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Abstract
Tableaux-based provers work well for certain classes of first-order formulas and are better suited for
integration with machine learning techniques. However, the tableaux techniques developed so far
perform way worse than saturation-based techniques on the first-order formulas with equality. In
this paper, we present the first implementation of Lazy Paramodulation which allows applying the
ordering constraints in connection tableaux proof search without exponential blowup of the number
of clauses (characteristic for Brand’s modifications). We implement the original Lazy Paramodulation
calculus and propose a variant of the Brand’s modification (called LP-modification), which is based on
the same ideas as Lazy Paramodulation, avoids exponential blowup and is just a preprocessing step for
the standard Connection Tableaux calculus. We demonstrate the impact of both the Lazy Paramodulation
and LP-modification on the proof search on a benchmark of TPTP library problems.
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1. Introduction

Model elimination, a proof algorithm created by Loveland [1], was initially a resolution-based
method operating on clauses of a special form. Later it has been reformulated in terms of
connections between clauses, which were guiding the proof procedure [2, 3, 4]. In this form,
the method is today referred to as Connection Tableaux.

Connection Tableaux are a powerful goal-directed refinement of the general clause tableaux.
They are of practical and theoretical interest, since tableaux-based proofs are relatively easy
to translate to human-readable proofs and because they can be applied to the analysis of
open problems. Even a partially closed connection tableaux can give significant insight into a
problem, by exposing useful lemmas or determining the core of the problem. It has been shown
that Connection Tableaux is a well-suited framework for Machine Learning-based automated
deduction [5], thanks to the fact that the number of possible actions at every step of the
Connection Tableaux construction is mostly bounded, in contrast with the saturation-based
proving where the number of pairs of clauses available e.g. in the resolution calculus often
grows quadratically with the number of the inferences performed. Finally, the Connection
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Tableaux method developed for classical logic generalizes well to many non-classical logics:
intuitionistic logic, linear logic, modal logics, higher-order logics, and others [6, 7].

The most successful technique for handling equality in automated theorem proving —
paramodulation (especially in combination with completion which gives rise to superposi-
tion [8]) — although widely used in the saturation-based theorem provers (like E-prover [9]) is
unfortunately not compatible with the Connection Tableaux methods. Instead, the competi-
tive Connection Tableau provers today (like leanCoP [10]) apply trivial equality handling by
appending the equality axioms to the problem. Another popular equality handling technique
in the Connection Tableaux-based provers is the Brand’s modification method [11, 12, 13]
(implemented for example in SETHEO [14]), which (similarly to paramodulation) severely limits
the search space explosion caused by hard-to-control applications of the transitivity and mono-
tonicity equality axioms. What is however missing, is the property of paramodulation which
allows it to “orient” the equations according to a reduction order, so that they can be applied
only in one direction. This property has been experimentally shown to give a major advantage
to the paramodulation method. To overcome this deficiency in the Connection Tableaux setup,
a Lazy Paramodulation technique has been introduced [15, 16], based on general E-unification
[17].

In this paper, we present our implementation, lpCoP, of the Lazy Paramodulation calculus by
Paskevich [18] and derive a variant of Brand’s modification (which we call “LP-modification”) -
a preprocessing algorithm, which allows for emulating Lazy Paramodulation calculus within
the standard Connection Tableau calculus. Lazy Paramodulation attempts to utilize a reduction
order in the Connection Tableaux setup, while, LP-modification is designed to avoid some of the
deficiencies of the Lazy Paramodulation. We implement both a Lazy Paramodulation calculus
prover and an LP-modification prover. We use the FOL problems with equality from the TPTP
library [19] for an experimental evaluation. We compare lpCoP against the leanCoP prover
(version 2.1) in 2 setups: core strategy setup1 and the full strategy schedule.

1.1. Lazy Paramodulation vs Axiomatic Equality

It is straightforward to take an arbitrary FOL prover and add equality support to it by appending
the equality axioms to the input formula. An example of a connection tableaux produced by
applying this method to the CNF (Conjunctive Normal Form) formula

𝑎1 ≈ 𝑎2 ∧ ... ∧ 𝑎𝑛−1 ≈ 𝑎𝑛 ∧ 𝑎1 ̸≈ 𝑎𝑛

may look as follows

a1 ̸≈ an
𝑎1 ≈ 𝑎𝑛

⊥
𝑎1 ̸≈ 𝑎2
a1 ≈ a2

⊥

𝑎2 ̸≈ 𝑎𝑛
𝑎2 ≈ 𝑎𝑛

⊥
𝑎2 ̸≈ 𝑎3
a2 ≈ a3

⊥

𝑎3 ̸≈ 𝑎𝑛...
an−1 ≈ an

⊥

1The first strategy in the leanCoP schedule [cut,comp(7)] applies restricted backtracking proof search until depth 7,
after which it switches off the restriction to recover completeness



In this simple case, 𝑛 − 2 instances of the transitivity axiom have been used. There are
exponentially many different Connection Tableaux of the same size for this formula, which
differ only by the choice of the literals which have been extended with a transitivity axiom. In
general, since most of the literals of the equality axioms are of the form 𝑥 = 𝑦 or 𝑥 ̸= 𝑦, one
may extend an arbitrary node of a Connection Tableaux with an arbitrarily large proof subtree
consisting solely of the transitivity and/or monotonicity axioms. Also, many of such subtrees
are equivalent. Lazy Paramodulation strongly restricts such constructions: one has to directly
choose the clause with an equation literal that will be used to rewrite the subterm of the literal.
For the example formula above the Lazy Paramodulation Connection Tableaux may look as
follows (assuming that 𝑎1 > ... > 𝑎𝑛 in the chosen reduction ordering, LPO or KBO in lpCoP).

a1 ̸≈ an
a1 ≈ a2

𝑎𝑛 ̸≈ �̂�

⊥ · (𝑎𝑛 = �̂�)

𝑎2 ̸≈ �̂�
a2 ≈ a3
𝑎3 ̸≈ �̂�

...
𝑎𝑛 ̸≈ �̂�

⊥ · (𝑎𝑛 = �̂�)

where �̂� is a fresh variable and 𝑠 = 𝑡 represents the unification of terms 𝑠 and 𝑡. Lazy Paramod-
ulation Connection Tableau for this formula is unique up to the choice of the first subterm to
reduce (either 𝑎1 or 𝑎𝑛).

Alternatively, to avoid explicit use of the equality axioms one can apply the Brand modification
[12] to the problem instance. In this case, however, we obtain an exponential blowup of the
number of clauses (every clause is converted to 2𝑛 clauses, where 𝑛 is the number of the positive
equality literals in that clause), which is especially expensive for the Connection Tableaux
methods (there are exponentially many clauses to choose from for an extension step, which
just differ in the order of arguments in the equality literals). Lazy Paramodulation as defined
in [18] is derived from a constrained variant of the Brand modification (CEE — Constrained
Equality Elimination [11]), which avoids this blowup by incorporating the symmetry axiom
into the inference rules. It defines a new set of inference rules (which are different than the
ones of the standard Connection Tableaux), which has a side effect that optimizations known to
be complete for the standard Connection Tableaux are not immediately applicable to the Lazy
Paramodulation framework.

In this paper, we propose a yet another variant of the Brand modification, which we refer to
as “LP-modification”. It preserves the ideas behind Lazy Paramodulation, while being easier to
implement and as such is also immediately compatible with the various optimization techniques
of the standard Connection Tableaux. We compare the proposed method experimentally with
the original Lazy Paramodulation, Axomatic Equality handling, and leanCoP core strategy.
LP-modification can be thought of as a “middle ground” between CEE and Paskevich’s Lazy
Paramodulation [18], which on the one hand allows for handling the equality with delayed
constraints, but on the other hand allows directly using all major known optimizations for the
Connection Tableaux (like regularity, lemmas, etc.).



The remainder of the paper is organized as follows. In Section 2 we list the required pre-
liminary material. In Section 3 we define our LP-modification, present motivation behind the
design choices and prove its properties. In Section 4 we describe the implementation details of
lpCoP (Connection Tableaux techniques used and data structures). In Section 5 we describe our
experimental setup and present the results of the experiment.

2. Preliminaries

We work in the first-order logic with equality in CNF. We use the same notation as Paskevich [18]
for clauses, literals, predicates, terms, variables, inference rules, constraints, constrained clauses
and Connection Tableaux. Instead of the “pseudoequality” predicate ≃, we use a “reduction
ordering” predicate →, to underline its relation to the reduction ordering constraints. We use
Var (𝑠) to denote the set of variables occurring in a term 𝑠. We use 𝐿𝑖𝑡(𝒮) to denote the set of
literals occurring in the set of clauses 𝒮 . For the full definition of Connection Tableaux (CT),
refer to [20], the full definition of Lazy Paramodulation (LP) Connection Tableaux can be found
in Paskevich [18].

A (constrained) tableaux is a finite tree. The root of the tree contains the initial clauses to be
refuted. Non-root nodes contain literals (in constrained tableaux the literals in the nodes are
accompanied by constraints). A branch that contains false (denoted ⊥) is considered closed. A
tableaux is closed, when each branch is closed (in the constraint setting, additionally the overall
set of constraints is satisfiable). Inference steps expand some branch in the tableaux, adding
new leaves under the given leaf node.

Standard connection-tableaux, apart from the start rule that sets up the root node with the
initial clauses in the problem, additionally includes an expansion rule unifying one of the newly
attached literals with the complement of the literal to solve (this unification can be considered
a constraint) and the reduction rule, which connects a literal on the current path with the
complement of the literal to solve.

Adding paramodulation to connection tableaux directly, results in an incomplete calculus [18].
Completeness can be recovered by allowing paramodulation into variables, which results in a
quite inefficient calculus. Lazy paramodulation aims to solve this inefficiency by postponing the
unification (and keeping it as a constraint) in the cases where it is required for completeness. In
particular, the lazy paramodulation inferences are only performed in expansion steps (paramod-
ulation and reduction/termination do not postpone unification). Furthermore, unifications are
only postponed when two non-variable subterms start with the same functional symbol. Finally,
ordering constraints reduce the number of possible paramodulations. For details see [18].

For the definition of the Constrained Equality Elimination (CEE), refer to [11]. CEE is a
variant of the Brand modification, which takes a set of unconstrained clauses 𝒮 as an input, and
returns an equisatisfiable set of constrained clauses.

3. LP-modification: Lazy Paramodulation calculus revisited

In this section, we propose an alternative, LP-modification, which is a transformation taking
a set of unconstrained clauses as an input, and producing a set of constrained clauses. The



output will be equisatisfiable with the input clause set together with the equality axioms. It is
based on the same principles as Lazy Paramodulation but avoids deficiencies described below,
and admits an easier implementation, because LP-modification is a preprocessing step for a
more standard Connection Tableau calculus with constraints.

Even starting with a single conjecture clause, one can find multiple proofs. To improve the
performance of the prover, one should prune such redundant proofs from the search space.
The tableaux-based provers use backtracking to traverse the search space. The state of such
backtracking is a partial proof, therefore the prover should try to avoid processing partial proofs
equivalent to the ones that it already processed.

In the Lazy Paramodulation calculus, as defined in [18], the subterms of a literal on a single
branch can be paramodulated out of it in an arbitrary order. For example, for the CNF formula

¬𝑃 (𝑎1, 𝑎2, ..., 𝑎𝑛) ∧ 𝑃 (𝑎′1, 𝑎
′
2, ..., 𝑎

′
𝑛) ∧ 𝑎1 ≈ 𝑎′1 ∧ 𝑎2 ≈ 𝑎′2 ∧ ... ∧ 𝑎𝑛 ≈ 𝑎′𝑛

there are 𝑛! closed LP Connection Tableaux which just differ by the order in which 𝑎𝑖 are
paramodulated out. One of the possibilities is as follows:

¬P(a1,a2, ...,an)

a1 ≈ a′1
¬𝑃 (𝑤1, 𝑎2, ..., 𝑎𝑛)

a2 ≈ a′2
¬𝑃 (𝑤1, 𝑤2, ..., 𝑎𝑛)

...
¬𝑃 (𝑤1, 𝑤2, ..., 𝑤𝑛)

P(a′1,a
′
2, ...,a

′
n)

⊥ · (𝑎𝑖 = 𝑎′𝑖)

𝑎′2 ̸≈ 𝑤2

⊥ · (𝑎′2 = 𝑤2)

𝑎′1 ̸≈ 𝑤1

⊥ · (𝑎′1 = 𝑤1)

CEE on the other hand, suffers from an exponential clause blowup (see [11]) because for
every unconstrained input clause it produces 2𝑛 constrained clauses, where 𝑛 is the number of
distinct positive equality literals in the input clause. We propose a combination of CEE and LP
(more precisely: a variant of CEE which allows for emulating LP in the standard Connection
Tableaux calculus), called LP-modification which has the following properties:

• the output of LP-modification is a set of constrained clauses equisatisfiable with the origi-
nal clause set with equality axioms (no new inference rules needed, however, constraints
restrict inferences).

• Paramodulation of the independent subterms is emulated on the separate branches of a
Connection Tableaux.

• Paramodulation into and under variables is not allowed (basicness property)
• For a flat clause (all non-variable subterms are arguments of the ≈ predicate) set 𝒮 ,

LP-modification generates 𝑂(𝑛) extra clauses, introduces 𝑂(𝑛) new literals and creates
𝑂(𝑛2) new connections, where 𝑛 is the number of equality literals in 𝒮 (no blowup).

We will now define the steps of LP-modification. The reader may notice that LP-modification
is very similar to CEE, with only “Transitivity and Symmetry elimination” step redefined. We



define a normal form of a clause 𝐶 (wrt a set of transformation rules) to be the result of an
application of any maximal chain of transformations to 𝐶 . It is easy to observe that all the rule
sets below uniquely define a normal form for an arbitrary clause 𝐶 (up to variable renaming).

Flattening (aka 𝐸-modification). We say that a clause is flat iff all its non-variable
subterms are arguments of the ≈ predicate. It is known that dropping monotonicity axioms of
equality does not change the satisfiability of a set of flat clauses [12]. In this step we convert 𝒮
to an equisatisfiable set of flat clauses. Flattening transformation rules are defined as follows:

𝑃 ( #»𝑠 [𝑝]) ∨ 𝐶

𝑃 ( #»𝑠 [�̂�]) ∨ 𝑝 ̸≈ #»

�̂� ∨ 𝐶

¬𝑃 ( #»𝑠 [𝑝]) ∨ 𝐶

¬𝑃 ( #»𝑠 [�̂�]) ∨ 𝑝 ̸≈ #»

�̂� ∨ 𝐶

𝑓( #»𝑠 [𝑝]) ≈ 𝑡 ∨ 𝐶

𝑓( #»𝑠 [�̂�]) ≈ 𝑡 ∨ 𝑝 ̸≈ #»

�̂� ∨ 𝐶

𝑓( #»𝑠 [𝑝]) ̸≈ 𝑡 ∨ 𝐶

𝑓( #»𝑠 [�̂�]) ̸≈ 𝑡 ∨ 𝑝 ̸≈ #»

�̂� ∨ 𝐶

where 𝐶 is an arbitrary clause, 𝑃 is an arbitrary predicate different than ≈, �̂� is a fresh variable,
𝑝 is a non-variable term, 𝑠[𝑝] is a non-flat subterm, ̸≈ #»𝑠 is a set of ̸≈ literals in a clause, 𝑡
is an arbitrary term and #»𝑠 is an arbitrary sequence of terms. For every clause 𝐶 ∈ 𝒮 we
define 𝑓𝑙𝑎𝑡(𝐶) to be the normal form of 𝐶 wrt the flattening transformation rules (the normal
form with respect to the flattening is unique, modulo order and naming). Finally, we define
𝑓𝑙𝑎𝑡(𝒮) := {𝑓𝑙𝑎𝑡(𝐶) : 𝐶 ∈ 𝒮}.

Transitivity and symmetry elimination in LP-modification. This step consists of
replacing the ≈ predicate with

• “reduction ordering” predicate →. The intended meaning of this predicate is: 𝑡1 → 𝑡2
means that 𝑡1 equals 𝑡2 while at the same time 𝑡1 ≻ 𝑡2 under the reduction order; and

• a family of new predicates 𝑋𝑠,𝑡, indexed by an arbitrary pair of terms 𝑠 and 𝑡 (indicating
that 𝑠 and 𝑡 are equal, but without specifying which one is smaller in the reduction
ordering).

We define the following transformation rules:

𝑠 ̸≈ 𝑡 ∨ 𝐶

𝑠 ̸→ 𝑥 ∨ 𝑡 ̸→ 𝑥 ∨ 𝐶

𝑠 ≈ 𝑡 ∨ 𝐶

𝑋𝑠,𝑡(
#             »

𝑉 𝑎𝑟(𝑠),
#            »

𝑉 𝑎𝑟(𝑡)) ∨ 𝐶

for an arbitrary clause 𝐶 , arbitrary terms 𝑠, 𝑡, and fresh new variable 𝑥. We define 𝑆𝑇 (𝐶) to be
the normal form of 𝐶 wrt these rules. We also define 2 families of clauses (indexed by arbitrary
terms 𝑠 and 𝑡)

𝛼𝑠,𝑡 := ¬𝑋𝑠,𝑡(
#             »

𝑉 𝑎𝑟(𝑠),
#            »

𝑉 𝑎𝑟(𝑡)) ∨ 𝑠 → 𝑥 ∨ 𝑡 ̸→ 𝑥

𝛽𝑠,𝑡 := ¬𝑋𝑠,𝑡(
#             »

𝑉 𝑎𝑟(𝑠),
#            »

𝑉 𝑎𝑟(𝑡)) ∨ 𝑠 ̸→ 𝑥 ∨ 𝑡 → 𝑥

Then we define 𝑆𝑇 on the sets of flat clauses:

𝑆𝑇 (𝒮) := {𝑆𝑇 (𝐶) : 𝐶 ∈ 𝒮} ∪ {𝛼𝑠,𝑡, 𝛽𝑠,𝑡 : 𝑠 ≈ 𝑡 ∈ 𝐿𝑖𝑡(𝒮)}

Exceptionally, in this definition we treat 𝑠 ≈ 𝑡 as an ordered pair — for every literal 𝑠 ≈ 𝑡 in 𝒮
we generate 𝛼𝑠,𝑡, 𝛽𝑠,𝑡 but not 𝛼𝑡,𝑠, 𝛽𝑡,𝑠.



Constraints generation. So far the transformations presented operated on the uncon-
strained clauses (no constraints were associated with the literals). In this step explicit constraints
are generated as opposed to the → predicate. This step is what distinguishes LP-modification
(and CEE) from the basic Brand modification: we associate the ordering constraints with the
→ literals which truncates the possible search space, while preserving completeness. The
transformation rules of this step are defined as follows:

𝑦 ̸→ 𝑥 ∨ 𝐶

(⊥, 𝑦 = 𝑥) ∨ 𝐶

𝑝 ̸→ 𝑥 ∨ 𝐶

(𝑝 ̸→ 𝑥, 𝑝 ≥ 𝑥) ∨ 𝐶

𝑝 → 𝑥 ∨ 𝐶

(𝑝 → 𝑥, 𝑝 > 𝑥) ∨ 𝐶

where 𝑥, 𝑦 are variables, 𝑝 is a non-variable term, 𝐶 is an arbitrary clause. We define 𝑐𝑜𝑛𝑠𝑡𝑟(𝒮)
to be the set of normal forms of clauses in 𝒮 wrt the rules above.

3.1. Definition of LP-Modification

We define the LP-modification of a set of unconstrained clauses 𝒮 as

𝐿𝑃𝑚𝑜𝑑(𝒮) := 𝑐𝑜𝑛𝑠𝑡𝑟(𝑆𝑇 (𝑓𝑙𝑎𝑡(𝒮))) ∪ {𝑥 → 𝑥}

where 𝑥 is a variable.
Example: 𝐿𝑃𝑚𝑜𝑑(𝒮) and 𝐶𝐸𝐸(𝒮) for the example formula 𝒮 :

𝒮 = ¬𝑃 (𝑎1, 𝑎2, ..., 𝑎𝑛) ∧ 𝑃 (𝑎′1, 𝑎
′
2, ..., 𝑎

′
𝑛) ∧ 𝑎1 ≈ 𝑎′1 ∧ 𝑎2 ≈ 𝑎′2 ∧ ... ∧ 𝑎𝑛 ≈ 𝑎′𝑛

𝐿𝑃𝑚𝑜𝑑(𝒮) 𝐶𝐸𝐸(𝒮)

¬𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑛) ∨ 𝑎1 ̸→ 𝑥1 ∨ ... ∨ 𝑎𝑛 ̸→ 𝑥𝑛 ¬𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑛) ∨ 𝑎1 ̸≃ 𝑥1 ∨ ... ∨ 𝑎𝑛 ̸≃ 𝑥𝑛
𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑛) ∨ 𝑎′1 ̸→ 𝑥1 ∨ ... ∨ 𝑎′𝑛 ̸→ 𝑥𝑛 𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑛) ∨ 𝑎′1 ̸≃ 𝑥1 ∨ ... ∨ 𝑎′𝑛 ̸≃ 𝑥𝑛

¬𝑋𝑎𝑖,𝑎′𝑖
∨ (𝑎𝑖 → 𝑤, 𝑎𝑖 > 𝑤) ∨ (𝑎′𝑖 ̸→ 𝑤, 𝑎′𝑖 ≥ 𝑤) (𝑎𝑖 ≃ 𝑤, 𝑎𝑖 > 𝑤) ∨ (𝑎′𝑖 ̸≃ 𝑤, 𝑎′𝑖 ≥ 𝑤)

¬𝑋𝑎𝑖,𝑎′𝑖
∨ (𝑎′𝑖 → 𝑤, 𝑎′𝑖 > 𝑤) ∨ (𝑎𝑖 ̸→ 𝑤, 𝑎𝑖 ≥ 𝑤) (𝑎′𝑖 ≃ 𝑤, 𝑎′𝑖 > 𝑤) ∨ (𝑎𝑖 ̸≃ 𝑤, 𝑎𝑖 ≥ 𝑤)

𝑋𝑎𝑖,𝑎′𝑖
𝑥 → 𝑥 𝑥 ≃ 𝑥

A Connection Tableaux for 𝐿𝑃𝑚𝑜𝑑(𝒮) (constraints have been omitted):

¬𝑃 (𝑥1, .., 𝑥𝑛)

𝑃 (𝑥1, ..., 𝑥𝑛)

⊥
𝑎′1 ̸→ 𝑥1

𝑎′1 → 𝑎′1
⊥

...
𝑎1 ̸→ 𝑥1

¬𝑋𝑎1,𝑎′1

𝑋𝑎1,𝑎′1

⊥

𝑎1 → 𝑥1
⊥

𝑎′1 ̸→ 𝑥1

𝑎′1 → 𝑎′1
⊥

...

3.2. Properties of LP-Modification

We conjecture that LP-modification is sound and complete. However, full proofs of this are left
as future work.

Conjecture 1. 𝑓𝑙𝑎𝑡(𝒮) with equality axioms is satisfiable ⇒ 𝐿𝑃𝑚𝑜𝑑(𝒮) is satisfiable ⇒
𝐶𝐸𝐸(𝒮) is satisfiable



Justification for the first implication. Take a model of 𝑓𝑙𝑎𝑡(𝒮) with equality axioms and let
𝐼 : 𝐴𝑡𝑜𝑚𝑠 → 𝐵𝑜𝑜𝑙 be the interpretation function. We can extend interpretation of that model
to atoms 𝑋𝑠,𝑡(

#»𝑣 , #»𝑤) and 𝑥 → 𝑦 for all terms 𝑠, 𝑡 and all elements 𝑥, 𝑦, #»𝑣 , #»𝑤 of the model as
follows

𝐼(𝑋𝑠,𝑡(
#»𝑣 , #»𝑤)) := 𝐼(𝑠[ #»𝑣 ] ≈ 𝑡[ #»𝑤]) 𝐼(𝑥 → 𝑦) := 𝐼(𝑥 ≈ 𝑦)

where 𝑠[ #»𝑣 ] denotes 𝑠 with its variables substituted by #»𝑣 (𝑡[ #»𝑤] analogically).
Then we can see that 𝐿𝑃𝑚𝑜𝑑(𝒮) is true in the extended interpretation:

• The instances of 𝑥 → 𝑥 are true, since the corresponding instances of the reflexivity
axiom are true: 𝐼(𝑥 → 𝑥) = 𝐼(𝑥 ≈ 𝑥) = ⊤

• The instances of 𝛼𝑠,𝑡 and 𝛽𝑠,𝑡 are true, since the corresponding instances of the transitivity
axiom are true:

𝐼(𝛼𝑠,𝑡) = 𝐼(𝑠 ̸≈ 𝑡 ∨ 𝑠 ≈ 𝑥 ∨ 𝑡 ̸≈ 𝑥) = ⊤

𝐼(𝛽𝑠,𝑡) = 𝐼(𝑠 ̸≈ 𝑡 ∨ 𝑠 ̸≈ 𝑥 ∨ 𝑡 ≈ 𝑥) = ⊤

• The instances of 𝑆𝑇 (𝐶) for 𝐶 ∈ 𝑓𝑙𝑎𝑡(𝒮) are true, since the corresponding instances of
𝐶 are true.

Justification for the second implication. It is possible to infer from 𝐿𝑃𝑚𝑜𝑑(𝒮) an arbitrary
clause of 𝐶𝐸𝐸(𝒮) derived from 𝐶 ∈ 𝑓𝑙𝑎𝑡(𝒮) by resolving 𝛼𝑠,𝑡 or 𝛽𝑠,𝑡 clauses with 𝐶 and
adding constraints to it. Therefore 𝐿𝑃𝑚𝑜𝑑(𝒮) ⇒ 𝐶𝐸𝐸(𝒮) so every model of 𝐿𝑃𝑚𝑜𝑑(𝒮) is a
model of 𝐶𝐸𝐸(𝒮).

We additionally conjecture that LP-modification is able to avoid the exponential blowup.

Conjecture 2 (LP-modification output size bounds). For a flat clause set 𝒮 , LP-modification
generates 𝑂(𝑛) extra clauses, introduces 𝑂(𝑛) new literals total and creates 𝑂(𝑛2) new connections,
where 𝑛 is the number of equality literals in 𝒮 .

As 𝒮 is assumed to be already flat, the flattening step is trivial and the constraint generation
step does not create any new clauses, literals or connections. Transitivity and symmetry
elimination replaces every 𝑠 ̸≈ 𝑡 literal with at most 2 literals, replaces every 𝑠 ≈ 𝑡 literal with
a single 𝑋𝑠,𝑡 literal and add adds 2 clauses (𝛼𝑠,𝑡,𝛽𝑠,𝑡) with at most 6 literals total. Each literal
𝑋𝑠,𝑡 has only 2 connections (with one literal from 𝛼𝑠,𝑡 and one from 𝛽𝑠,𝑡). Each ≈ literal has its
arguments separated by LP-modification and may correspond to up to 4 positive and negative
→ literals, so in the worst case up to 𝑂(𝑛2) new connections may arise. Connections for the
remaining predicates stay the same.

4. Implementation

Lazy Paramodulation and LP-modification operate on the constrained clauses, and up to the
authors’ knowledge, there exists no Connection Tableau prover which accepts clauses together
with constraints corresponding to an order as an input (ordering and constraints are usually an
internal implementation detail of the prover). Therefore to evaluate LP-modification in practice
we had to engineer a custom prover. The original Lazy Paramodulation defines an entirely



different calculus than the standard connection tableau, so it required developing a dedicated
prover anyway.

We have implemented (in C++) a customizable Connection Tableaux prover, which takes
as an input a FOL formula in a CNF form and outputs a proof of the formula in a form of an
unsatisfiable set of ground instances of the input clauses (SAT-solvers can be used to check such
proofs efficiently).

It can be also used to just compute an LP-modification of the input. The proof search engine
(accepting a set of constrained clauses) is a separate library module and can be reused. The
prover is configurable in the following dimensions:

• the choice of the transformation that converts the initial clause set into a (possibly)
constrained clause set (LP-modification, appending equality axioms or none)

• the choice of the reduction ordering (KBO [21] or LPO [22]). In comparison with the
state-of-the-art superposition provers, lpCoP lacks advanced heuristics for selecting the
ordering weights, resorting to constant weights currently. The precedence of the functors
is configurable, defaults to the order in which functors occur in the input.

• the choice of the Connection Tableau calculus (either standard Connection Tableau, or
Lazy Paramodulation Connection Tableau)

• the choice of the search strategy. The implementation allows for iterative deepening over
branch length bound (including the leanCoP bounds), and MESON bound distribution
[2, 23]. Additionally, restricted backtracking [24] can be activated. Following Otten’s
terminology, we refer to restricted backtracking as “cut” in the remainder of the paper.

The TPTP syntax allows labeling certain clauses as conjectures. This is normally used to
indicate that at least one of the conjectures is required to prove unsatisfiability. However,
as certain problems may be unsatisfiable due to contradictory axioms, for completeness our
implementation can use all all-negative clauses as candidates for the root clause, rather than
just the conjecture clauses (we do not use that option in lpCoP in the evaluations, however it is
a part of the leanCoP schedule).

We have developed a basic index for selecting clauses for extension steps, similar to the
Prolog built-in one, used by leanCoP.

We have developed a custom generic memory allocator optimized for proof search back-
tracking. It is basically a stack on which all the data created during the Connection Tableaux
construction is pushed. Deallocation is done only when a step back is performed in the back-
tracking procedure, and it consists solely of restoring the stack pointer. This allocation semantics
is equivalent to putting everything on the execution stack, however, it allows for more flexible
implementation of the backtracking logic itself as it does not force the programmer to use
tail-recursion throughout the implementation. Our allocator is also a nice alternative to having
a memory pool for each structure type used (which makes code less flexible and readable, as it
is the case for example in the implementation of the BMTP [25]).

Input conversion: lpCoP takes as input a set of CNF clauses in a compressed machine-
readable format, so we need a way to convert human-readable TPTP FOF problems to it. In our
experimental setup, we use the standard TPTP tools to convert from FOF to CNF. Most provers
have such functionality, including for example E-prover. For parsing TPTP syntax, the TPTP



module imported from the Vampire [26] project is used (for evaluation and research purposes
only). We used the existing (non-tableau specific) features of these state-of-the-art provers, as
our experiment focuses solely on comparing the Connection Tableau calculus efficiency. The
time needed for the conversion is included in the timings given in the evaluation section, but it
is negligible for the solved problems.

Output validation: In order to test the correctness of lpCoP implementations, we collect
the substitution as part of the proof. We use this substitution to ground the original set of
clauses together with equality axioms. We then check the satisfiability of the grounded set of
clauses by using a SAT solver (similar to e.g. Zombori et al. [27]).

5. Experimental results

In this section we describe the problem set that we used to benchmark lpCoP, setup of an
external connection tableau-based prover (leanCoP) that we have compared our implementation
against, the execution environment of the benchmark, and present the results.

Experimental setup: A benchmark problem set has been selected from the TPTP library
(v7.3.0). It consists of all FOF problems satisfying all of the following conditions:

• The problem has status Theorem, Unsatisfiable or ContradictoryAxioms.
• The input conversion (as described in the previous section) fits into (an arbitrarily chosen)

timeout of 3𝑠.
• The problem does not contain numbers or distinct objects2.
• The problem contains at least 1 equality literal
• Vampire (version 4.3) is unable to solve the problem with equality replaced with a new

predicate in 30s (which means that most likely the problem is not solvable without equality
axioms).

We intentionally avoid the problems with status Unknown (which means that no known prover
can solve that problem), as we do not expect our single strategy prover to outperform competitive
provers at this point of development. The input conversion timeout has been chosen so that the
prover can spend most of the available time in the proof search phase, which is the focus of
this experiment. Numbers and distinct objects require additional axioms, which lpCoP does not
support yet. If a formula does not contain equality literals, then the equality axioms are not
needed to prove it, so they have been removed from the benchmark as a potential source of
noise. Our experiments have also indicated that TPTP contains a large block of problems that
are solvable without equality axioms (so uninteresting wrt improving equality handling). We
have found and filtered out (most of) them from the benchmark, by running the Vampire prover
on all the problems with the equality predicate replaced with a new 2-argument predicate.

2362 TPTP-7.3 problems have been excluded from 38 of the TPTP domains, e.g. predicate
logic puzzles without equality such as PUZ031+2. An archive with all the benchmark problems
is available along with the prover3.

2For a definition of a distinct_object, see http://www.tptp.org/TPTP/SyntaxBNF.html
3http://cl-informatik.uibk.ac.at/cek/paar2022/

http://www.tptp.org/TPTP/SyntaxBNF.html
http://cl-informatik.uibk.ac.at/cek/paar2022/


All experiments have been executed on the Google Cloud Platform, using Cloud Run service.
Each prover has been executed on each problem with 1 vCPU available, 2GB of RAM and 30s
timeout. The output validation mentioned in Section 4 is performed on the outputs returned by
lpCoP (validation is not subject to the 30s timeout).

To provide a practical comparison against a state-of-the-art connection tableau-based prover,
leanCoP (v2.1) has been included in our benchmark. LeanCoP has been evaluated with the
following configurations:

• [cut,comp(7)], which is the core strategy of leanCoP
• full schedule4 - to see if LP-modification has the potential of improving the state-of-the-art

The [cut,comp(7)] strategy consists of 2 phases:

• search for a Connection Tableau with branches of length at most 7, with “cut” enabled
(an incomplete strategy)

• an unbounded search with “cut” disabled (a complete strategy)

The following configurations of lpCoP have been tested during the experiment.

• LP-modification: LP-modification transformation, standard Connection Tableau, LPO
reduction ordering, MESON bound balancing

• Lazy Paramodulation: no transformation, Lazy Paramodulation Connection Tableau,
LPO reduction ordering, MESON bound balancing

• Axiomatic Equality: appending equality axioms, standard Connection Tableau, LPO
reduction ordering, MESON bound balancing

The choice of MESON bound balancing and LPO reduction order is based on a smaller exper-
iment with 100 randomly selected TPTP problems with the same time limits. The differences
with our implementation were minimally better for LPO and for MESON bound, so we fix this
for all further larger experiments (this is contrary to KBO usually performing better in ordered
resolution / superposition provers). Axiomatic Equality configuration is included as a baseline
to assess basic implementation efficiency, which is orthogonal to the impact of LP-modification.

To make the comparison against the leanCoP more relevant, we have used a similar [cut,comp]
strategy with all our prover configurations. Each prover has been first executed with “cut”
enabled for 0.6 (incomplete strategy) of the total time available, then it has been restarted
with the “cut” disabled for the remaining time (complete strategy). MESON bound balancing is
incompatible with bounding the branch length, that is the reason why a time bound has been
used instead. The choice of the time distribution has been determined experimentally.

Each table shows both the total number of the problems solved by each prover, as well as the
number of unique problems solved (i.e. not solved by the opponent). The first column of each
table contains the abbreviations of the TPTP problem categories. Only the categories for which
the behavior of the compared provers was significantly different are presented in each table.

LP-modification vs Lazy Paramodulation. LP-modification has solved 491 problems
and 136 more problems than Lazy Paramodulation (355), which proves it more efficient, as

4standard leanCoP 2.1 implementation uses a fixed strategy scheduling



expected. However Lazy Paramodulation solved 72 problems not solved by LP-modification,
which means that their search spaces are significantly different, therefore we cannot conclude
that LP-modification is strictly better than Lazy Paramodulation. More insight is needed to
determine the root cause.

Table 1
LP-modification vs Lazy Paramodulation

LP-modification Lazy Paramodulation number
unique solved total solved unique solved total solved of problems

total 208 491 72 355 3820
ALG 15 19 0 4 222
KLE 18 32 2 16 221
NLP 7 7 0 0 7

NUM 31 71 11 51 507
RNG 13 27 8 22 117
SET 10 64 5 59 190
SEU 21 95 14 88 600
SWC 41 63 3 25 421

LP-modification vs Axiomatic Equality. LP-modification solved 73 problems more than
Axiomatic Equality prover. It performed significantly better in SWC (Software creation) and
KLE (Kleene algebra) categories. An important observation is that 30% of the problems solved
by LP-modification are unique, which means that these strategies are significantly different not
only in theory but also in practice in our experimental setting.

Table 2
LP-modification vs Axiomatic Equality

LP-modification Axiomatic Equality number
unique solved total solved unique solved total solved of problems

total 147 491 70 414 3820
ALG 7 19 1 13 222
KLE 13 32 1 20 221

NUM 26 71 14 59 507
SCT 0 0 6 6 70
SET 4 64 9 69 190
SEU 17 95 19 97 600
SWC 42 63 0 21 421

LP-modification vs leanCoP. Tables 3 and 4 compare results of our implementation of
LP-modification with results of leanCoP in 2 schedule variants: core [cut,comp(7)] strategy
and schedule (originally designed for the CASC competition but good for many kinds of TPTP
problems). LP-modification solves 128 problems more than core leanCoP, and 219 problems not
solved by the opponent. With the full schedule leanCoP outperforms lpCoP by 9% problems
solved. Still LP-modification solves 133 problems not solved by leanCoP with the full schedule.
An interesting observation is that in both comparisons, LP-modification solves significantly
more problems in KLE (Kleene algebra) category.



Table 3
LP-modification vs leanCoP with [cut,comp(7)] strategy

LP-modification leanCoP [cut,comp(7)] number
unique solved total solved unique solved total solved of problems

total 219 491 91 363 3820
ALG 11 19 9 17 222
COM 10 11 0 1 41
KLE 17 32 1 16 221

NUM 45 71 9 35 507
RNG 21 27 2 8 117
SWC 19 63 8 52 421
SWV 15 20 4 9 142

Table 4
LP-modification vs leanCoP with full schedule

LP-modification leanCoP schedule number
unique solved total solved unique solved total solved of problems

total 133 491 175 533 3820
ALG 10 19 11 20 222
KLE 17 32 1 16 221
LAT 0 0 5 5 130

NUM 21 71 24 74 507
SET 3 64 17 78 190
SEU 18 95 48 125 600
SWC 17 63 15 61 421

6. Related work

Competitive saturation-based provers (E-prover [9], Vampire [26], SPASS [28]) implement
variants of the ordered paramodulation techniques to handle equality. All these variants are
derived from the superposition calculus described in [29]. This technique allows restricting
the resolution of equality literals, so that always the largest term in the clause is rewritten
(according to some given reduction ordering).

Existing implementations of the other goal-oriented provers use either the trivial equality
handling by appending axioms (like leanCoP [10]) or apply variants of Brand modification [12]
to eliminate equality axioms from the problem (like SETHEO [14] and SAD [30]).

Degtyarev and Voronkov [31] proposed a combination of saturation-based paramodulation
with non-clausal Connection Tableaux. The idea here is to derive clauses by using a basic
superposition saturation, append them to the problem and then execute a Connection Tableaux
proof search. However, an additional restriction is introduced that the extension step using a
clause from saturation cannot be followed by any other extension step.

LP-modification described in this paper emulates (within the standard Connection Tableaux
calculus) the Lazy Paramodulation calculus proposed by Paskevich [18] which attempts to
incorporate the strength of the ordering constraints into the Connection Tableaux.

The Handbook of Automated Reasoning [20, 2] describes a handful of practical optimizations



for pruning the Connection Tableaux search space (for the tableaux methods in general, not
just related to the equality handling). Our lpCoP incorporates path regularity and local lemma
optimizations. Our implementation of the original Lazy Paramodulation incorporates basicness
of the paramodulated terms.

In a recent work Rawson introduces the LazyCoP [32] prover, which is also an implementation
of the Lazy Paramodulation calculus, designed toward Machine Learning integration [33]. It
incorporates more of the standard Connection Tableaux optimizations than lpCoP, however, the
resulting procedure is not known to be complete. It also adds an additional strong connection
inference rule, which shortens the proofs in some cases.

7. Conclusions

In this paper, we have presented an efficient implementation of a customizable prover con-
taining both the original Lazy Paramodulation (LP) Connection Tableau search, as well as
LP-modification with the standard Connection Tableau search (with constraints). Our imple-
mentation, lpCoP, is a proof of concept which implements a single strategy with a hard-coded
reduction ordering.

The implementation is available at:
http://cl-informatik.uibk.ac.at/cek/paar2022/

We have experimentally compared the performance of Lazy Paramodulation vs LP-
modification vs Axiomatic Equality handling. LP-modification solved 38% more problems
than the Lazy Paramodulation. We cannot conclude that we have found a strict optimization,
however, because 20% of the problems solved by LP were not solved by LP-modification. We
know at least 2 factors that contribute to that discrepancy:

• in some large test cases the LP-modification transformation causes too much overhead
on the proof search, which Lazy Paramodulation is able to avoid at runtime (not every
clause in the proof needs paramodulation)

• the implementation differences cause equivalent branches of LP-modification and Lazy
Paramodulation to be processed in a different order in some cases.

We believe that both issues can be resolved with further engineering work and we plan to work
on these in the future.

LP-modification solved 19% more problems than the Axiomatic Equality and 30% of the
solved problems were not solved by the Axiomatic Equality. This means that combining both
strategies might give up to 14% better results than using any of them separately. This is still
behind superposition-based provers on FO problems with equality. A further comparison against
the similar approaches [31, 32] might be necessary to get further insights into the particular
advantages of LP-modification.

We have also performed an experiment to compare LP-modification against the leanCoP
prover. LP-modification solved 35% more problems than the leanCoP core strategy and 8%
fewer problems than leanCoP with its full schedule. Still, LP-modification solved 133 problems
not solved by leanCoP’s strategy schedule. This suggests that augmenting leanCoP with LP-
modification strategy might allow it to solve up to 25% more equality problems. This is likely

http://cl-informatik.uibk.ac.at/cek/paar2022/


an overestimation, given that the schedule distributes available time among different strategies,
yet the expected impact is still significant.

Paramodulation in saturation-based provers is known to be sensitive to the choice of the
reduction ordering (for example in E-prover [9]). Following the intuition that the same might be
true in the Connection Tableaux setup, we plan to investigate the impact of different reduction
orderings on the performance of LP-modification. We also plan to experiment with using
Machine Learning to guide the proof search of lpCoP. Furthermore, a comparison with other,
more efficient techniques for preprocessing equality [34] in connection calculi is open.
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