Term Indexing Techniques in OCaml
Final Presentation

Student: Simon Legner
Supervisor: Sarah Winkler, MSc.

Computational Logic
Institute of Computer Science
University of Innsbruck

November 16, 2010

Bachelor Project

Goals of the Bachelor Project

® implement a term indexing library in OCaml
O Discrimination Trees
0 Code Trees

0 Substitution Trees

® run performance tests

2/16

Bachelor Project

Goals of the Bachelor Project

® implement a term indexing library in OCaml

O Discrimination Trees
O Code Trees
0 Substitution Trees

® run performance tests

Goals of this Talk

What is term indexing?

Why is term indexing necessary?

How do the implemented techniques work?

Which technique works best?
2/16

Preliminaries

Definition (Terms)

to=x|c|f(tr,...,tn)

Definition (Substitutions)

® substitution o is given by bindings {x1 — t1,...,X, > tn}
® to denotes application of o to term t

Preliminaries

Definition (Terms)
to=x|c|f(tr,...,tn)

Definition (Substitutions)

® substitution o is given by bindings {x; — t1,...,Xxp, — t}
® to denotes application of o to term t

Definition (Relations between Terms)

UNIF(t,q) < do to = qo
INST(t,q) <= Jot=qo
GEN(t,q) < o to =g¢

VAR(t,q) <= Jo to = g and o is a renaming

Motivation

Why is Term Indexing necessary?

fast retrieval of terms from a huge set is required for:
® selecting candidate clauses in logic programming

® finding applicable rules in Knuth-Bendix completion

B aqutomated reasoning systems

4/16

Motivation

Why is Term Indexing necessary?

fast retrieval of terms from a huge set is required for:
® selecting candidate clauses in logic programming

® finding applicable rules in Knuth-Bendix completion

B aqutomated reasoning systems

Program Degeneration

“. .. after a few CPU minutes of use ..., a reasoning program
typically made deductions at less than 1% of its ability at the
beginning of a run.” [Wos, 1992]

4/16

Indexing

Definition (Indexing)

Building a data structure on top of a set of data to speedup
retrieval of data.

Examples (Indexing)
B-trees on relational databases or indexes at the end of textbooks

5/16

Term Indexing

Definition (Term Indexing Problem)

Given a set of terms, a relation between two terms and a query term,
retrieve all candidate terms from the set so that the relation holds.

6/16

Term Indexing

Definition (Term Indexing Problem)

Given a set of terms, a relation between two terms and a query term,
retrieve all candidate terms from the set so that the relation holds.

6/16

Term Indexing

Definition (Term Indexing Problem)

Given a set of terms, a relation between two terms and a query term,
retrieve all candidate terms from the set so that the relation holds.

f(g(a, b),c) UNIF

query term

retrieval condition

6/16

Term Indexing

Definition (Term Indexing Problem)

Given a set of terms, a relation between two terms and a query term,
retrieve all candidate terms from the set so that the relation holds.

(a0 ""m-'-'-‘-.-.--vaN|F

query term

index

retrieval condition candidate terms

6/16

Term Indexing

Operations on Term Indexes

® index maintenance

U val initialize: Term.t list -> t
0 val insert: Term.t -> t -> t
U val remove: Term.t -> t -> t

® retrieval

U val retrieve_generalizations: Term.t -> t -> Term.t list
U val retrieve_instances: Term.t -> t -> Term.t list
U val retrieve_unifiable_terms: Term.t -> t -> Term.t list
U val retrieve_variants: Term.t -> t -> Term.t list

B visualization

L val to_dot: t -> string

7/16

Discrimination Tree Indexing

Idea: Index a string representation of terms in a trie.
Support for retrieval conditions GEN, INST, UNIF and VAR.

8/ 16

Discrimination Tree Indexing

Idea: Index a string representation of terms in a trie.
Support for retrieval conditions GEN, INST, UNIF and VAR.

Running Example

fx,x) f(x.y)
g(b,a) g(b,x)

8/ 16

Discrimination Tree Indexing

Idea: Index a string representation of terms in a trie.
Support for retrieval conditions GEN, INST, UNIF and VAR.

Running Example
O, x) f(x,y)
g(b,a) g(b,x)

P-Strings

fox.x f.x.x

g.b.a g.b.x

8/16

Discrimination Tree Indexing

Idea: Index a string representation of terms in a trie.
Support for retrieval conditions GEN, INST, UNIF and VAR.

Running Example Discrimination Tree

fx,x) f(x.y)
g(b,a) g(b,x)

P-Strings
fox.x fox.x
g.b.a g.bu o | et | | ebo

8/16

Code Tree Indexing

Idea:

= Compile term into instruction sequence.
B |ntegrate sequences into code tree.

B Fvaluate instructions during retrieval.

Support only for retrieval conditions GEN and VAR.

9/16

Code Tree Indexing

Idea:

= Compile term into instruction sequence.
B |ntegrate sequences into code tree.

B Fvaluate instructions during retrieval.

Support only for retrieval conditions GEN and VAR.

Instructions

i = Initialize(i) | Success | Failure |
Check(fs,i,i) | Put(i,i) | Compare(vy, vo,i, 1)

9/16

Code Tree Indexing

Instruction Sequences

Check b

Success
g(b, a)

10/ 16

Code Tree Indexing

Instruction Sequences

Initialize Initialize

' '

Check g l Check g ‘
! '
Check b l Check b ‘
' '
Check a ‘ Put ‘
v '
Success Success
g(b, a) g(b, x)

10/ 16

Code Tree Indexing

Instruction Sequences

Initialize

Initialize

Initialize

!

!

!

Check g Check g Check f
! ' '
Check b Check b ‘ Put
' ' v
Check a ‘ Put ‘ Put
v ' '
Success Success Success
g(b, a) g(b, x) fx, y)

10/ 16

Code Tree Indexing

Instruction Sequences

Initialize Initialize Initialize Check f

' ' ' |
Check g Check g ‘ Check f ’ Put ‘

! ' ' |
Check b Check b ‘ Put ’ Put

' ' v l
Check a ‘ Put ‘ ‘ Put ‘ Compare 0 1 ‘

v ' ' |
Success Success Success Success

g(b, a) g(b, x) fx, y) f(x, x)

10/ 16

Code Tree Indexing

Check g

Success
g(b, a)

S;(r}:)(’:(-‘;s)s Compare 0 1
y
Success Success
f(x, x) f(x, y)

11/ 16

Substitution Tree Indexing

Idea: Represent terms as substitution sequences, collect in tree.
Support for retrieval conditions GEN, INST, UNIF and VAR.

Substitution Tree
w0 {} {*0 — f(x,*%1)} {*x1 = y} =f(x,*1) {1 — y} = f(x,y)
it

AN

{*o = f(x, *1)} {*o0 = g(b, *1)}

& b\

e | | (ke rimay | | ey
l l l l
7 v v v
fix, x) fix, y) gb. a) g, %)

12 /16

Demonstration

13/ 16

Demonstration

(* functor allows arbitrary entries to be indexed *)
module DT = DiscriminationTree.Make(struct

type t = Term.t * string ;;

let term = fst ;;

let to_string = snd ;;
let compare (t1, _) (t2, _) = Term.compare tl t2 ;;
end) ;;

module DT : sig (x ... *) end

13/ 16

Demonstration

(* functor allows arbitrary entries to be indexed *)
module DT = DiscriminationTree.Make(struct

type t = Term.t * string ;;

let term = fst ;;

let to_string = snd ;;
let compare (t1, _) (t2, _) = Term.compare tl t2 ;;
end) ;;

module DT : sig (x ... *) end

let tl = [x, "variable x"; f(x, a), "complex term"] ;;

val tl : (Term.t * string) list
[(x, "variable x"); (f(x, a), "complex term")]

13/ 16

Demonstration

(* functor allows arbitrary entries to be indexed *)
module DT = DiscriminationTree.Make(struct

type t = Term.t * string ;;

let term = fst ;;

let to_string = snd ;;
let compare (t1, _) (t2, _) = Term.compare tl t2 ;;
end) ;;

module DT : sig (x ... *) end

let tl = [x, "variable x"; f(x, a), "complex term"] ;;

val tl : (Term.t * string) list
[(x, "variable x"); (f(x, a), "complex term")]

let 1 = DT.init tl1 ;;
val i : DT.t = <abstr>

13/ 16

Demonstration

let tl = [x, "variable x"; f(x, a), "complex term"]
val tl : (Term.t * string) list =
[(x, "variable x"); (f(x, a), "complex term")]

)

let i = DT.init tl ;;
val i : DT.t = <abstr>

let i’ = DT.insert (a, "constant a") i ;;
val i’ : DT.t = <abstr>
13/ 16

Demonstration

print_string (DT.to_dot i’) ;;
digraph {

variable x constant a

1 -> 2[label="%"];
2[label="variable x"];

- : unit = ()

complex term

13/ 16

Demonstration

print_string (DT.to_dot i’) ;;
digraph {

variable x constant a

1 -> 2[label="%"];
2[label="variable x"];

- : unit = ()

complex term

DT.retrieve_generalizations a i’ ;;
DT.entry 1list =
[(a, "constant a"); (x, "variable x")]

13/ 16

Evaluation

3
10° " index construction

102
10!

x Naivelndex
x DiscriminationTree
x CodeTree

x SubstitutionTree

| IR [N | L
10! 102 103 10*

number of terms

index construction time [s]
[y
o
i
HH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ i

[
[}
=)

Evaluation
L B L L B R LLL B ELLL B = L B L Ll B R LI P v R
3l retrieval of variants «» - | retrieval of unifiable termg® -
10° Z2E
— 10t} 1t .
& [. [.
E 1000 E
g 1L i
g
1073}
i DT [[«NI [
1074 «CT (| | «DT ||
10-5 [ST 11 [«ST |
I T S I U171 MR WA TT| N N WA NTL| WAL} I N T S NI WU N1 R R AN 1T R M RAATT| B NN

10° 10! 102 103 10* 10° 10t 102 103 10*

number of terms number of terms

Conclusion

Conclusion
employing term indexing results in performance gain
® Discrimination Trees

O pros: easy to implement, fast retrieval
O cons: nonlinearity lost

m Code Trees

O pros: substitution factoring
O cons: supports only GEN and VAR
® Substitution Trees

L pros: compact structure
0 cons: slow, hard to implement

16 / 16

Conclusion

Conclusion
employing term indexing results in performance gain
® Discrimination Trees

O pros: easy to implement, fast retrieval
O cons: nonlinearity lost

m Code Trees

O pros: substitution factoring

O cons: supports only GEN and VAR
m Substitution Trees

L pros: compact structure
0 cons: slow, hard to implement

Thank you for your attention!

Questions?
16 / 16

	Bachelor Project
	Preliminaries
	Motivation
	Indexing
	Term Indexing Problem
	Discrimination Tree Indexing
	Code Tree Indexing
	Substitution Tree Indexing
	Demonstration
	Evaluation
	Conclusion

