
Concrete Semantics with Coq and CoqHammer

Łukasz Czajka1, Burak Ekici2, and Cezary Kaliszyk2[0000−0002−8273−6059]

1 University of Copenhagen, Copenhagen, Denmark
luta@di.ku.dk

2 University of Innsbruck, Innsbruck, Austria
burak.ekici,cezary.kaliszyk@uibk.ac.at

Abstract The “Concrete Semantics” book gives an introduction to im-
perative programming languages accompanied by an Isabelle/HOL for-
malization. In this paper we discuss a re-formalization of the book us-
ing the Coq proof assistant (version 8.7.2). In order to achieve a simi-
lar brevity of the formal text we extensively use CoqHammer3, as well
as Coq Ltac-level automation. We compare the formalization efficiency,
compactness, and the readability of the proof scripts originating from a
Coq re-formalization of two chapters from the book.

1 Introduction

Formal proofs allow today most precise descriptions and specifications of com-
puter systems and programs. Such precision is very important both for human
learning and for machine knowledge management. Formalization accompanied
courses allow students to investigate the topic to an arbitrary level of detail, and
naturally offer very precise exercises of the topic [7]. Formalization attached to
mathematical knowledge allows algorithms to the knowledge semantically and
permits learning machine translation to, from, and between datasets [5]. This
becomes even more important with multi-translation, where the availability of
the same text in multiple languages improves the computer-understanding and
ability to translate between each two [4].

In this short paper we translate parts of the Concrete Semantics book by Nip-
kow and Klein to Coq. To do so, we improve the CoqHammer [9] automation to
be able to handle the more advanced use-cases, improve the legibility of the re-
constructed proofs and compare the proof style and other differences in between
the two. The project is in some ways similar to the “Certified Programming with
Dependent Types” book [2], however we attempt to avoid dependent types and
more advanced constructions to build both an easier material for students and a
more precise dataset for bootstrapping an automated translation between proof
corpora in the style of [5].

2 Concrete Semantics with Isabelle/HOL

The Concrete Semantics book [7] by Nipkow and Klein is made of two parts.
The first part introduces how to write functional programs, inductive definitions
3 release: https://github.com/lukaszcz/coqhammer/releases/tag/v1.0.8-coq8.7

luta@di.ku.dk
burak.ekici,cezary.kaliszyk@uibk.ac.at
https://github.com/lukaszcz/coqhammer/releases/tag/v1.0.8-coq8.7

and how to reason about their properties in Isabelle/HOL’s structured proof
language. While the second part is devoted to formal semantics of programming
languages using the “small” imperative IMP4 language as the instance. This part
more concretely examines several topics in a wide range varying from opera-
tional semantics, compiler correctness to Hoare Logic. The proofs presented in
this part are not given in Isabelle/HOL’s structured language. However, such a
formalization accompanies the paper proofs via the provided links usually given
in section beginnings.

In this work we attempt to reformalize in Coq some subset of the Isabelle/HOL
theories that accompanies the second part of the book. As illustrated in Chap-
ter 4, we aim at catching the same level of automation in Coq thus approximating
the proof texts to the original ones in terms of length. To do so, we use automated
reasoning techniques discussed in Chapter 3.

3 Coq and Coq Automation

The Coq proof assistant is based on the Calculus of Inductive Constructions. The
main difference from proof assistants based on higher-order logic is the presence
of dependent types. Coq also features a rich tactic language Ltac, which allows
to write specialised proof automation tactics. Some standard automation tactics
already available in Coq are:

– intuition: implements a decision procedure for intuitionistic propositional
calculus based on the contraction-free sequent calculi LJT* of Roy Dyckhoff.

– firstorder: extends intuition to a proof search tactic for first-order intu-
itionistic logic.

– auto and eauto: implement a Prolog-like backward proof search procedure.

The CoqHammer [9,3] plugin extends Coq automation by a number of other
useful and generally more powerful tactics similarly to that available in Is-
abelle [1]. Its main tactic hammer combines machine learning and automated
reasoning techniques to discharge goals automatically. It works in three phases:

1. Premise selection uses machine learning techniques to choose a subset of
the accessible lemmas that are likely useful for the goal.

2. Translation of the goal and the preselected lemmas to the input formats
of first-order automated theorem provers (ATPs) such as Vampire [6] or
Eprover [8], and running the ATPs on the translations.

3. Reconstruction uses the information obtained from a successful ATP run
to re-prove the goal in the logic of Coq. Upon success the hammer tactic
should be replaced with the reconstruction tactic displayed in the response
window. The success of the reconstruction tactic does not depend on any
time limits nor external ATPs, therefore it is machine-independent.

4 IMP is a standard Turing complete imperative language involving the mutable global
state as a computational side effect. The reason why this language has been selected
is just that it has enough expressive power to be Turing complete.

The CoqHammer tool provides various reconstruction tactics. Among others,
the tactics hobvious and hsimple perform proof search via the yelles tactic
(see the last item below) using the information returned from the successful ATP
runs after a constant unfolding and hypothesis simplification. Also, CoqHammer
comes with tactics written entirely in Ltac. These tactics do not depend on any
external tool, and are not informed about available lemmas in the context:

– sauto – a “super” version of the standard Coq tactics auto and intuition.
It tries to simplify the goal and possibly solve it without performing much
of actual proof search beyond what intuition already does. It is designed
in such a way as to terminate in a short time in most circumstances. One
can customize it by adding rewrite hints to the yhints database.

– scrush – essentially a combination of sauto and ycrush. The ycrush tac-
tic tries various heuristics and performs some limited proof search. Usually
stronger than sauto, but may take a long time if it cannot find a proof. In
contrast to sauto, ycrush does not perform rewriting using the hints in the
yhints database. One commonly uses ycrush after sauto.

– yelles n – performs proof search up to depth n; slow for n larger than 3-4.

4 Case Studies

In this section, we illustrate a set of goals that are discharged using the Coq
automation techniques, presented in Section 3, together with a comparison to
their original versions, in an Isabelle/HOL formalization, as presented in the
Concrete Semantics book. Notice that the examples in this section are given
broadly, with no background details. The point to emphasize here is that we can
actually achieve a similar brevity of the formal text in terms of proof lengths us-
ing proof automation in Coq. The examples are given in code snippets that have
Coq text on the left and Isabelle/HOL text on the right side of the minipages.

Note also that we translated thelemma statements into Coq directly from
Isabelle/HOL theory files, and proved them using mostly the standard tactics
coming with CoqHammer, with only minimal use of more sophisticated custom
Ltac tactics, and practically no hints from Coq hint databases. Therefore the
translation is not quite automatic but fairly straightforward.

The example given in the below code snippet comes from the Hoare Logic.
Leaving the technical details aside, it basically says that a precondition {P} of
some Hoare triple can be strengthened into {P’} if {P’} entails {P}. This is
actually one of the corollaries of the consequence (called conseq in our Coq
formalization) rule of Hoare Logic. Notice that, in this snippet, hoaret is the
Coq inductive predicate representing Hoare triples which corresponds to the
notation “`t” on Isabelle/HOL side.

Lemma strengthen_pre:
∀ (P P’ Q: assn) c, (entails P’ P)
→ hoaret P c Q → hoaret P’ c Q.
Proof. hobvious Empty (@conseq) (@entails) Qed.

lemma strengthen-pre:
[[∀ s. P’ s −→ P s; `t {P} c {Q}]]

=⇒ `t {P’} c {Q}
by (metis conseq)

Upon a call, the CoqHammer tool gets a proof returned by one of the em-
ployed ATPs, and discharges the goal using its reconstruction tactic hobvious

parametrized with the empty set of hypotheses from the goal context, the rule
conseq and the definition entails. Indeed, this is very similar to what happens
in Isabelle/HOL proof of the same fact. The proof is simply made of a call to
the metis tactic with the conseq rule as the argument.

Another but slightly more complicated example that stems from the Hoare
Logic (using the same notation as the previous one) is given in the below code
snippet. This lemma is a version of the partial correctness of the while rule
enriched with a measure function f which is supposed to decrease in each loop
iteration so as to guarantee the loop termination.

Lemma While_fun: ∀ b P Q c
(f: state → nat), (∀ n: nat, hoaret
(fun s ⇒ P s ∧ bval s b = true∧
n = f s) c (fun s ⇒ P s ∧ f s < n))
→ hoaret P (While b c)
(fun s ⇒ P s ∧ bval s b = false).
Proof. pose While; pose conseq;
unfold entails in *; yelles 3. Qed.

lemma While-fun:
[[
∧
n::nat. `t {λs. P s ∧ bval b s ∧ n = f s} c {λs.

P s ∧ f s < n}]]
=⇒ `t {P} WHILE b DO c {λs. P s ∧ ¬bval b s}
by (rule Hoare-Total.While [where T=λs n. n =

f s, simplified])

The Coq proof is found by the Ltac implemented tactic yelles which per-
forms a proof search until a user specified depth has been reached. In our concrete
example, we give it some guidance by using the primitive Coq tactic pose with
while and conseq rules as arguments, adding them to the context (or simply
generalizing them), together with unfolding the definition of entails. This way,
the tactic finds a proof at the proof search depth 3. Isabelle/HOL proof of the
same statement follows similar lines. It uses a simplification of the while rule
with the measure function being λs n. n = f s. Just notice that our Coq tactic
yelles is clever enough on this goal to find the measure function automatically.

A third example is about semantics of the IMP language. The lemma shown in
the below snippet states that one can deduce the big-step semantics of any termi-
nating IMP program from its small-step semantics. Observe that, in this snippet,
the Coq notations “=⇒” and “−→ *” respectively represent the inductive pred-
icates for the (transitive closure of) IMP big-step and small-step semantics. The
single difference on Isabelle/HOL side is that we have “⇒” standing for big-step
semantics.

Lemma lem_small_to_big: ∀ p s,
p −→* (Skip, s) → p =⇒ s.
Proof. enough (∀ p p’, p −→* p’ →
∀ s, p’ = (Skip, s) → p =⇒ s) by scrush.
intros p p’ H. induction H; sauto.
hsimple AllHyps (@lem_small1_big_continue)
Empty. Qed.

lemma small-to-big:
cs →∗ (SKIP,t) =⇒ cs ⇒ t

apply (induction cs (SKIP,t) rule: star.induct)
apply (auto intro: small1-big-continue)
done

The Coq proof of this lemma proceeds by an induction on the (transitive clo-
sure of) small-step semantics after introducing an helper statement (asserted by
the pure Coq tactic enough and proven by the Ltac tactic scrush) into the goal
context. Then, it calls the Ltac tactic sauto to do some preprocessing for the
CoqHammer call. The base case p = (Skip, s) is trivially solved by sauto. For
the inductive case, namely ∀s, p′ = (Skip, s)→ p′ ==> s, we call CoqHammer
and get the goal solved by an application of the reconstruction tactic hsimple
which uses all hypotheses in the goal context (that’s why we introduce a new
one at the beginning) and the helper lemma called lem_small1_big_continue
with no definitions unfolded. This is again very similar to the Isabelle/HOL

proof of the fact in hand. The proof uses the induction principle on the transi-
tive closure of the small-step IMP semantics and then applies the helper lemma
lem_small1_big_continue. Below we give three more examples that we think
interesting in the sense that all cases appear on Coq side are discharged fully
automatically. And the text size is fairly close to the one of Isabelle/HOL.

Lemma exec_n_exec: ∀ n P c1 c2,
exec_n P c1 n c2 → exec P c1 c2.
Proof. induction n; intros; destruct H.
- scrush.
- pose @star_step;
hobvious (@H, @IHn)(@Star.star_step)
(@Compiler.exec). Qed.

Lemma exec_exec_n: ∀ P c1 c2,
exec P c1 c2 →∃ n, exec_n P c1 n c2.
Proof. intros; induction H.
- ∃ O; scrush.
- pose exec_Suc; scrush. Qed.

Lemma exec_eq_exec_n: ∀ P c1 c2,
exec P c1 c2 ↔ ∃ n, exec_n P c1 n c2.
Proof. pose exec_exec_n;
pose exec_n_exec; scrush. Qed.

lemma exec-n-exec:
P ` c →^n c =⇒ P ` c →∗ c
by (induct n arbitrary: c) (auto intro: star.step)

lemma exec-exec-n:
P ` c →∗ c =⇒ ∃ n. P ` c →^n c

by (induct rule: star.induct) (auto intro:
exec-Suc)

lemma exec-eq-exec-n:
(P ` c →∗ c) = (∃ n. P ` c →^n c)
by (blast intro: exec-exec-n exec-n-exec)

The main lemma exec_eq_exec_n, using the other two above, is broadly
about the symbolic compilation of IMP programs into a low level language based
on a stack machine. It specifically says that one can speak about the n step
instruction executions instead of reflexive transitive closure of single step execu-
tions. Note that the Coq predicates exec_n and exec are respectively standing
for n step instruction, and transitive closure of single step instruction. These are
denoted as “_ ` _→ ∗_” and “_ ` _→∧ n_” in Isabelle/HOL text respec-
tively. The Coq proof from left to right (exec_n_exec) of the equivalence is
based on an induction over n and the other direction (exec_exec_n) is based
on an induction over transitive closure of single step executions. The base cases
of both induction steps are trivially solved by the tactic scrush. The inductive
case of the former proof is a CoqHammer call which discharges the goal using
the reconstruction tactic hobvious. It uses two hypotheses (H and the induction
hypothesis IHn) from the goal context with the lemma called star_step (coming
from Star.v), and the definition exec. The inductive case of the latter is just
made of an scrush application with a guide reminding that the goal is a variant
of the lemma exec_Suc.

Again, these proofs follow very similar lines with those of Isabelle/HOL of
the same facts. The proof of exec_n_exec induces on n and uses the definition
star_step to discarge the goal. Similarly, exec_exec_n is proven by an induc-
tion on the transitive closure of single step executions followed by the application
of the exec_Suc fact.

5 Conclusion

We have reproven 101 lemmas from the Isabelle/HOL theories Star, AExp, BExp,
ASM, Com, Big_Step, Hoare, Small_Step, Compiler and Compiler2 in Coq; heav-
ily using the automation techniques described in previous sections.

of lines # of words # of tactics # of hammer calls time(secs)
Isabelle/HOL 2806 11278 544 not verifiable 31
Coq 3493 19292 1190 468 149

As shown in the above table, the number of Coq tactics we used to get the same
lemmas proven is almost twice in number, as opposed to Isabelle/HOL, but
about half of which benefits from the automation techniques that CoqHammer
comes with. This can be seen as an improvement given that the Isabelle/HOL
tactics are more compound than the “simple” Coq tactics.

The coqc 8.7.2 needs 149 seconds to compile the translated source and
Isabelle 2017 needs 31 seconds to build the corresponding theories on an Intel
Core i7-7600U machine. We attribute the difference mostly to the fact that all
used Isabelle tactics are written in ML, while most Coq ones use Ltac.

We plan to build on this work by proving more lemmas coming from different
theories of the book and by improving the level of automation, thus decreasing
the number of words, in the already proven goals. Please see:

https://github.com/lukaszcz/COQ-IMP
for the proofs done so far.

Acknowledgments This work has been supported by the Austrian Science Fund
(FWF) grant P26201, the European Research Council (ERC) grant no. 714034
SMART and the Marie Skłodowska-Curie action InfTy, program H2020-MSCA-
IF-2015, number 704111.

References
1. J. C. Blanchette, D. Greenaway, C. Kaliszyk, D. Kühlwein, and J. Urban. A learning-

based fact selector for Isabelle/HOL. J. Autom. Reasoning, 57(3):219–244, 2016.
2. A. Chlipala. Certified Programming with Dependent Types - A Pragmatic Introduc-

tion to the Coq Proof Assistant. MIT Press, 2013.
3. Ł. Czajka and C. Kaliszyk. Goal translation for a hammer for Coq (extended

abstract). In J. Blanchette and C. Kaliszyk, editors, International Workshop on
Hammers for Type Theories (HaTT’16), volume 210 of EPTCS, pages 13–20, 2016.

4. D. Dong, H. Wu, W. He, D. Yu, and H. Wang. Multi-task learning for multiple
language translation. In ACL (1), pages 1723–1732. The Association for Computer
Linguistics, 2015.

5. C. Kaliszyk, J. Urban, J. Vyskočil, and H. Geuvers. Developing corpus-based trans-
lation methods between informal and formal mathematics. In S. Watt, J. Davenport,
A. Sexton, P. Sojka, and J. Urban, editors, 7th Conference on Intelligent Computer
Mathematics (CICM’14), volume 8543 of LNCS, pages 435–439. Springer, 2014.

6. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings, pages 1–35, 2013.

7. T. Nipkow and G. Klein. Concrete Semantics - With Isabelle/HOL. Springer, 2014.
8. S. Schulz. System Description: E 1.8. In K. McMillan, A. Middeldorp, and

A. Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312 of LNCS.
Springer, 2013.

9. Łukasz Czajka and C. Kaliszyk. Hammer for Coq: Automation for dependent type
theory. J. Autom. Reasoning, 61(1-4):423–453, 2018.

https://github.com/lukaszcz/COQ-IMP

	Concrete Semantics with Coq and CoqHammer

