
Term Indexing Techniques in OCaml

Term Indexing Techniques in OCaml
Initial presentation

Simon Legner

Computational Logic
Institute of Computer Science

University of Innsbruck

March 9, 2010

Term Indexing Techniques in OCaml

Terminology

Term + Indexing

Term

t ::= v | c | f(t1, . . . , tn)

x ; a; f(x , a); f(g(a, b), x)

Indexing

Building a data structure on top of a set of data to speedup
retrieval of filtered data.

B-trees on relational databases or indexes at the end of textbooks

Term Indexing Techniques in OCaml

Terminology

Term + Indexing

Term

t ::= v | c | f(t1, . . . , tn)

x ; a; f(x , a); f(g(a, b), x)

Indexing

Building a data structure on top of a set of data to speedup
retrieval of filtered data.

B-trees on relational databases or indexes at the end of textbooks

Term Indexing Techniques in OCaml

Motivation

Why is term indexing necessary?

fast retrieval of terms from a huge set is required for:
selecting candidate clauses in logic programming
finding applicable rules in Knuth-Bendix completion
automated reasoning systems

slow: linear search
possible solution: term index

Term Indexing Techniques in OCaml

Principle

Principle of term indexing

f(g(a, x), c)
f(g(x, b), y)

f(g(a, b), a)

f(g(x, c), b)
f(x, x)

f(g(a, x), x)
. . .

index

f(g(a, b), c)

query term retrieval condition candidate terms

Term Indexing Techniques in OCaml

Principle

Principle of term indexing

f(g(a, x), c)
f(g(x, b), y)

f(g(a, b), a)

f(g(x, c), b)
f(x, x)

f(g(a, x), x)
. . .

index

f(g(a, b), c)

query term retrieval condition candidate terms

Term Indexing Techniques in OCaml

Principle

Principle of term indexing

f(g(a, x), c)
f(g(x, b), y)

f(g(a, b), a)

f(g(x, c), b)
f(x, x)

f(g(a, x), x)
. . .

index

f(g(a, b), c)

query term retrieval condition candidate terms

Term Indexing Techniques in OCaml

Principle

Principle of term indexing

f(g(a, x), c)
f(g(x, b), y)

f(g(a, b), a)

f(g(x, c), b)
f(x, x)

f(g(a, x), x)
. . .

index

f(g(a, b), c)

query term retrieval condition candidate terms

Term Indexing Techniques in OCaml

Relations between terms

Relations between terms

UNIF(si , t) ⇐⇒ ∃σ siσ = tσ
INST(si , t) ⇐⇒ ∃σ si = tσ
GEN(si , t) ⇐⇒ ∃σ siσ = t
VAR(si , t) ⇐⇒ ∃σ siσ = t and σ is a renaming substitution

Examples

UNIF
(
f(a, x), f(y , f(a, a))

)
with σ = {x → f(a, a), y → a}

INST
(
f(a, f(a, a)), f(x , y)

)
with σ = {x → a, y → f(a, a)}

GEN
(
f(x , y), f(a, f(a, a))

)
with σ = {x → a, y → f(a, a)}

VAR
(
f(a, x), f(a, y)

)
with σ = {x → y}

Term Indexing Techniques in OCaml

Relations between terms

Relations between terms

UNIF(si , t) ⇐⇒ ∃σ siσ = tσ
INST(si , t) ⇐⇒ ∃σ si = tσ
GEN(si , t) ⇐⇒ ∃σ siσ = t
VAR(si , t) ⇐⇒ ∃σ siσ = t and σ is a renaming substitution

Examples

UNIF
(
f(a, x), f(y , f(a, a))

)
with σ = {x → f(a, a), y → a}

INST
(
f(a, f(a, a)), f(x , y)

)
with σ = {x → a, y → f(a, a)}

GEN
(
f(x , y), f(a, f(a, a))

)
with σ = {x → a, y → f(a, a)}

VAR
(
f(a, x), f(a, y)

)
with σ = {x → y}

Term Indexing Techniques in OCaml

Implementation

Index functions

val initialize : Term.t list -> t

val insert : Term.t -> t -> t

val remove: Term.t -> t -> t

val retrieve_unifiable_terms: Term.t -> t -> Term.t list

val retrieve_instances : Term.t -> t -> Term.t list

val retrieve_generalizations : Term.t -> t -> Term.t list

val retrieve_variants : Term.t -> t -> Term.t list

Term Indexing Techniques in OCaml

Bachelor project

Bachelor project

Supervisor: Sarah Winkler
February 2010 – Summer 2010
Programming language: OCaml

Tasks of bachelor project

implement index based on Discrimination trees
implement index based on Code trees
implement any other indexing technique
run performance tests

	Terminology
	Motivation
	Principle
	Relations between terms
	Implementation
	Bachelor project

