
VizAR: Visualization of Automated Reasoning
Proofs (System Description) ⋆

Jan Jakubův1[0000−0002−8848−5537] and Cezary Kaliszyk2[0000−0002−8273−6059]

1 Czech Technical University in Prague, Prague, Czech Republic
jakubuv@gmail.com

2 University of Innsbruck, Innsbruck, Austria and INDRC, Prague, Czech Republic
cezary.kaliszyk@uibk.ac.at

Abstract. We present a system for the visualization of proofs originat-
ing from Automated Theorem Provers for first-order logic. The system
can hide uninteresting proof parts of proofs, such as type annotations,
translate first-order terms to standard math syntax, and compactly dis-
play complex formulas. We demonstrate the system on several non-trivial
automated proofs of statements from Mizar Mathematical Library trans-
lated to first-order logic, and we provide a web interface where curious
users can browse and investigate the proofs.

Keywords: Proof Visualization · First-Order Logic · Automated The-
orem Provers

1 Introduction

With the increasing power of Automated Theorem Proving systems (ATPs), the
size and complexity of the proofs they output are also increasing. This addi-
tionally implies that analyzing such automatically generated proofs is becoming
more daunting for users. This is of particular importance for proofs that originate
from machine-learning-guided provers. The guided version of E, ENIGMA [6] can
automatically find proofs of many theorems that have previously been provable
only with long manual proofs. A large number of such proofs have been discussed
in our recent work on machine learning for Mizar [5]. To allow users to inspect
and analyze such proofs conveniently, we developed and present the VizAR sys-
tem:

http://ai.ciirc.cvut.cz/vizar/

The system can hide uninteresting parts of proofs (such as Mizar soft type
system annotations and reasoning about them), translate first-order terms to
standard math syntax (such as presenting Element(x, y) as x ∈ y), and com-
pactly display complex formulas. The system provides several ways to visualize
⋆ Supported by ERC-CZ grant no. LL1902 POSTMAN and EU Regional Development

Fund under the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15_003/00004,
and Cost Action CA20111 EuroProofNet.

http://ai.ciirc.cvut.cz/vizar/

2 Jakubův, Kaliszyk

complex proofs. In the full proof view, the proof is displayed as an interactive
SVG image. In order to simplify orientation in large proofs, the system features
a conjecture-centered view which helps to identify essential proof steps. Finally,
the proof step view allows the user to interactively browse individual proof steps
and reveal the proof essence hidden in their symbols.

Related Work. There exist several tools for viewing general automatically found
proofs. One of the first generally usable visual viewers for automatically found
proofs was the LΩUI [7] viewer offered as part of the Omega system. TPTP
tools include an interactive derivation viewer IDV [8] which allows users to focus
on particular clauses in TPTP proofs and see their relation (distance) from
the axioms and the conjecture. One of the most advanced viewers for proofs is
PROOFTOOL [4] which allows viewing GAPT transformed proofs.

Urban et al [10] have developed an online tool for Mizar that checks if partic-
ular subgoals are ATP-provable and if so views the premises (rather than proof
details as our tool does). Visualizing proof search differs quite a lot from the pre-
sentation of complete proofs and has also been investigated [3]. Hammer systems
use automated theorem provers to find proofs of conjectures in more complex
logics. The reconstruction of such ATP proofs often requires presenting them in
a more complex logic including mechanisms able to transform the conjecture to
its positive form [2]. Finally, the most advanced tools for presenting non-ATP
Mizar proofs are used to render Mizar Library articles in LATEX for the Journal
of Formalized Mathematics [1]. To our best knowledge, we are not aware of any
proof visualization tool as advanced as VizAR.

2 VizAR: The Proof Navigator

VizAR can display an arbitrary proof in the TPTP language. In addition, it
integrates extended support for proofs of Mizar statements coming from the
MPTP [9] translation of Mizar to first-order logic. A large amount of MPTP
proofs has been recently generated by ATPs (E and Vampire) with machine
learning guidance [5]. Selected proofs can be investigated on the VizAR web page.
VizAR shows the original Mizar statements for every conjecture and assumption,
and it provides links to Mizar proofs and symbol definitions.

Symbol Translation. MPTP uses its own names for Mizar symbols. VizAR uses
Unicode symbols to display terms and predicates in standard mathematical no-
tation when possible. For example, the MPTP symbol m1_subset_1(X,Y) corre-
sponds to Mizar symbol Element(X,Y) and in VizAR it is presented as X ∈ Y .3
Another example is the MPTP symbol r2_wellord2(X,Y) corresponding to the
Mizar symbol are_equipotent(X,Y) which is written as |X| = |Y | in VizAR.
The translation is implemented using simple templates to position arguments.
For symbols without special VizAR translations, original Mizar symbol names
are used. Mizar names are composed of various ASCII characters resembling the
standard math notation, for example, c= stands for ⊆.
3 We use LATEX to typeset VizAR syntax in this paper. Unicode used in HTML/SVG

looks fairly close to it, with the exception of better spacing and fonts in LATEX.

VizAR: Visualization of Automated Reasoning Proofs (System Description) 3

Clause Visualization. ATP proofs consist of clauses with positive and negative
literals. In the VizAR syntax, clauses are displayed as sequents in order to avoid
the negation sign (∼ in TPTP). For example, the clause A | B | ∼C | ∼D
is considered as the logically equivalent sequent C,D ⇒ A,B. The antecedents
(left-hand side) are implicitly connected by logical and, while the consequents
(right-hand side) are implicitly connected by logical or. The sequents are visual-
ized as boxes with the content displayed vertically (top-down) as demonstrated
in Figure 1. Clauses without negative literals (for example, A | B) are displayed
simply as A,B instead of ⊤ ⇒ A,B. Clauses without positive literals (for exam-
ple, ∼C | ∼D) are displayed as C,D ⇒ ⊥. As an exception, a unit clause with
one negative literal is displayed as ¬A instead of A ⇒ ⊥ to save space. This is
the only case where the negation sign can be encountered in VizAR.

Clause Simplifications. MPTP first-order translations of Mizar statements typi-
cally use soft type guard predicates to specify types of variables. A typical clause
(written as a sequent) looks as natural(X1), natural(X2) ⇒ natural(plus(X1, X2)).
This states that the sum of two naturals is a natural number. To simplify the
proof presentation, VizAR hides the type guards applied to variables, and in-
troduces a different variable symbol for each type predicate, for example, N for
natural numbers and R for real numbers. Hence the above sequent becomes just
natural(plus(N1, N2)). In the VizAR syntax, this becomes simply (N1+N2) ∈ N
as VizAR uses Unicode subscript letters to typeset variable indices. This means
that, for example, the VizAR statement N1 ∈ R should be interpreted as “every
natural number is a real number”. As a second step, all negative occurrences of
type guard predicates (even with a non-variable argument) are completely hid-
den. This is because they typically provide no interesting information from the
human point of view. While the first simplification preserves all information in
the clause, the second removes intuitively trivial literals but the original clause
cannot be fully reconstructed.

Proof Transformations. Proofs considered by VizAR are proofs by contradiction
because of the underlying ATP provers. The prover first negates the conjecture
and then searches for the contradiction with other assumptions. An ATP proof
in the TPTP language is a directed acyclic graph where the leaves correspond to
assumptions and all the edges can be followed to the sink node representing the
contradiction. Every inner node represents an inferred clause and the edges con-
nect premises with the inference outcome. After symbol translations and clause
simplifications, two consequent graph nodes might represent syntactically equal
clauses. For example, the Mizar statements Element(X,NAT) and natural(X) are
both represented as X ∈ N in VizAR. In these cases, to further simplify the proof
graph, we unify consequent nodes labeled with the same VizAR expression and
merge their respective source and destination edges.

Proof Visualizations. VizAR uses Graphviz to render proof graphs while the
web interface is implemented by the static site generator Jekyll. VizAR web
interface provides several ways to investigate ATP proofs. In the full proof view,
the whole proof graph is displayed as an SVG image with hyperlinks. Graph

4 Jakubův, Kaliszyk

N₁! ∈ ℕ

2 ≤ (N₁!) + 1

primeDivisor((N₁!) + 1) ≤ N₁
⇊

⊥

2 ≤ N₁ + 1

primeDivisor(N₁ + 1) । N₁
⇊

⊥

N₁ ≤ N₂
⇊

N₁ = 0

N₁ । N₂!

2 ≤ N₁
⇊

primeDivisor(N₁) ∈ ℕ

¬ (2 ≤ (primeUpperBound!) + 1)

Fig. 1. Visualization of a proof step from the proof of MPTP theorem t72_newton.

leaves corresponding to assumptions are displayed in blue and all the nodes
inferred from the negated conjecture are displayed in orange. Hence all non-
orange nodes represent statements generally valid in Mizar. Clicking on any
node takes the user to a detailed description of the corresponding proof step.

Since the full proof view might be very complex, VizAR features a conjecture-
centered view where only the statements derived from the conjecture are dis-
played. This is a subgraph of the full proof view. Additionally, for every conjecture-
related node, its non-conjecture premises used to derive this step are displayed.
This view can help the user inspect how the negated conjecture is transformed
into the contradiction. Thus, it is useful to identify the key steps of the proof.

In the proof step view, only a single proof graph node is displayed with its
immediate parents and children. Additional information is provided about the
symbols appearing in this proof step. Again, the user can click on any of the
nodes to see the corresponding proof step view. Fig. 1 shows an example proof
step in VizAR. The ATP proved the Mizar theorem t72_newton, which states
that there is no upper bound on the prime numbers. Proving this in one ATP run
is rather impressive, so we inspect the key steps leading to the contradiction. The
ATP inferred that when n!+1 ≥ 2 then n!+1 has no prime divisors less or equal
to n. We already see the instantiation found (n! + 1) and can inspect the key
reasoning steps: In the later step, this is applied to the upper bound on primes
assumed by the negated conjecture, which quickly leads to a contradiction since
the upper bound must be greater than 2. For the sake of presentation, we display
the ATP Skolem symbols (ski in VizAR) as primeDivisor and primeUpperBound
and hide trivially false statements (primeDivisor(..) = 0, 1).

Skolem symbols are introduced by ATPs to eliminate existential quantifiers
and they typically constitute an important part of the proof. Hence it is im-
portant to understand their meaning and, to help the user with that, VizAR

VizAR: Visualization of Automated Reasoning Proofs (System Description) 5

displays their origin in the proof overview. Clicking on the axiom will take the
user to the axiom view where they will also see the original formula that gave
rise to them. The Skolem symbols are also displayed in the proof step view when
some of them are included in the step claim.

3 Conclusions and Future Work

We have developed the VizAR ATP proof visualization system and we publish
its web interface on GitHub pages with a custom domain redirect. The web
interface currently features selected ATP proofs of MPTP statements. In the
proof gallery, we present featured proofs with improved VizAR syntax for all
relevant Mizar symbols. Moreover, the other proofs section of the page contains
a large number of proofs where Mizar names are used for selected symbols.

The VizAR system can be enhanced in many ways. First, VizAR syntax can
be provided for more Mizar symbols to display statements in standard math
notations. Second, additional proof simplification rules can be applied, for ex-
ample, to hide clauses like A ⇒ A or (s = t) ⇒ (t = s). Such simplification rules
could also be detected automatically or provided interactively.

References
1. Bancerek, G., Naumowicz, A., Urban, J.: System description: XSL-based translator

of Mizar to LaTeX. In: CICM. LNCS, vol. 11006, pp. 1–6. Springer (2018)
2. Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-

intelligible Isar proofs from machine-generated proofs. J. Autom. Reason. 56(2),
155–200 (2016). https://doi.org/10.1007/s10817-015-9335-3

3. Byrnes, J., Buchanan, M., Ernst, M., Miller, P., Roberts, C., Keller, R.: Visualizing
proof search for theorem prover development. In: UITP. ENTCS, vol. 226, pp. 23–
38. Elsevier (2008). https://doi.org/10.1016/j.entcs.2008.12.095

4. Dunchev, C., Leitsch, A., Libal, T., Riener, M., Rukhaia, M., Weller, D., Pa-
leo, B.W.: PROOFTOOL: a GUI for the GAPT framework. In: UITP. EPTCS,
vol. 118, pp. 1–14 (2012). https://doi.org/10.4204/EPTCS.118.1

5. Jakubův, J., Chvalovský, K., Goertzel, Z.A., Kaliszyk, C., Olšák, M., Piotrowski,
B., Schulz, S., Suda, M., Urban, J.: MizAR 60 for Mizar 50. CoRR (2023), https:
//arxiv.org/abs/2303.06686

6. Jakubův, J., Chvalovský, K., Olšák, M., Piotrowski, B., Suda, M., Urban, J.:
ENIGMA Anonymous: Symbol-independent inference guiding machine (system de-
scription). In: IJCAR (2). LNCS, vol. 12167, pp. 448–463. Springer (2020)

7. Siekmann, J.H., Hess, S.M., Benzmüller, C., Cheikhrouhou, L., Fiedler, A., Ho-
racek, H., Kohlhase, M., Konrad, K., Meier, A., Melis, E., Pollet, M., Sorge, V.:
LΩUI : Lovely Ωmega U ser Interface. Formal Aspects Comput. 11(3), 326–342
(1999), https://doi.org/10.1007/s001650050053

8. Trac, S., Puzis, Y., Sutcliffe, G.: An Interactive Derivation Viewer. In: Autexier,
S., Benzmüller, C. (eds.) Proceedings of the 7th Workshop on User Interfaces for
Theorem Provers. Electronic Notes in Theoretical Computer Science, vol. 174, pp.
109–123 (2007). https://doi.org/10.1016/j.entcs.2006.09.025

9. Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom.
Reason. 37(1-2), 21–43 (2006). https://doi.org/10.1007/s10817-006-9032-3

10. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

https://doi.org/10.1007/s10817-015-9335-3
https://doi.org/10.1016/j.entcs.2008.12.095
https://doi.org/10.4204/EPTCS.118.1
https://arxiv.org/abs/2303.06686
https://arxiv.org/abs/2303.06686
https://doi.org/10.1007/s001650050053
https://doi.org/10.1016/j.entcs.2006.09.025
https://doi.org/10.1007/s10817-006-9032-3

	VizAR: Visualization of Automated Reasoning Proofs (System Description)

