of non-emptiness require a lot of effort especially
with structures with more elements (some structures have as
much as 12 elements). Such proofs ignore the non-emptiness
proofs from the structure ancestors. We will, therefore, propose
in the next Subsection IV-C a mechanism able to extend an
object by the missing elements possibly changing their order.
This is desired because a structure definition also implicitly
defines:
• the attribute strict which means that the domain of the

object contains precisely the selectors indicated in the
definition and no other selectors;

• the restriction operation which restricts an object to its
strict domain.

Therefore, we provide a scheme for defining the correctness
of structures. We present this lemma as well as the majority
of lemmas in the paper without proofs which can be found in
the development.

lemma struct-scheme:
assumes df:
S ≡ define-mode(λit. it be Function & it is Fields)

and ex:
ex X be Function st X is Fields & dom X = D

and monotone: for X1 be Function st X1 is Fields
holds D ⊆ dom X1

and restriction: for X1 be Function st X1 is Fields
holds X1|D is Fields

shows (x be S iff (x be Function & x is Fields)) &
Ex (λx. x be S) & domain-of S = D &
(for X be S holds
the-restriction-of X to S be (strict S) ‖ S)

which given the subproofs for the existence condition ex and
monotonicity monotone allows showing the correctness of
the domain_of definition (i.e. existance and uniqueness)
for the defined structure S, additionally deriving the equality
domain_of S = D, where

definition domain-of (domain ′-of - 200) where
func domain-of M → set means
(λit. (ex X be M st it = dom X) &

(for X be M holds it ⊆ dom X))
Furthermore, by proving the restriction definition to the

equality, we get the information that X | domain_of S is
of the structured type of S which has the attribute strict, if
X is of the structured type of S, which completes the definition

definition restriction (the ′-restriction ′-of - to - 190)
where
func the-restriction-of X to Struct →

strict Struct ‖ Struct equals
X | domain-of Struct

where the definition of strict is as follows

definition strict ::Mode⇒ Attr (strict - 200) where
attr strict M means

(λX. X be M & dom X = domain-of M)

C. Recursive Structure Correctness Conditions

As discussed in the previous section, the struct_scheme
lemma assumptions can be used to show the non-emptiness of
a defined structure type S. However, the assumptions about
each ancestor A of the structure are insufficient to be usable
as part of the proof for S. In particular, there is no condition
that would correspond to restriction, which could give
the information which extensions of A (the extensions of
the function that describe the object instance) satisfy all the
assignments of A. For this reason, we propose a version of the
assumption in struct_scheme with the additional fourth
correctness condition

definition struct-well-defined :: Attr ⇒ Set ⇒ o
( - well defined on -[10,10] 200)

where
Fields well defined on D ≡
(ex X be Function st X is Fields & dom X=D)

& (for X1 be Fields‖Function holds D ⊆ dom X1)
& (for X1 be Fields‖Function holds X1|D is Fields)
& (for X1 be Fields‖Function, X2 be Function st

D ⊆ dom X1 & X1 ⊆ X2 holds X2 is Fields)
This allows a weaker defining lemma assumption

lemma struct-well-defined:
assumes df:
S ≡ define-mode(λit. it be Function & it is Fields)
and well: Fields well defined on D

shows (x be S iff (x be Function & x is Fields)) &
Ex (λx. x be S) & domain-of S = D &
(for X be S holds
(the-restriction-of X to S) be (strict S) ‖ S)

With these modifications, we can show that an existing list
of assignments specified for the domain D can be modified
by adding a new selector → specification pair
assuming that the selector is not present in D so far, and
the specification uses the selectors of D. An example
lemma that allows extending a structure is:

theorem Fields-add-argM1:
assumes Fields well defined on D
and selector-1 in D
and not (selector in D)
and for X1 be Fields‖Function holds

ex S be M1 (the selector-1 of X1) st True
shows
Fields | (selector → λS. M1 (the selector-1 of S))

well defined on D ∪ {selector}
This can now be practically used to simplify the non-

emptiness proof of addLoopStr using the previous proof of
the well-definedness of addMagma over the set {carrier}∪
{addF} as follows:

lemma addLoopStr-well:
(# carrier → set ′;
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Figure 1. Net of the basic algebraic structures in the Mizar Mathematical Library following [37]. The presented ones have already been covered in our
formalization. The arrow captions indicate the added selectors. Solid lines indicate the use of the ancestor structure in the well-definedness proofs, and dashed
lines indicate that the ancestor structure is omitted in the proofs.

addF → BinOp-of ′ the ′ carrier;
ZeroF → Element-of ′ the ′ carrier #)

well defined on {carrier} ∪ {addF} ∪ {ZeroF}
proof (rule Fields-add-argM1[OF addMagma-well])

show carrier in {carrier} ∪ {addF}
by (simp add:string)

show not ZeroF in {carrier} ∪ {addF}
by (simp add:string)

show for X1 be addMagma-fields‖Function holds
ex it be Element-of-struct X1 st True

proof
fix X1 assume X1 be addMagma-fields‖Function
hence the carrier of X1 be set using field by auto
thus ex it be Element-of-struct X1 st True

using subset-1-def-1 by blast
qed

qed

where the proof only needs to use the non-emptiness of
the type Element ofset. Furthermore, the fact that the
carrier is a member of {carrier}∪ {addF}, as well as
the fact that ZeroF is not a member of {carrier}∪{addF}
can both be handled completely automatically by the simplifier
in all such proofs.

The well-definedness of addLoopStr does not need to
rely on that of the addMagma ancestor. One could instead
extend the list of assignments of ZeroStr by addF →
BinOp-of’ the’ carrier and change the order. For
this purpose we provide the lemma:

theorem well-defined-order:

assumes
∧
X. X is Fields1 iff X is Fields2

and Fields1 well defined on D1
shows Fields2 well defined on D1

The components described above are sufficient to define all
the MML structures (the basic ones are presented in Fig. 1).
The construction follows the recursive element addition ap-
proach.

Even if the addLoopStr proof refers to its ances-
tors, the inheritance information is not provided again by
structSchemeWell. The Mizar system allows indicating
this information directly in the structure definition by giving a
list of all ancestors. In our approach, it is possible to prove a
structure inheritance. Such proofs can be always automatically
performed by the simplifier.

theorem addLoopStr-inheritance:
assumes X be addLoopStr
shows X be addMagma & X be ZeroStr

using addLoopStr addMagma ZeroStr assms
by simp

V. NET OF BASIC ALGEBRAIC STRUCTURES

M izar structures together with the inheritance mecha-
nisms significantly facilitate the formalization of com-

puter systems and various domains of mathematics, as well
as combining them. For this reason, structures are a challenge
for our project, especially the struct_0 article which defines
the elementary structures and their operations.

MML contains today 168 structure signatures. Structure
signatures form a net because of multiple inheritances. Nev-
ertheless, 135 of the signatures inherit from 1-sorted, namely



1-sorted

empty-struct

multMagma

⊗S , unital
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OneStr
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doubleLoopStr
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Figure 2. The net of doubleLoopStr structure signature ancestors in the MML. For each node, the adjectives required to define a field as well as the
unary and binary operations performed on the elements, are listed below.

the signature of structures that contain a carrier which includes
some examples in most developed domains of mathematics in
the MML, such as algebra, topology, and the theory of lattices.
The basic structures are depicted in Fig. 1. These 15 signatures
are the direct ancestors of 57 other structure signatures in the
MML. Furthermore, these 15 are directly used to define 293
Mizar types (this includes non-expandable types [36]), 291
attributes, 962 functors, and 91 predicates.

As structure signatures are mostly used with adjectives, we
reformalize the chosen structures along with their attributes
to demonstrate that they can be used efficiently in subsequent
proofs. In the paper we focus on doubleLoopStr, defined
in the MML article ALGSTR_0:

struct (addLoopStr, multLoopStr_0)
doubleLoopStr (#

carrier -> set,
addF -> BinOp of the carrier,
ZeroF -> Element of the carrier,
multF -> BinOp of the carrier,
OneF -> Element of the carrier #)

that inherits from both addLoopStr and multLoopStr_0,
i.e., the signatures of additive and multiplicative groups, re-
spectively. The doubleLoopStr structure is also the direct
ancestor of the signature or ModuleStr overF used in vector
space domains, where F represents the set of scalar values. A
correct definition of ModuleStr overF permits us to verify
our model and our approach for structures parametrized by
other structures.

A. Field Formalization

For our formalization of the signature and basic properties
of fields, it was necessary to adapt 20 MML articles. Our re-
formalization focused on the articles STRUCT_0, GROUP_1,

RLVECT_1, ALGSTR_0, VECTSP_1, which define all the
ancestors of a field (doubleLoopStr), and the main ad-
jectives used in the field definitions, as well as the basic
binary and unary operations. In particular we completely
cover ALGSTR_0 in Isabelle/Mizar, which includes 43 functor
and predicate definitions (including 13 correctness condition
proofs), 72 registrations: non-emptiness of types and relations
between groups of adjectives defined on structures, and 6
signatures including

definition
struct doubleLoopStr (#

carrier → set ′;
addF → BinOp-of ′ the ′ carrier;
multF → BinOp-of ′ the ′ carrier;
OneF → Element-of ′ the ′ carrier;
ZeroF → Element-of ′ the ′ carrier #)

The signature can be used for more complex algebraic struc-
tures by extending it by appropriate adjectives. In particular
we exactly imitate the MML definitions:

abbreviation
Ring ≡ Abelian | add-associative | right-zeroed |

right-complementable | associative |
well-unital | distributive |
non empty-struct ‖ doubleLoopStr

abbreviation
SkewField ≡ non degenerated |

almost-left-invertible ‖ Ring
abbreviation
Field ≡ commutative ‖ SkewField

The adjectives used in the above definitions have been
specified for the various ancestors of doubleLoopStr (see
Fig. 2). Such definitions have been moved to earliest possible
structures as part of the MML refactoring. This allows easy



definition
let S be ZeroStr;
func 0.S -> Element of S equals

the ZeroF of S;
end;

definition
let S be OneStr;
func 1.S -> Element of S equals

the OneF of S;
end;

definition
let M be addMagma;
let x,y be Element of M;
func x + y -> Element of M equals

(the addF of M).(x,y);
end;

definition
let M be multMagma;
let x,y be Element of M;
func x * y -> Element of M equals

(the multF of M).(x,y);
end;

definition struct-0-def-6-prefix ( 0- [1000] 99) where
func 0S → Element-of-struct S equals
the ZeroF of S

schematic-goal struct-0-def-6:
assumes S be ZeroStr shows ?X

definition struct-0-def-7-prefix (1- [1000] 99) where
func 1S → Element-of-struct S equals
the OneF of S

schematic-goal struct-0-def-7:
assumes S be OneStr shows ?X

definition algstr-0-def-1 (- ⊕- - [66,1000,67] 66) where
func x ⊕M y → Element-of-struct M equals

(the addF of M) . (| x , y |)
schematic-goal algstr-0-def-1:

assumes M be addMagma & x be Element-of-struct M
& y be Element-of-struct M shows ?X

definition algstr-0-def-18 (- ⊗- - [96, 1000, 97] 96) where
func x ⊗M y → Element-of-struct M equals

(the multF of M) . (| x , y |)
schematic-goal algstr-0-def-18:

assumes M be multMagma & x be Element-of-struct M
& y be Element-of-struct M shows ?X

Figure 3. Selected definitions of highlighted elements and binary operations in doubleLoopStr originally formulated in the MML and their Isabelle/Mizar
reformulations.

definition
let M be addLoopStr, x be Element of M;
assume A1: x is left_complementable

right_add-cancelable;
func -x -> Element of M means

it + x = 0.M;
end;

definition
let M be multLoopStr, x be Element of M;
assume A1: x is left_invertible

right_mult-cancelable;
func /x -> Element of M means

it * x = 1.M;
end;

definition algstr-0-def-13 (	- - [1000, 86] 87) where
assume x is left-complementableM | right-add-cancelableM
func 	M x → Element-of-struct M means
(λit. it ⊕M x = 0M )

schematic-goal algstr-0-def-13:
assumes M be addLoopStr

x be Element-of-struct M shows ?X

definition algstr-0-def-30 ( ′/- - [1000, 99] 98) where
assume x is left-invertibleM | right-mult-cancelableM
func /M x → Element-of-struct M means
(λit. it ⊗M x = 1M )

schematic-goal algstr-0-def-30[rule-format]:
assumes M be multLoopStr

x be Element-of-struct M shows ?X
Figure 4. Selected conditional definitions of unary operations from ALGSTR_0 originally formulated in the MML and their Isabelle/Mizar reformulation.

import of developed theories, which we want to now evaluate
in Isabelle/Mizar. Consider the theory of additive groups. It is
mostly defined over the structure addLoopStr with the ad-
jectives add-associative, right_zeroed right_-
complementable. As addLoopStr is an ancestor of the
doubleLoopStr signature, this set of adjectives is a subset
of that used for example for rings, therefore, properties of
additive group can be used in the context of rings in the MML.

Moreover, Mizar allows the use of functors defined
on ancestors with arguments of further types. We show
the definitions of the selected elements and operations of
doubleLoopStr, namely 0, 1, +, and * are defined in
Fig. 3. In Mizar, the patterns of the symbols are given in
previously specified dictionaries, while in Isabelle these need
to be given in the definition block. Furthermore, the definition

is split into two parts: the pattern without the argument types
and the definition theorems. This allows reducing the number
of visible arguments corresponding to hidden arguments in
Mizar, as well as allows interpreting conditional definitions
(see Fig. 4). The conditions need to appear in the pattern
in the Isabelle/Mizar approach. More details are given in the
Mizar_defs theory file.

As case studies, we show that the proposed way to model
structures and their inheritance is sufficient not only to define
attributes and functors but also is adequate for imitating Mizar-
style formalization. For this purpose, we reformalize (so far
manually) selected theorems that concern, e.g. the additive
and multiplicative groups, and use them in the context of
doubleLoopStr. Here we show a single selected proof
of the statement that the product of two elements is zero



theorem Th12:
for F being add-associative right_zeroed

right_complementable associative commutative
well-unital almost_left_invertible
distributive non empty doubleLoopStr,
x,y being Element of F holds

x * y = 0.F iff x = 0.F or y = 0.F
proof

let F be add-associative right_zeroed
right_complementable associative commutative
well-unital almost_left_invertible distributive
non empty doubleLoopStr,
x be Element of F,
y be Element of F;

x * y = 0.F implies x = 0.F or y = 0.F
proof

assume A1: x * y = 0.F;
assume A2: x <> 0.F;
x" * (0.F) = x" * x * y by A1,GROUP_1:def 3

.= (1.F) * y by A2,Def10

.= y;
hence thesis;

end;
hence thesis;

end;

theorem vectsp-1-th-12:
for F being add-associative | right-zeroed |

right-complementable | associative | commutative |
well-unital | almost-left-invertible |
distributive | non empty-struct ‖ doubleLoopStr,

x,y being Element-of-struct F holds
x ⊗F y = 0F iff x = 0F or y = 0F

proof(intro ballI)
fix F x y
assume T:F be add-associative | right-zeroed |

right-complementable | associative | commutative |
well-unital | almost-left-invertible |
distributive | non empty-struct ‖ doubleLoopStr
x be Element-of-struct F
y be Element-of-struct F

hence A:F be multLoopStr-0 F be multLoopStr F be ZeroStr
using doubleLoopStr multLoopStr-0 multLoopStr ZeroStr by auto
have I: x˝F be Element-of-struct F

using algstr-0-def-30[of F x] T A by auto
have Z: 0F be zero F ‖ Element-of-struct F

using struct-0-def-12-a[of F] struct-0-def-6[of F] A by auto
have x ⊗F y = 0F implies x = 0F or y = 0F

proof(rule impI,rule disjCI2)
assume A1:x ⊗F y = 0F
assume A2:x <> 0F
have x˝F ⊗F 0F = x˝F ⊗F x ⊗F y

using A1 group-1-def-3a T I by auto
also have . . . = 1F ⊗F y using A2 vectsp-1-def-10 T by auto
also have . . . = y using vectsp-1-reduce-2 T A by auto
finally show y = 0F using vectsp-1-reduce-3[OF - I Z]
T vectsp-1-cl-20 by auto

qed
thus x ⊗F y = 0F iff x = 0F or y = 0F using
vectsp-1-reduce-4[OF - T(3) Z] vectsp-1-reduce-3[OF - T(2) Z]
T vectsp-1-cl-20 by auto

qed

Figure 5. A property of fields originally formulated in the VECTSP_1 article and its Isabelle/Mizar reformulation.

if and only if at least one of them is zero (see Fig. 5).
Note that the justification of steps refer to theories developed
for multLoopStr_0, multLoopStr, ZeroStr structures
(see steps that use label A in justifications). Additionally, each
such justification uses some of the attributes indicated in the
step labeled by T.

We make use of Isabelle features to model the proofs in
such a way that the Isabelle/Mizar language can be as close
as possible to the Mizar one. This simplifies the comparison of
both proofs. The proofs in our certification contain more steps
than the Mizar ones. This is mainly due to the lack of the Mizar
automation in our system, e.g., type inference, equational
calculus [38], definitional expansions [39]. Additionally, we
still have to directly indicate the background information, such
as registrations, that are processed automatically by Mizar. We
are currently working on mechanisms that would reduce the
numbers of additional steps required.

VI. CONCLUSION

We have presented the progress in our project aiming to
independently certify Mizar proofs in the Isabelle logical
framework. The proposed recursive approach to structures
allows more readable proofs of well-definedness, as well as a

more concise way to specify structure inheritance. We verified
the provided mechanisms by reformalizing the complete Mizar
article defining basic algebraic structures ALGSTR_0, as well
as parts of several articles that define and prove properties of
structures contain other structures as fields. The experiments
confirm that the proposed approach is convenient for proving
structure properties.

The Isabelle/Mizar formalization currently includes 31 the-
orems, 97 registrations including 6 reductions, 86 definitions
where 37 of them required Mizar-style justifications and 4
redefinitions concerning MML structures. The total size of the
development is 416 kB and 9742 lines of code. It is available
at:

http://cl-informatik.uibk.ac.at/cek/fedcsis2017/

A. Future Work

Our certification work has so far focused on the foun-
dations, definitions, and registrations available in the Mizar
language. A natural next step would be to allow an implicit
use of the background knowledge. Without it, redundant
steps in reasoning to represent information computed the
Mizar type-inference mechanisms have been necessary so far.
Furthermore, we plan to translate the whole MML into the

http://cl-informatik.uibk.ac.at/cek/fedcsis2017/


Isabelle/Mizar environment in an automated way and with
the help of automatically finding related concepts between
logics [40], as well as by improving the currently available
Isabelle automation for Mizar [41] we hope to cross-verify
large parts of the translated MML in Isabelle which is also one
of the important steps in the creation of a combined formal
library spanning multiple foundations and systems [42].
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