
Experiments on Infinite Model Finding in SMT Solving

Julian Parsert1, Chad E. Brown2, Mikoláš Janota2, and Cezary Kaliszyk3

1 University of Edinburgh, Edinburgh and University of Oxford, Oxford, UK
julian.parsert@gmail.com

2 Czech Technical University in Prague, Prague, Czech Republic
mikolas.janota@cvut.cz

3 University of Innsbruck, Innsbruck, Austria and INDRC, Czech Republic
cezary.kaliszyk@uibk.ac.at

Abstract

We propose infinite model finding as a new task for SMT-Solving. Model finding
has a long-standing tradition in SMT and automated reasoning in general. Yet, most
of the current tools are limited to finite models despite the fact that many theories only
admit infinite models. This paper shows a variety of such problems and evaluates synthesis
approaches on them. Interestingly, state-of-the-art SMT solvers fail even on very small and
simple problems. We target such problems by SyGuS tools as well as heuristic approaches.

1 Introduction

Satisfiable problems find a wide range of applications in formal methods and automated rea-
soning. Notably, a satisfiable problem represents a counterexample to an invalid conjecture.
In automated reasoning such instances are often referred to as counter-satisfiable (TPTP [44]
includes CounterSatisfiable as a problem status). But satisfiability problems are also inter-
esting for researchers that look for specific objects, e.g. in computational algebra. This paper
is concerned with the resolution of satisfiable problems in the context of satisfiability modulo
theories (SMT) [12].

SMT solvers are extremely powerful on satisfiable ground problems but much weaker when
it comes to problems including quantifiers and uninterpreted functions. One possible approach
is finite model finding, which has a long-standing history in theorem proving. MACE4 [32] dates
to 2003 and is still popular, especially among researchers in computational algebra [23]. Other
techniques for finite model finding use SAT solvers, constraint programming and SMT solvers,
cf. Sec. 7. By design, these approaches fail on problems that only admit infinite models.

Model-guided quantifier instantiation [24] (implemented in Z3 [22]) enables the construction
and checking of infinite models in the presence of general quantifiers. However, this technique
alone, does not give a recipe for creating models as it is primarily focuses refutation. Further
techniques to construct models in saturation-based theorem provers were proposed [34], but we
are not aware of any mainstream prover providing such models (this also requires the prover to
saturate, which alone occurs rarely in practice). Some model finding techniques rely on special
forms of models, such as linear algebra [26].
Contributions: In this paper, we use synthesis approaches to construct infinite models. At
the formal level, the two tasks are identical but practically, the objectives imply very different
problems and solutions. In particular:

• We present a number of small problems for which infinite models exist, but there are no
finite ones or the finite ones are too large (Sec. 3). These include manually constructed
problems and problems from proof assistant hammer systems.

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

• We experiment with current SyGuS techniques on SMT problems (Sec. 4) and propose
simple heuristics that let us extend the range of solvable problems (Sec. 5).

• Our evaluation (Sec. 6) shows that synthesis only enables solving a limited range of
problems, while our heuristic solves some problems with unknown status.

2 Syntax-Guided Synthesis

In general, program synthesis is undecidable. It therefore makes sense to consider fragments
of this problem. Such fragments can be defined by restrictions on the semantics as well as the
syntax of possible solutions. One such approach is Syntax-Guided Synthesis [3,5] (SyGuS). The
SyGuS input format (SyGuS-IF)1 [3] is a standardised language that allows users to formulate
synthesis problems restricting the problem syntactically (by providing a grammar) and seman-
tically (by providing a formal specification). Much like in SMT, SyGuS problems are stated in
the context of a theory (e.g. LIA, EUF, etc.). Naturally, the syntax of SyGuS-IF very closely
follows that of SMTLIB [11]. Formally, a SyGuS problem is defined as follows:

Definition 1. A SyGuS problem is a tuple ⟨T, F, ϕ,G⟩ where T is a background theory, F
is a second-order variable, ϕ is a specification using F as well as symbols from T , and G is
a grammar producing a language in the theory T . A solution e to a SyGuS problem is an
expression such that T |= ϕ[F/e] and e ∈ L(G) where L(G) is the language generated by G.

In the following example we present a synthesis problem with a corresponding SyGuS-IF
syntax.

Example 1. Consider the following SyGuS problem ⟨LIA,max2, ϕ,G⟩ where ϕ is

max2(x, y) ≥ x ∧max2(x, y) ≥ y ∧ (max2(x, y) = x ∨max2(x, y) = y)

and G is

I → x | y | 0 | 1 | I + I | I − I | (ite 2BII)

B → B ∧B | B ∨B | ¬B | I = I | I <= I | I >= I.

This describes a SyGuS problem in linear integer arithmetic (LIA) where specification ϕ de-
scribes the maximum of the two argumnets to max2. The grammar consists of two non-terminals
I and B mapping to expressions of type integer and boolean respectively. Using the SyGuS-IF
format, the same problem can be stated as follows:

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int

((I Int) (B Bool))
((I Int (x y 0 1 (+ I I) (- I I) (ite B I I)))
(B Bool ((and B B) (or B B) (not B) (= I I) (<= I I) (>= I I)))))

(declare-var x Int)
(declare-var y Int)

(constraint (>= (max2 x y) x))
1https://sygus.org/
2ite is the if-then-else operator.

2

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

(constraint (>= (max2 x y) y))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)

The following expression would be a candiate solution:

(define-fun max2 ((x Int) (y Int)) Int (ite (<= x y) y x))

A SyGuS problem is essentially an existentially quantified second-order sentence. A the-
oretical analysis of the decidability and complexity of SyGuS fragments is presented in [19].
Modern SyGuS tools such as EU Solver [4], CVC4/cvc5 [39], and ConcSolver [29] incorporate
a vast range of techniques such as: Counterexample guided inductive synthesis (CEGIS) [1],
refutation based synthesis, single invocation synthesis [40], unification based synthesis [6] etc.

It is important to point out that a lot of important research in program synthesis also
happens outside of context of SyGuS. For example, Escher [2] is an algorithm for synthesising
recursive programs by interacting with the user via input-output examples. Programming-
by-example (PBE) has seen a lot of development with practical applications in spreadsheets
with Flashfill and subsequent work [18, 36]. Synthesis has also been applied to programming
languages such as Scala [31]. Furthermore, Sketch [43] allows for the automated completion of
“holes” in procedural programming languages.

3 Applications

This section presents a number of problems that only admit infinite models. We only discuss
the problems that we have been able to construct and experimented with. A more systematic
analysis of problems that only admit infinite or extremely large models is left as future work.

Infinite Sorts There are many ways how natural numbers can be axiomatized, however, none
of them admit finite characterisations. This implies that many satisfiable problems that include
natural numbers require infinite models. As the integers naturally include the natural numbers,
this is of course also applicable to theories that include integers, such as LIA [11]. Likewise,
any sort and collection of assertions from which one can construct the natural numbers as a
predicate over the sort can only be satisfied by taking the sort to be infinite.

A set (or sort) A is said to be Dedekind-infinite if there is an injective function from A
into A that is not surjective. This is, for example, used as the axiom of infinity on the base
type of individuals in the standard library of the HOL Light theorem prover [27]. The type
of natural numbers can then be constructed as the smallest type that contains the zero (one
of the elements not in the image of the injection) and is closed under successor (given by the
injection) on such individuals. Our example infin0 is satisfiable by taking the declared sort S
to be an infinite set and declared function f to be injective but not surjective.

Another way to state that a set (or sort) is infinite is to assert the existence of an irreflexive
transitive serial relation. For example, Andrews uses this as an axiom of infinity in his formu-
lation of higher-order logic [7]. Our example infin1 is satisfiable by any (necessarily infinite)
sort and appropriate relation on the sort. Our example infin2 replaces the sort by Int and the
relation by > (clearly irreflexive, transitive and serial).

Algebras and Datatypes Recursive datatypes are a feature of SMT that also has applica-
tions, mostly in functional programming [33] and theorem proving [13]. Showing the satisfi-
ability of properties that concern lists, streams, infinite trees and alike often requires infinite

3

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

models. We include only basic problems that require the synthesis of infinite sequences id0,
id1, infin5. The problem, id2 only requires an integer sequence with finitely many properties.

Starvation-freeness and pattern examples This class is inspired by the starvation-
freeness property. For instance, an elevator that always services the most recent request runs
the risk of starvation of never reaching the first floor if keep coming from floor 2 and 3. De-
scribing that starvation-freeness is not preserved, requires an infinite model. Such properties
are well studied in temporal logics and are closely related to automata [35, 46]. Hence, we
consider monadic functions from integers (representing time) that must follow some pattern.
A simple example is a “flipper” function f : Z → B s.t. f(x + 1) = ¬f(x). We also remark
that monadic predicates, as a special case, are also well studied [47]. The problems infin3 and
infin4 correspond to starvation-freeness and infin flip and infin pattern to the flipper
and pattern examples respectively.

Hammer Systems Hammer tools [16] provide the strongest most general automation for
proof assistants [28] today. They combine AI with translation to automated theorem proving
tools including SMT solvers [15]. As such they are a large source of SMT problems. In principle,
the generated SMT problems originate from proof assistant conjectures that the user deemed
provable, in practice there are several reasons why the problems are often satisfiable. First,
conjectures initially stated by users are sometimes initially incomplete. Second, the AI part of
a hammer might not select all the relevant facts. Third, and most importantly, a large part of
the generated SMT problems actually come from proof minimisation: in order to reconstruct
the simplest proof assistant proof, heuristically parts of the problem are pruned and checked
for satisfiability.

The current SMTLIB benchmarks version 2 already includes a large number of problems
originating from Sledgehammer [15]. Among the 3462 problems in the theory of UFLIA (linear
integer linear arithmetic with uninterpreted functions), 1521 are known to be unsatisfiable and
only 14 are known to be satisfiable. We believe that many of the remaining 1927 are satisfiable,
but showing this requires infinite models. For several of these problems our heuristic presented
in Section 5 is in fact able to find such infinite models. As there are really many possible
SMTLIB problems originating from hammers, we select 209 problems with the status unknown
from Sledgehammer/Hoare.

4 Interpreting Functions using SyGuS

We will experiment with two approaches for synthesising models. The first one uses SyGuS for
this task. In our preliminary experiments we only looked at integers (i.e. no infinite datastruc-
tures etc.). In particular, we translated the SMT problems to SyGuS problems by keeping all
constraints/assertions and changing SMT declare-fun commands to SyGuS synth-fun com-
mands. Thus tasking the synthesisers to construct functions such that the assertions are valid.
As already discussed, the two tasks are very close. This is illustrated by the following example.
Note that the synth-fun command admits a syntactic constraint. However, by omitting this,
we allow the function f to form any expression that is permissible within the UFLIA theory.

4

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

(set-logic UFLIA)
(declare-fun f (Int) Int)
(assert (forall ((x Int)) (< x (f x))))
(check-sat)
(get-model)

(a) Sample SMT problem

(set-logic UFLIA)
(synth-fun f ((x Int)) Int)
(constraint (forall ((x Int)) (< x (f x))))
(check-synth)

(b) Corresponding SyGuS translation

5 A Heuristic for Interpreting Sorts and Functions

The direct use of SyGuS presented in the previous section is already useful, but it is not robust
enough. In this section we improve on this by proposing and implementing3 a heuristic method.

Suppose the SMT problem consists of n uninterpreted sorts α1, . . . , αn, m uninterpreted
functions f1, . . . , fm and k assertions φ1, . . . , φk. We assume each function fj has a type
σ1×· · ·×σl → τ where each of σ1, . . . , σl and τ is either Bool (the two element sort with which
SMT solvers are familiar), Int (the infinite sort of integers with which SMT solvers are familiar)
or one of α1, . . . , αk. In order to demonstrate satisfiability, we must interpret the sorts and
function symbols in a way that the assertions are all true. We will do this by interpreting the
sorts and functions (possibly with some remaining constants to be interpreted) and make use
of the SMT solver cvc5 to test satisfiability of the problem obtained by translating according
to the interpretation. In all our experiments we call cvc5 with a timeout of a second. All the
results reported below are with a total timeout of 1 hour for the procedure.

We will interpret the sorts and functions in two separate phases. The first phase will
interpret each sort αi as either the singleton sort Unit, the two element sort Bool or the infinite
sort Int. The second phase will interpret each function fj as a function expressible in the basic
grammar given below. Given such an interpretation (or partial interpretation), we can translate
the interpreted problem into a new SMT problem. If the new SMT problem is satisfiable, then
we know the original SMT problem is satisfiable. One slight complication is that cvc5 does
not have a Unit type. This can be dealt with by erasing all references to the Unit type via the
following recipe:

1. If fj has type σ1 × · · · × σl → αi where αi is interpreted as Unit, then fj is deleted from
the problem.

2. For other fj of type σ1 × · · · × σl → τ , we delete each argument position i′ where σi′ is
αi where αi is interpreted as Unit.

3. In assertions φj every quantifier ∀x : αi or ∃x : αi is deleted if αi is interpreted as Unit,
and every equation over the unit type is replaced by ⊤.

5.1 Phase 1: Interpreting sorts

A partial sort interpretation Φ is a partial function from {α1, . . . , αn} to {Unit,Bool, Int}. Before
determining a partial sort intepretation, we scan the assertions in order to determine if a sort
must contain more than one element and for clues that a sort should be infinite.

1. For each φj we check if there is a disequation over terms of sort αi. In this case we record
that αi should not be Unit.

3The code is available at http://grid01.ciirc.cvut.cz/~chad/smtintfuncsynth-0.3.tgz.

5

http://grid01.ciirc.cvut.cz/~chad/smtintfuncsynth-0.3.tgz

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

2. For each φj we check for equations with clues that a sort αi should be infinite. Such a
“clue” is a subformula of the form

∀x : Int.ψ1 ∧ . . . ∧ ψl → g(. . . , h(. . . , x, . . .), . . .) = x

where h(. . . , x, . . .) has sort αi and in every ψk either x is not free or ψk has the form
x ≤ t or x < t where x is not free in t. If such a clue is a positive subformula of φj , then
we commit αi to be Int.

For each i ∈ {0, . . . , n}, we define Φi interpreting the sorts α1, . . . , αi, iterating over i. Clearly
Φ0 is the empty partial function. Assuming we have Φi, we define Φi+1 by extending the
function to assign Φi+1(αi+1) ∈ {Unit,Bool, Int}. If there is a clue that αi should be infinite,
then we simply choose Φi+1(αi+1) = Int. Otherwise, we have two cases: either we know from
an assertion that αi+1 should not be Unit or we do not. Assume we know it should not be Unit.
In that case we let Ψ be the partial function extending Φi with Ψ(αi+1) = Bool and call cvc5
on the problem interpreted via Ψ. If cvc5 reports the problem is satisfiable, then the original
problem is already satisfiable and we are done. If cvc5 reports the problem is unsatisfiable, then
we assign Φi+1(αi+1) = Int. Otherwise, we try calling cvc5 with two different options: first,
with the --cegqi-all option; second, with the --enum-inst option. We report satisfiability or
unsatisfiability if either of these calls succeed. All cvc5 calls are done with a 1 second timeout
which guarantees the termination of the procedure. Otherwise, we assign Φi+1(αi+1) = Bool.
Next, assume we do not know αi+1 should not be Unit. We follow a similar procedure of
trying partial interpretation sending αi+1 to Unit and using this if the translated problem is
not reported as unsatisfiable. Otherwise we try a partial interpretation sending αi+1 to Bool
and use this if the translated problem is not reported as unsatisfiable (by one of three calls to
cvc5), and finally sending αi+1 to Int otherwise.

At the end of this iteration, we have Φn interpreting each sort αi as one of the three sorts
Unit, Bool or Int.

5.2 Phase 2: Interpreting functions

After the first phase, we may simply assume there are no uninterpreted sorts. Furthermore,
by erasing references to the Unit type, we can assume all sorts are Bool or Int. What remains
is a problem with uninterpreted functions f1, . . . , fm where each function takes booleans and
integers as arguments and returns either a boolean or an integer. We restrict our consideration
to functions expressible as terms in the following grammar:

ints(t) ::= x | c | halve t | double t | c+ t | c− t | ite p t t
bools(p) ::= ⊤ | ⊥ | b | t ≤ 0 | even t | ¬p

In the grammar x is a single variable of type Int and will in practice correspond to one argument
of the uninterpreted function. (That is, we never consider functions that depend on more than
one input.) The constants c and b are intended as schemes ranging over constants of type Int
and Bool. After generating a t or p in the grammar above, we make it specific by creating fresh
constants c1, c2, . . . and b1, b2, . . . whose values the SMT solver can determine. The built-in
function halve, double, +, −, ite (if-then-else), ≤ and even have straightforward counterparts in
the SMT theory of linear arithmetic.

We generate t and p via the grammar up to a certain depth (heuristically selected depth 7),
using a heuristic filter to avoid generating all possibilities. Various syntactic features are used
to rank the possibilities for t and p at a certain depth and we only keep the top 60 at each

6

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

Problem cvc5-SMT Z3 SyGuS Heuristic Solution (SyGuS)
(cvc5)

id0 ✗ ✗ ✓ ✓ (def f ((x Int)) Int (+ 1 x))

id1 ✗ ✓ ✓ ✓ (def f ((x Int)) Int x)

id2 ✓ ✓ ✓ ✓ Long case split for each assertion.
infin0 ✗ ✗ ✗ ✓
infin1 ✗ ✗ ✗ ✗

infin2 ✗ ✗ ✓ ✓
(def f ((x Int)) Int x)

(def sk ((x Int)) Int (+ x 1))

infin3 ✗ ✗ ✗ ✓
infin4 ✗ ✗ ✗ ✓
infin5 ✗ ✓ ✗ ✓
infin flip ✗ ✗ ✗ ✓
infin pattern ✗ ✗ ✗ ✓

1035171 ✗ ✗ ✗ ✓
1046464 ✗ ✗ ✗ ✓
932605 ✗ ✗ ✗ ✓
993842 ✗ ✗ ✗ ✓
935843 ✗ ✗ ✗ ✓

Table 1: Results of running SMT solvers (cvc5 and z3) on the SMT problems, cvc5-SyGuS on
the corresponding SyGuS problems, and the proposed heuristic. In the last column we show
the solutions to the SyGuS problems (where def is short for define-fun and the solution to
id2 was omitted for space).

depth. Without these heuristic filters, too many candidates would need to be considered and
the procedure would not have a chance to succeed on the examples. Once this is done, we have
a collection of candidates t1, . . . , tN and p1, . . . , pM . For each fj of type σ1 × . . . × σl → Int,
each i with σi = Int, and each k ∈ {1, . . . , N} we consider interpreting fj as tk (treating x as
argument i of fj and ignoring other arguments, and splitting the constants c and b into distinct
constants). Likewise for each fj of type σ1 × . . . × σl → Bool, each i with σi = Int, and each
k ∈ {1, . . . ,M} we consider interpreting fj as pk (again treating x as argument i of fj and
ignoring other arguments and making constant occurrences distinct).

In most cases for the 209 Sledgehammer/Hoare problems, this will lead to a large number
of more specific SMT problems with no uninterpreted sorts and where the only “uninterpreted
functions” are actually constants (i.e., functions with no arguments) of type Bool or Int. We
call cvc5 on each of these possibilities, reporting satisfiability on the original problem if cvc5
reports satisfiability on one of the more specific interpreted SMT problems. Each cvc5 call is
performed with a 1 second timeout, establishing termination of the procedure.

6 Results

In our experiments we ran cvc5 (in SMT mode) [10] as well as Z3 [22] on a set of SMT problems.
Subsequently, we also ran cvc5 in SyGuS mode on the equivalent SyGuS problems. Finally, we
evaluated the proposed heuristic method on them.

The results are presented in Table 1. There are several problems where employing a solver

7

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

specifically geared towards synthesis rather than SMT outperforms the corresponding SMT
solvers. For example, id0 and infin2 could not be solved by either the SMT solvers directly,
but SyGuS mode can find a solution. Similarly, for id1 and id2, cvc5 does not find a solution
directly, but manages to do so with SyGuS.

The proposed heuristic performs even better, quickly solving the problems with relatively
simple solutions. For example, suppose there is one uninterpreted function f : Int → Int that
should satisfy ∀x.x < f(x). Interpreting f(x) as c0 + x gives a solution that cvc5 can easily
verify as satisfiable (presumably taking c0 to be 1).

The example infin0 requires us to interpret a sort α, a function f : α→ α and a constant
out : α such that f is injective but out is not in the image of f . The proposed procedure can
determine that α cannot be Unit or Bool and so interprets α as Int. Once this choice is made,
an f of the form f(x) = c0 − (c1 + double(x)) gives a solution, where cvc5 is used to determine
values for out, c0 and c1.

The example infin1 requires us to interpret a sort α, a binary relation R : α × α → Bool
and a unary function sk : α→ α such that R is transitive and irreflexive and R x (sk x) holds
for all x. We can again rule out Unit and Bool for α, leaving us to interpret α as Int. In this
case, however, we cannot find an appropriate value of R, as we only consider functions that
depend on at most one of their arguments. It should be clear that an appropriate R (e.g., <)
would need to depend on both arguments.

In the next two example problems, infin3 and infin4, satisfiability means starvation-
freeness. Suppose we have one uninterpreted sort α and one function f : Int → α and three
constants a, b, c : α. Suppose these should satisfy the assertions that a, b and c are distinct,
f(x) is always one of a, b or c, f(x) ̸= f(x − 1) and ∀x.f(x) ̸= a. We can use cvc5 to easily
rule out interpreting α as Unit or Bool, leaving us with α interpreted as Int. Interpreting f(x)
as ite (even x) c1 c2 is sufficient for cvc5 to determine satisfiability (leaving the SMT solver to
determine appropriate values for a, b, c, c1 and c2).

More impressive examples that can be solved by the method are five UFLIA problems
classified under sledgehammer/Hoare originating from sledgehammer (as discussed in Sec. 3):
smtlib.1035171.smt2, smtlib.1046464.smt2, smtlib.932605.smt2, smtlib.993842.smt2,
and z3.935843.smt2. Each of these problems is given status “unknown” in SMTLIB at the
moment, but we can now classify as satisfiable. The five problems have 10–17 uninterpreted
sorts and 20–29 uninterpreted functions. For each of the problems, the procedure interprets
one sort as Int, 2–4 sorts as Bool and the rest as Unit. The other 204 problems still remain
unknown.

7 Related Work

A large body of research exists on finite model finding with numerous techniques anchored
in SAT [21, 30, 38], constraint programming [9, 32, 48, 49], SMT [41, 42], and dedicated pro-
cedures [17]. The calculated models find a bevy of applications in automated reasoning and
computational algebra as counterexamples to incorrect conjectures [14] or for mathematicians
interested in particular mathematical structures [23]. Finite models have also been used as a
semantic feature in machine-learning guided premise selection [45]. Claessen and Lillieström
focus on a bridge between finite and infinite models by providing techniques that attempt to
determine a given first-order logic formula has no finite model [20].

When it comes to infinite models, we find much fewer results despite the fact that many
practical theories only admit infinite models. Strictly speaking, any SMT solver working with
integers is able to produce an infinite model. However, as demonstrated in our experimental

8

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

validation, state-of-the-art SAT solvers do not go very far in the presence of quantifiers and
uninterpreted functions. Similarly, uninterpreted sorts pose a difficult problem.

Model-guided quantifier instantiation [24] in SMT instantiates quantifiers so that they con-
tradict the current, candidate, model. But since the candidate model is constructed based on
the ground (partial) instantiation of the formula, it is not clear in general how to extrapolate
to complex infinite models.

An area related to the problem at hand is inductive logic programming, which enables
inventing complex predicates based on positive and negative examples [25, 37]. Also, finite
automata are good representatives for infinite behaviors [46]. One might envision collaboration
between SMT and these areas. Arif et al. [8] explores one such connection by learning temporary
logic formulas from finite traces.

Peltier explores techniques for the construction of infinite models in the context of
saturation-based theorem proving [34, 34]. Indeed, under ordered resolution, nontrivial cer-
tifiable problems may saturate, even though saturation occurs rarely in practice. To our best
knowledge, there is no mainstream theorem prover implementing the proposed techniques.

8 Conclusion and Future Work

We propose infinite model finding as a fruitful research domain in satisfiability modulo theories
(SMT). Models of theories are undoubtedly interesting, which is witnessed by a large body of
research on finite model finding. Infinite models, however, are underresearched and may even
seem too much of a daunting task. One approach worth mentioning is the generation of models
implemented in AGES [26]. Both papers show that infinite model finding is not at all a hopeless
task. On the contrary, many opportunities exist to advance the field.

On the one hand, our experiments show that state-of-the-art SMT solvers only enable pro-
ducing trivial infinite models. On the other hand, SMT solvers could expand their capabilities
by incorporating techniques from program and function synthesis. That alone, might not be
sufficient since current synthesizers do not handle well problems with multiple unknown (unin-
terpreted) functions and unknown sorts. As a partial answer to this issue, we propose a heuristic
approach to instantiate by sorts and functions from the fixed set. These are not instantiated
blindly but make use of specific properties mined from the formula. Our heuristic approach
is able to solve several problems in the SMT-LIB currently labeled as “unknown”. This gives
us an exciting avenue for further research by considering a larger set of functions and proper-
ties. Further capabilities could be obtained by integrating with techniques from inductive logic
programming and reasearch on temporal logics.

Acknowledgment

The results were supported by the Ministry of Education, Youth and Sports within the dedicated
program ERC CZ under the project POSTMAN no. LL1902 as well as the ERC starting grant
no. 714034 SMART and Cost action CA20111 EuroProofNet. This scientific article is part
of the RICAIP project that has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 857306.

References

[1] A. Abate, C. David, P. Kesseli, D. Kroening, and E. Polgreen. Counterexample guided inductive
synthesis modulo theories. In CAV (1), volume 10981 of LNCS, pages 270–288. Springer, 2018.

9

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

[2] A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive program synthesis. In CAV, volume 8044
of LNCS, pages 934–950. Springer, 2013.

[3] R. Alur, R. Bod́ık, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit, P. Madhusudan,
M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak,
and A. Udupa. Syntax-guided synthesis. In Dependable Software Systems Engineering, volume 40
of NATO Science for Peace and Security Series, D: Information and Communication Security,
pages 1–25. IOS Press, 2015.

[4] R. Alur, A. Radhakrishna, and A. Udupa. Scaling enumerative program synthesis via divide and
conquer. In TACAS (1), volume 10205 of LNCS, pages 319–336, 2017.

[5] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama. Search-based program synthesis. Commun.
ACM, 61(12):84–93, 2018.

[6] R. Alur, P. Černý, and A. Radhakrishna. Synthesis through unification. In CAV (2), volume 9207
of LNCS, pages 163–179. Springer, 2015.

[7] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof.
Kluwer Academic Publishers, 2nd edition, 2002.

[8] M. F. Arif, D. Larraz, M. Echeverria, A. Reynolds, O. Chowdhury, and C. Tinelli. SYSLITE:
syntax-guided synthesis of PLTL formulas from finite traces. In 2020 Formal Methods in Computer
Aided Design, FMCAD 2020, pages 93–103. IEEE, 2020.

[9] G. Audemard, B. Benhamou, and L. Henocque. Predicting and detecting symmetries in FOL finite
model search. J. Autom. Reason., 36(3):177–212, 2006.

[10] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed, M. Mo-
hamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and
Y. Zohar. cvc5: A versatile and industrial-strength SMT solver. In D. Fisman and G. Rosu,
editors, Tools and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022. Springer, 2022.

[11] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6. Technical report,
Department of Computer Science, The University of Iowa, 2017. Available at www.SMT-LIB.org.

[12] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook of Model Checking, pages
305–343. Springer, 2018.

[13] J. Biendarra, J. C. Blanchette, A. Bouzy, M. Desharnais, M. Fleury, J. Hölzl, O. Kunčar,
A. Lochbihler, F. Meier, L. Panny, A. Popescu, C. Sternagel, R. Thiemann, and D. Traytel.
Foundational (co)datatypes and (co)recursion for higher-order logic. In C. Dixon and M. Finger,
editors, Frontiers of Combining Systems - 11th International Symposium, FroCoS 2017, volume
10483 of LNCS, pages 3–21. Springer, 2017.

[14] J. C. Blanchette. Nitpick: A counterexample generator for Isabelle/HOL based on the relational
model finder Kodkod. In A. Voronkov, G. Sutcliffe, M. Baaz, and C. G. Fermüller, editors, Short
papers for 17th International Conference on Logic for Programming, Artificial intelligence, and
Reasoning, LPAR-17-short, volume 13 of EPiC Series in Computing, pages 20–25. EasyChair,
2010.

[15] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT solvers. J.
Autom. Reason., 51(1):109–128, 2013.

[16] J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED. J.
Formalized Reasoning, 9(1):101–148, 2016.

[17] S. Borgwardt and B. Morawska. Finding finite Herbrand models. In N. S. Bjørner and A. Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning - 18th International Con-
ference, LPAR 2012, volume 7180 of LNCS, pages 138–152. Springer, 2012.

[18] J. Cambronero, S. Gulwani, V. Le, D. Perelman, A. Radhakrishna, C. Simon, and A. Tiwari.
FlashFill++: Scaling programming by example by cutting to the chase. Proc. ACM Program.
Lang., 7(POPL):952–981, 2023.

[19] B. Caulfield, M. N. Rabe, S. A. Seshia, and S. Tripakis. What’s decidable about syntax-guided

10

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

synthesis? CoRR, abs/1510.08393, 2015.

[20] K. Claessen and A. Lillieström. Automated inference of finite unsatisfiability. J. Autom. Reason.,
47(2):111–132, 2011.

[21] K. Claessen and N. Sörensson. New techniques that improve MACE-style finite model finding.
In Proceedings of the CADE-19 Workshop: Model Computation - Principles, Algorithms, Applica-
tions, 2003.

[22] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan and J. Rehof,
editors, Tools and Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[23] A. Distler, M. Shah, and V. Sorge. Enumeration of AG-groupoids. In J. H. Davenport, W. M.
Farmer, J. Urban, and F. Rabe, editors, Intelligent Computer Mathematics, CICM 2011, volume
6824 of LNCS, pages 1–14. Springer, 2011.

[24] Y. Ge and L. M. de Moura. Complete instantiation for quantified formulas in satisfiabiliby modulo
theories. In A. Bouajjani and O. Maler, editors, Computer Aided Verification, 21st International
Conference, CAV 2009, volume 5643 of LNCS, pages 306–320. Springer, 2009.

[25] S. Gulwani, J. Hernández-Orallo, E. Kitzelmann, S. H. Muggleton, U. Schmid, and B. G. Zorn.
Inductive programming meets the real world. Commun. ACM, 58(11):90–99, 2015.

[26] R. Gutiérrez and S. Lucas. Automatic generation of logical models with AGES. In P. Fontaine,
editor, Automated Deduction - CADE 27 - 27th International Conference on Automated Deduction,
volume 11716 of LNCS, pages 287–299. Springer, 2019.

[27] J. Harrison. HOL Light: An overview. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel,
editors, Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of LNCS, pages 60–66. Springer,
2009.

[28] J. Harrison, J. Urban, and F. Wiedijk. History of interactive theorem proving. In J. H. Siekmann,
editor, Computational Logic, volume 9 of Handbook of the History of Logic, pages 135–214. Elsevier,
2014.

[29] K. Huang, X. Qiu, P. Shen, and Y. Wang. Reconciling enumerative and deductive program
synthesis. In PLDI, pages 1159–1174. ACM, 2020.

[30] M. Janota and M. Suda. Towards smarter MACE-style model finders. In G. Barthe, G. Sutcliffe,
and M. Veanes, editors, 22nd International Conference on Logic for Programming, Artificial In-
telligence and Reasoning, LPAR 2018, volume 57 of EPiC Series in Computing, pages 454–470.
EasyChair, 2018.

[31] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthesis. In PLDI, pages
316–329. ACM, 2010.

[32] W. McCune. Mace4 reference manual and guide. CoRR, cs.SC/0310055, 2003.

[33] C. Okasaki. Purely functional data structures. Cambridge University Press, 1999.

[34] N. Peltier. Model building with ordered resolution: extracting models from saturated clause sets.
J. Symb. Comput., 36(1-2):5–48, 2003.

[35] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Com-
puter Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 46–57. IEEE
Computer Society, 1977.

[36] O. Polozov and S. Gulwani. FlashMeta: a framework for inductive program synthesis. In OOPSLA,
pages 107–126. ACM, 2015.

[37] S. J. Purga l, D. M. Cerna, and C. Kaliszyk. Learning higher-order logic programs from failures. In
L. D. Raedt, editor, Thirty-First International Joint Conference on Artificial Intelligence, IJCAI
2022, pages 2726–2733, 2022.

[38] G. Reger, M. Riener, and M. Suda. Symmetry avoidance in MACE-style finite model finding. In
A. Herzig and A. Popescu, editors, Frontiers of Combining Systems - 12th International Sympo-

11

Experiments on Infinite Model Finding in SMT Parsert, Brown, Janota, and Kaliszyk

sium, FroCoS 2019, volume 11715 of LNCS, pages 3–21. Springer, 2019.

[39] A. Reynolds, H. Barbosa, A. Nötzli, C. W. Barrett, and C. Tinelli. cvc4sy: Smart and fast
term enumeration for syntax-guided synthesis. In CAV (2), volume 11562 of LNCS, pages 74–83.
Springer, 2019.

[40] A. Reynolds, V. Kuncak, C. Tinelli, C. W. Barrett, and M. Deters. Refutation-based synthesis in
SMT. Formal Methods Syst. Des., 55(2):73–102, 2019.

[41] A. Reynolds, C. Tinelli, A. Goel, and S. Krstić. Finite model finding in SMT. In Computer Aided
Verification - 25th International Conference, CAV, pages 640–655, 2013.

[42] A. Reynolds, C. Tinelli, A. Goel, S. Krstić, M. Deters, and C. Barrett. Quantifier instantia-
tion techniques for finite model finding in SMT. In 24th International Conference on Automated
Deduction, CADE 2013, pages 377–391, 2013.

[43] A. Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol. Transf., 15(5-6):475–495, 2013.

[44] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,
TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

[45] J. Urban, G. Sutcliffe, P. Pudlák, and J. Vyskočil. MaLARea SG1 – machine learner for automated
reasoning with semantic guidance. In International Joint Conference on Automated Reasoning
(IJCAR), pages 441–456, 2008.

[46] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and G. M.
Birtwistle, editors, Logics for Concurrency - Structure versus Automata (8th Banff Higher Order
Workshop), volume 1043 of LNCS, pages 238–266. Springer, 1995.

[47] M. Veanes, N. S. Bjørner, L. Nachmanson, and S. Bereg. Effectively monadic predicates. In K. L.
McMillan, A. Middeldorp, G. Sutcliffe, and A. Voronkov, editors, 19th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, LPAR 2013, volume 26 of EPiC
Series in Computing, pages 97–103. EasyChair, 2013.

[48] J. Zhang. Constructing finite algebras with FALCON. Journal of Automated Reasoning, 17:1–22,
08 1996.

[49] J. Zhang and H. Zhang. SEM: a system for enumerating models. In IJCAI, pages 298–303, 1995.

12

	1 Introduction
	2 Syntax-Guided Synthesis
	3 Applications
	4 Interpreting Functions using SyGuS
	5 A Heuristic for Interpreting Sorts and Functions
	5.1 Phase 1: Interpreting sorts
	5.2 Phase 2: Interpreting functions

	6 Results
	7 Related Work
	8 Conclusion and Future Work
	References

