
Term Indexing Techniques in OCaml
Final Presentation

Student: Simon Legner
Supervisor: Sarah Winkler, MSc.

Computational Logic
Institute of Computer Science

University of Innsbruck

November 16, 2010

Bachelor Project

Goals of the Bachelor Project
� implement a term indexing library in OCaml

� Discrimination Trees
� Code Trees
� Substitution Trees

� run performance tests

Goals of this Talk
� What is term indexing?
� Why is term indexing necessary?
� How do the implemented techniques work?
� Which technique works best?

2 / 16

Bachelor Project

Goals of the Bachelor Project
� implement a term indexing library in OCaml

� Discrimination Trees
� Code Trees
� Substitution Trees

� run performance tests

Goals of this Talk
� What is term indexing?
� Why is term indexing necessary?
� How do the implemented techniques work?
� Which technique works best?

2 / 16

Preliminaries

Definition (Terms)

t ::= x | c | f(t1, . . . , tn)

Definition (Substitutions)

� substitution σ is given by bindings {x1 7→ t1, . . . , xn 7→ tn}
� tσ denotes application of σ to term t

Definition (Relations between Terms)

� UNIF(t, q) ⇐⇒ ∃σ tσ = qσ
� INST(t, q) ⇐⇒ ∃σ t = qσ
� GEN(t, q) ⇐⇒ ∃σ tσ = q
� VAR(t, q) ⇐⇒ ∃σ tσ = q and σ is a renaming

Preliminaries

Definition (Terms)

t ::= x | c | f(t1, . . . , tn)

Definition (Substitutions)

� substitution σ is given by bindings {x1 7→ t1, . . . , xn 7→ tn}
� tσ denotes application of σ to term t

Definition (Relations between Terms)

� UNIF(t, q) ⇐⇒ ∃σ tσ = qσ
� INST(t, q) ⇐⇒ ∃σ t = qσ
� GEN(t, q) ⇐⇒ ∃σ tσ = q
� VAR(t, q) ⇐⇒ ∃σ tσ = q and σ is a renaming

Motivation

Why is Term Indexing necessary?
fast retrieval of terms from a huge set is required for:
� selecting candidate clauses in logic programming
� finding applicable rules in Knuth-Bendix completion
� automated reasoning systems

Program Degeneration
“. . . after a few CPU minutes of use . . . , a reasoning program
typically made deductions at less than 1% of its ability at the
beginning of a run.” [Wos, 1992]

4 / 16

Motivation

Why is Term Indexing necessary?
fast retrieval of terms from a huge set is required for:
� selecting candidate clauses in logic programming
� finding applicable rules in Knuth-Bendix completion
� automated reasoning systems

Program Degeneration
“. . . after a few CPU minutes of use . . . , a reasoning program
typically made deductions at less than 1% of its ability at the
beginning of a run.” [Wos, 1992]

4 / 16

Indexing

Definition (Indexing)
Building a data structure on top of a set of data to speedup
retrieval of data.

Examples (Indexing)
B-trees on relational databases or indexes at the end of textbooks

5 / 16

Term Indexing

Definition (Term Indexing Problem)
Given a set of terms, a relation between two terms and a query term,
retrieve all candidate terms from the set so that the relation holds.

f(g(a, x), c)
f(g(x , b), y)

f(g(a, b), a)

f(g(x , c), b)
f(x , x)

f(g(a, x), x)
. . .

index

f(g(a, b), c) UNIF

query term

retrieval condition candidate terms

6 / 16

Term Indexing

Definition (Term Indexing Problem)
Given a set of terms, a relation between two terms and a query term,
retrieve all candidate terms from the set so that the relation holds.

f(g(a, x), c)
f(g(x , b), y)

f(g(a, b), a)

f(g(x , c), b)
f(x , x)

f(g(a, x), x)
. . .

index

f(g(a, b), c) UNIF

query term

retrieval condition candidate terms

6 / 16

Term Indexing

Definition (Term Indexing Problem)
Given a set of terms, a relation between two terms and a query term,
retrieve all candidate terms from the set so that the relation holds.

f(g(a, x), c)
f(g(x , b), y)

f(g(a, b), a)

f(g(x , c), b)
f(x , x)

f(g(a, x), x)
. . .

index

f(g(a, b), c) UNIF

query term

retrieval condition

candidate terms

6 / 16

Term Indexing

Definition (Term Indexing Problem)
Given a set of terms, a relation between two terms and a query term,
retrieve all candidate terms from the set so that the relation holds.

f(g(a, x), c)
f(g(x , b), y)

f(g(a, b), a)

f(g(x , c), b)
f(x , x)

f(g(a, x), x)
. . .

index

f(g(a, b), c) UNIF

query term

retrieval condition candidate terms

6 / 16

Term Indexing

Operations on Term Indexes
� index maintenance

� val initialize: Term.t list -> t
� val insert: Term.t -> t -> t
� val remove: Term.t -> t -> t

� retrieval
� val retrieve_generalizations: Term.t -> t -> Term.t list
� val retrieve_instances: Term.t -> t -> Term.t list
� val retrieve_unifiable_terms: Term.t -> t -> Term.t list
� val retrieve_variants: Term.t -> t -> Term.t list

� visualization
� val to_dot: t -> string

7 / 16

Discrimination Tree Indexing

Idea: Index a string representation of terms in a trie.
Support for retrieval conditions GEN, INST, UNIF and VAR.

Running Example

f(x , x) f(x , y)

g(b, a) g(b, x)

P-Strings

f . ∗ . ∗ f . ∗ .∗

g . b . a g . b .∗

Discrimination Tree

f g

*

f(x, x)
f(x, y)

*

b

g(b, a)

a

g(b, x)

*

8 / 16

Discrimination Tree Indexing

Idea: Index a string representation of terms in a trie.
Support for retrieval conditions GEN, INST, UNIF and VAR.

Running Example

f(x , x) f(x , y)

g(b, a) g(b, x)

P-Strings

f . ∗ . ∗ f . ∗ .∗

g . b . a g . b .∗

Discrimination Tree

f g

*

f(x, x)
f(x, y)

*

b

g(b, a)

a

g(b, x)

*

8 / 16

Discrimination Tree Indexing

Idea: Index a string representation of terms in a trie.
Support for retrieval conditions GEN, INST, UNIF and VAR.

Running Example

f(x , x) f(x , y)

g(b, a) g(b, x)

P-Strings

f . ∗ . ∗ f . ∗ .∗

g . b . a g . b .∗

Discrimination Tree

f g

*

f(x, x)
f(x, y)

*

b

g(b, a)

a

g(b, x)

*

8 / 16

Discrimination Tree Indexing

Idea: Index a string representation of terms in a trie.
Support for retrieval conditions GEN, INST, UNIF and VAR.

Running Example

f(x , x) f(x , y)

g(b, a) g(b, x)

P-Strings

f . ∗ . ∗ f . ∗ .∗

g . b . a g . b .∗

Discrimination Tree

f g

*

f(x, x)
f(x, y)

*

b

g(b, a)

a

g(b, x)

*

8 / 16

Code Tree Indexing

Idea:
� Compile term into instruction sequence.
� Integrate sequences into code tree.
� Evaluate instructions during retrieval.
Support only for retrieval conditions GEN and VAR.

Instructions

i ::= Initialize(i) | Success | Failure |
Check(fs, i, i) | Put(i, i) | Compare(v1, v2, i, i)

9 / 16

Code Tree Indexing

Idea:
� Compile term into instruction sequence.
� Integrate sequences into code tree.
� Evaluate instructions during retrieval.
Support only for retrieval conditions GEN and VAR.

Instructions

i ::= Initialize(i) | Success | Failure |
Check(fs, i, i) | Put(i, i) | Compare(v1, v2, i, i)

9 / 16

Code Tree Indexing

Instruction Sequences

Initialize

Check g

Check b

Check a

Success
g(b, a)

Initialize

Check g

Check b

Put

Success
g(b, x)

Initialize

Check f

Put

Put

Success
f(x, y)

Initialize

Check f

Put

Put

Compare 0 1

Success
f(x, x)

10 / 16

Code Tree Indexing

Instruction Sequences

Initialize

Check g

Check b

Check a

Success
g(b, a)

Initialize

Check g

Check b

Put

Success
g(b, x)

Initialize

Check f

Put

Put

Success
f(x, y)

Initialize

Check f

Put

Put

Compare 0 1

Success
f(x, x)

10 / 16

Code Tree Indexing

Instruction Sequences

Initialize

Check g

Check b

Check a

Success
g(b, a)

Initialize

Check g

Check b

Put

Success
g(b, x)

Initialize

Check f

Put

Put

Success
f(x, y)

Initialize

Check f

Put

Put

Compare 0 1

Success
f(x, x)

10 / 16

Code Tree Indexing

Instruction Sequences

Initialize

Check g

Check b

Check a

Success
g(b, a)

Initialize

Check g

Check b

Put

Success
g(b, x)

Initialize

Check f

Put

Put

Success
f(x, y)

Initialize

Check f

Put

Put

Compare 0 1

Success
f(x, x)

10 / 16

Code Tree Indexing

Initialize

Check g

Check b Check f

Check a Failure Put Failure

Success
g(b, a)

Put

Success
g(b, x)

Failure

Put Failure

Compare 0 1 Failure

Success
f(x, x)

Success
f(x, y)

11 / 16

Substitution Tree Indexing
Idea: Represent terms as substitution sequences, collect in tree.
Support for retrieval conditions GEN, INST, UNIF and VAR.
Substitution Tree
∗0 {} {∗0 7→ f(x , ∗1)} {∗1 7→ y} = f(x , ∗1) {∗1 7→ y} = f(x , y)

{}

{∗₀ ↦ f(x, ∗₁)} {∗₀ ↦ g(b, ∗₁)}

{∗₁ ↦ x} {∗₁ ↦ y}

f(x, x) f(x, y)

{∗₁ ↦ a} {∗₁ ↦ x}

g(b, a) g(b, x)

12 / 16

Demonstration

13 / 16

Demonstration

(* functor allows arbitrary entries to be indexed *)
module DT = DiscriminationTree .Make(struct

type t = Term.t * string ;;
let term = fst ;;
let to_string = snd ;;
let compare (t1 , _) (t2 , _) = Term. compare t1 t2 ;;
end) ;;

module DT : sig (* ... *) end

13 / 16

Demonstration

(* functor allows arbitrary entries to be indexed *)
module DT = DiscriminationTree .Make(struct

type t = Term.t * string ;;
let term = fst ;;
let to_string = snd ;;
let compare (t1 , _) (t2 , _) = Term. compare t1 t2 ;;
end) ;;

module DT : sig (* ... *) end

let tl = [x, " variable x"; f(x, a), " complex term"] ;;
val tl : (Term.t * string) list =

[(x, " variable x"); (f(x, a), " complex term")]

13 / 16

Demonstration

(* functor allows arbitrary entries to be indexed *)
module DT = DiscriminationTree .Make(struct

type t = Term.t * string ;;
let term = fst ;;
let to_string = snd ;;
let compare (t1 , _) (t2 , _) = Term. compare t1 t2 ;;
end) ;;

module DT : sig (* ... *) end

let tl = [x, " variable x"; f(x, a), " complex term"] ;;
val tl : (Term.t * string) list =

[(x, " variable x"); (f(x, a), " complex term")]

let i = DT.init tl ;;
val i : DT.t = <abstr >

13 / 16

Demonstration

let tl = [x, " variable x"; f(x, a), " complex term"] ;;
val tl : (Term.t * string) list =

[(x, " variable x"); (f(x, a), " complex term")]

let i = DT.init tl ;;
val i : DT.t = <abstr >

let i’ = DT. insert (a, " constant a") i ;;
val i’ : DT.t = <abstr >

13 / 16

Demonstration

print_string (DT. to_dot i’) ;;
digraph {

...
1 -> 2[label="*"];
2[label=" variable x"];
...

}
- : unit = ()

variable x

*

constant a

a f

*

complex term

a

13 / 16

Demonstration

print_string (DT. to_dot i’) ;;
digraph {

...
1 -> 2[label="*"];
2[label=" variable x"];
...

}
- : unit = ()

variable x

*

constant a

a f

*

complex term

a

DT. retrieve_generalizations a i’ ;;
- : DT.entry list =

[(a, " constant a"); (x, " variable x")]

13 / 16

Evaluation

100 101 102 103 104

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103
index construction

number of terms

in
de
x
co
ns
tr
uc
tio

n
tim

e
[s]

NaiveIndex
DiscriminationTree
CodeTree
SubstitutionTree

Evaluation

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

101

102

103 retrieval of variants

number of terms

re
tr
iev

al
tim

e
[s]

NI
DT
CT
ST

100 101 102 103 104

retrieval of unifiable terms

number of terms

NI
DT
ST

Conclusion

Conclusion
employing term indexing results in performance gain
� Discrimination Trees

� pros: easy to implement, fast retrieval
� cons: nonlinearity lost

� Code Trees
� pros: substitution factoring
� cons: supports only GEN and VAR

� Substitution Trees
� pros: compact structure
� cons: slow, hard to implement

Thank you for your attention!
Questions?

16 / 16

Conclusion

Conclusion
employing term indexing results in performance gain
� Discrimination Trees

� pros: easy to implement, fast retrieval
� cons: nonlinearity lost

� Code Trees
� pros: substitution factoring
� cons: supports only GEN and VAR

� Substitution Trees
� pros: compact structure
� cons: slow, hard to implement

Thank you for your attention!
Questions?

16 / 16

	Bachelor Project
	Preliminaries
	Motivation
	Indexing
	Term Indexing Problem
	Discrimination Tree Indexing
	Code Tree Indexing
	Substitution Tree Indexing
	Demonstration
	Evaluation
	Conclusion

