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Abstract. Utility functions form an essential part of game theory and
economics. In order to guarantee the existence of these utility functions
sufficient properties are assumed in an axiomatic manner. In this pa-
per we discuss these axioms and the von-Neumann-Morgenstern Utility
Theorem, which names precise assumptions under which expected utility
functions exist. We formalize these results in Isabelle/HOL. The formal-
ization includes formal definitions of the underlying concepts including
continuity and independence of preferences. We make the dependencies
more precise and highlight some consequences for a formalization of game
theory.

1 Introduction

Utility theory seeks to describe how humans evaluate and compare alternatives or
outcomes using mathematical tools. This theory forms the basis of game theory
and therefore several fields in economics. Hence, we believe that formalizations
in either of those areas require a solid base in utility theory.

In their pioneering work “Theory of Games and Economic Behavior” von
Neumann and Morgenstern axiomatically describe, how actors evaluate uncer-
tain outcomes [22]. They developed the theory of expected utility, which de-
scribes a scheme based on the expected value of outcomes. Utility functions al-
low the use of many mathematical tools for optimization etc. Hence, much effort
is put into precisely specifying properties which guarantee the existence of such
functions. To this end, von Neumann and Morgenstern dedicate the first chap-
ters of [22] to specifying the assumptions necessary (and sufficient) for preference
relations to admit expected utility representation. This is now known as the von-
Neumann-Morgenstern Utility Theorem. These assumptions are introduced as
axioms upon which the entire book is based. Kahneman and others criticized [20]
the theory of expected utility and developed alternatives [7]. Moreover, impossi-
bility results were proven [19]. Nevertheless, it still remains the standard theory
in game theory [14] and the most common tool in economic reasoning [9].

Our goal is to provide a solid foundation of utility theory upon which fur-
ther work in both economics and game theory can be conducted. We do so
by introducing formal definitions in Isabelle/HOL and deriving results that not
only support the intuition of expected utility, but also help automated theorem
provers in proving subsequent results. With that we prove the von-Neumann-
Morgenstern Expected Utility Theorem.
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Related work. Arrow’s impossibility theorem has been formalized by Wiedijk [25]
and Nipkow [13]. Gammie has formalized some results in social choice theory,
as well as stable matching [4,5]. Kuhn’s theorem has been formalized by Vester-
gaard [21] and generalized by Le Roux [17]. The same author later worked on
a formalization of Nash equilibria for two player games [18]. Recently, Martin-
Dorel and Soloviev formalized boolean games with non-deterministic aspects. In
addition, algorithmic game theory results have been formalized in Coq [1].

The concepts we discuss are also relevant for the formalization of economic
concepts. Related work includes the verification of financial systems [16] and bi-
nomial pricing models [3]. As part of the ForMaRE project [10] VCG-Auctions [8]
have been formalized. In microeconomics we discussed a formalization of two
economic models and the First Welfare Theorem [15].

To our knowledge the only work that uses expected utility theory is that of
Eberl [2]. The focus there is not the underlying utility theory, but rather its use
in social decision schemes. Since our focus is the this underlying theory and in
particular the von Neumann-Morgenstern Utility Theorem, we found that there
is only little overlap.

2 Isabelle/HOL, Probability, and Notations

Isabelle/HOL [24] is an Interactive Theorem Prover based on higher-order logic.
Due to space limitations, we refer the reader to the Isar reference manual [23]
for Isabelle’s foundations and notations. We introduce a few reoccurring notions
of HOL-Probability, but we refer to [6] for a more detailed explanation.

It is common to denote the composition of probability mass functions (pmfs)
p and q with a probability α as follows α p+(1−α) q. This notation corresponds
to the following Isabelle definition:

definition mix_pmf :: real⇒ ′a pmf ⇒ ′a pmf ⇒ ′a pmf where
mix_pmf a p q = (bernoulli− pmf a)�= (λb. if b then p else q)

In particular we compose a Bernoulli distribution that returns either True or
False with probability a, with a function that returns p if the random variable
is True or q otherwise. We use Isabelle’s standard definition for the support of a
pmf, set_pmf, while return_pmf applied to x returns a pmf yielding x with the
probability 1.

A preference relation is a transitive and reflexive binary relation (i.e. a pre-
order). The notations x � y, x �[R] y, and R(x, y) are equivalent and denote a
preference relation where x is weakly preferred to y. Despite its potential ambi-
guity, we will be using the first alternative if the specific relation can be inferred
from context. Similarly, the symbols x � y and x �[R] y denote the strict pref-
erence relation where x � y iff x � y ∧ ¬y � x, whereas x ≈ y and x ≈[R] y
denote the indifference relation where x ≈ y iff x � y ∧ y � x.

We will use the terms “pmf” and “lottery” interchangeably. In economic and
game theoretic literature the latter is more common, while the former is used in
probability theory and Isabelle/HOL.
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3 Preference Relations and their Properties

We present and discuss important definitions which we will use in subsequent
sections.

First we briefly introduce rational preferences and Utility functions. How-
ever, since both have been thoroughly discussed and formalized in the authors’
previous work [15] we will not go into detail or mention results involving these.

Definition 1 (Rational Preferences). A binary relation R over a carrier set
C is called a rational preference relation, if R is a total preorder on C. Hence
R is total, transitive, and reflexive.

We refer to [15] or the sources for a more detailed account of the Definitions 1
and 2 as well as derived results.

Definition 2 (Utility function). A function u : C 7→ R is said to represent a
rational preference relation R over C, if

∀x y ∈ C. x �[R] y ⇐⇒ u(x) ≥ u(y).

The function u is called utility function.

Based on these two definitions we continue with the new additions. Firstly,
we consider continuous preferences. Definition 3 is sometimes also called the
Archimedean axiom.

Definition 3 (Continuous Preferences). A binary relation R over a carrier
set C, is said to be continuous if, ∀ p q r ∈ C,

p �[R] q ∧ q �[R] r −→ ∃α ∈
[
0 . . . 1

]
.(mix_pmf α p r) ≈[R] q.

Intuitively this means that if p � q, then lotteries that are close to p are also
preferred to q. An alternative interpretation would be, that if preferences are
continuous, there are no outcomes that are so bad (not preferred with respect
to R) that no probability is small enough to “redeem” them by composing with
a better alternative.

Next, we define independence of preferences. Informally, we want indepen-
dence to entail that the (preference) relation between two elements p and q only
depends on the parts where p and q differ.

Definition 4 (Independence of Preferences). A binary relation R over a
carrier set C, is independent if, ∀p q x ∈ C. ∀α ∈ (0 . . . 1

]
,

p �[R] q ←→ (mix_pmf α p x) �[R] (mix_pmf α q x).

Independence implies that the relation between α p+(1−α) x and α q+(1−α) x
only depends on the relation of p and q rather than their combination with x.

Even though utility functions have been defined, the special case of expected
utility functions has not been discussed. We will do so now.
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Definition 5 (Expected Utility Form1). Given a set P of probability mass
functions over a set of outcomes O and a preference relation R over P , a utility
function U : P 7→ R representing R has expected utility form, if there exists a
utility function u2 : O 7→ R such that for all p ∈ P ,

U(p) :=
∑
x∈O

p(x) ∗ u(x).

Notice that Definition 5 introduces two kinds of utility functions, the expected
utility function U and the Bernoulli utility function u. The function U assigns a
utility value to lotteries/pmfs that range over outcomes, while u assigns a utility
value to outcomes themselves. The utility of a lottery p which equals U(p) is then
defined to be the expected value of the utility function u with the lottery p.

4 The Setup

In this section we introduce notations that we use, and discuss further concepts
and assumptions.

First, we assume the set of outcomes O to be a non-empty finite set3. Next,
we define the carrier set P to be the set of all probability mass functions (pmf)
over the finite set of outcomes O, P := {l | support l ⊆ O}. This set can be
visualized using a probability simplex. Figure 1 shows such a simplex with three
outcomes. Note, that if |O| > 1 then the set P is uncountable. Now, we can define

O1 O2

O3

e

Fig. 1. This is the probability simplex for the case where |O| = 3. The set {l |
support l ⊆ O} is exactly the set of all points on this simplex. The point e is the
pmf with the probability 1

3 for all three outcomes ( 1
3O1 + 1

3O2 + 1
3O3).

degenerate lotteries to be all lotteries that yield one outcome with the probability
1. In Figure 1 these are simply the corner points (i.e., the pointsO1−3). A rational
preference relation over P is denoted with R. Since the final result requires R to
be continuous and independent (cf. Definition 3 and 4) most literature assumes
these from the get go. We found that not all assumptions were necessary for
1 This form is also known as the von-Neumann-Morgenstern utility function.
2 This function is sometimes referred to as Bernoulli utility function.
3 The discussed theorem also holds for infinite sets [9]. However, this has not been
formalized.
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the results. Therefore, in the formalization we chose to introduce assumptions
only when necessary. Nevertheless, for the sake of readability we assume R to
be rational (1), continuous (3), and independent (4) in the subsequent sections.
For more detail on the necessity of assumptions we refer to the formalization.

With this setup, we can state the theorem we are aiming for, the von-
Neumann-Morgenstern Utility Theorem (Theorem 1).

Theorem 1 (von-Neumann-Morgenstern Utility Theorem). The prefer-
ence relation R over the carrier set P can be represented by a utility function of
expected utility form (Definition 5) if and only if R is rational (1), continuous
(3), and satisfies independence (4). More formally, R satisfies (1), (3), (4), if
and only if, ∃u : O 7→ R such that ∀p q ∈ P,

p � q ⇐⇒
∑
x∈O

p(x) ∗ u(x) ≥
∑
x∈O

q(x) ∗ u(x).

5 The Proof Outline

We will present the key insights and ideas leading to a proof of Theorem 1. All
the definitions and proofs can be found in the formalization. Since we use the
setup introduced in the previous section all assumptions and notations carry
over. In particular � will denote the previously introduced relation R.

Theorem 1 is proved by showing two implications. Both directions can be
found in the formalization. However, we will discuss the more difficult direction.
That is, a preference relation satisfying (1), (3), and (4) admits expected utility
representation.

The set of degenerate lotteries is finite, trivially there exists at least one most
preferred element (with respect to R). Moreover, we can prove Lemma 1.

Lemma 1. Every best4 degenerate lottery Bdeg is at least as good as any other
lottery in P.

∀y ∈ P. Bdeg � y

The same can be shown for the worst (least preferred) elements. Thus proving
that there exists at least one best B and one worst W element in P such that

∀x ∈ P. B � x ∧ x � W. (1)

If B ≈ W any constant function would represent the preference relation R thus
proving Theorem 1 for this special case. Hence, we will assume B � W.

From the assumption of continuity and Property 1, we know that ∀p ∈ P,

∃α. α B + (1− α)W ≈ p.

Moreover, we can show that such an α is unique. If it was not, we could create
two distinct lotteries p = α B+ (1−α)W and q = β B+ (1− β)W with α > β

4 We will use the “best” and “worst” to denote most and least preferred with respect
to R.
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and p ≈ q. However, since B � W and p has a higher chance of the best outcome
than q, we deduce p � q, a contradiction. This shows that for all lotteries p ∈ P,
there exists a unique calibration probability α, such that, αB + (1− α)W ≈ p.

The key idea is to define a function that assigns the unique calibration proba-
bility to every lottery in P. This is realised with the utility function util. Given
a pmf p its unique calibration α is obtained (using the indefinite choice operator
SOME) and returned.

definition util :: ′a pmf ⇒ real where
util p = (SOME α. α ∈

{
0 . . . 1

}
∧ p ≈[R] mix_pmf α B W)

The next lemma shows that util indeed is a utility function as per Definition 2.

Lemma 2. For all p and q in P,

p � q ⇐⇒ util(p) ≥ util(q)

Lemma 2 is already an important result. However, since we are not only inter-
ested in general utility functions, but utility functions that adhere to expected
utility form (Definition 5), we also need to prove the following Lemma.

Lemma 3. util is linear. That is, for all p, q in P,

util(α p+ (1− α) q) = α util(p) + (1− α) util(q)

Proof outline. First, we generate two lotteries that have the same preference as
p and q using util, B, and W. After substituting these generated lotteries in
the left hand side of the equation, we can distribute α, rearrange the terms and
apply the definition of util to derive the right hand side. For a detailed account
of this lemma, we refer to the formalization. ut

One of the most prominent modern books on game theory [11] defines von-
Neumann-Morgenstern utility functions simply as linear functions which util
indeed is (Lemma 3). Since linearity is the defining property of expected util-
ity functions Lemma 4 can be proven. Note, that util has the wrong type
′α pmf ⇒ real. Therefore, we simply define the Bernoulli utility function u with
the following lambda abstraction (λx. util(return_pmf x)) of type ′α⇒ real.

Lemma 4. Given a p ∈ P

U(p) =
∑
x∈O

p(x) ∗ u(x)

This shows the existence of an expected utility function assuming (1), (3), and
(4), thus proving one direction of Theorem 1.
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6 Conclusions

As mentioned in Section 1 multiple prominent books including [11,22], introduce
the theory of expected utility as a set of axioms upon which their work is based.
Thus, a formalization of utility theory is crucial for further development in game
theory and economics. The presented formalization amounts to almost 2400 lines
of code including over 120 lemmas. These can be used for future work such as
Nash’s theorem [12] on the existence of mixed strategy equilibria.
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