The Epsilon Calculus

Georg Moser
Institut für Mathematische Logik
Universität Münster
http://www.math.uni-muenster.de/logik/org/staff/moserg/

Richard Zach
Department of Philosophy
University of Calgary
http://www.ucalgary.ca/~rzach/

August 26 & 27, 2003
CSL’03, Vienna
Brief Reminder

We defined the language L_ε of the Epsilon Calculus, whose key-feature is the term-forming operator ε.

Governed by instances of so-called *critical axioms*.

$$A(t) \rightarrow A(\varepsilon x A(x)) .$$

Definition of an intensional semantics.

Axiomatization of the ε-calculus.

Informally EC^ε accounts for the elementary calculus (EC) plus critical axioms.

PC^ε accounts for the predicate calculus (PC) plus critical axioms.

Embedding Lemma:

$$PC \vdash A \text{ implies } EC^\varepsilon \vdash A^\varepsilon .$$

This was shown by showing, if $PC^\varepsilon \vdash A$ then $EC^\varepsilon \vdash A^\varepsilon$.
Overview

1. The First Epsilon Theorem
2. The Second Epsilon Theorem and Herbrand’s Theorem
3. Generalizations of the Epsilon Theorems
4. (Intermediate) Conclusion
5. Hilbert’s “Ansatz”
The Epsilon Theorems

First Epsilon Theorem. If \(A \) is a formula without bound variables (no quantifiers, no epsilons) and \(PC^\epsilon \vdash A \) then \(EC \vdash A \).

Extended First Epsilon Theorem. If \(\exists x_1 \ldots \exists x_n A(x_1, \ldots, x_n) \) is a purely existential formula containing only the bound variables \(x_1, \ldots, x_n \), and

\[
PC^\epsilon \vdash \exists x_1 \ldots \exists x_n A(x_1, \ldots, x_n),
\]

then there are terms \(t_{ij} \) such that

\[
EC \vdash \bigvee_i A(t_{i1}, \ldots, t_{in}).
\]

Second Epsilon Theorem. If \(A \) is an \(\epsilon \)-free formula and \(PC^\epsilon \vdash A \) then \(PC \vdash A \).
Degree and Rank

Degree of an ε-Term

- $\deg(\varepsilon x A(x)) = 1$ if $A(x)$ contains no ε-subterms.
- If e_1, \ldots, e_n are all immediate ε-subterms of $A(x)$, then $\deg(\varepsilon x A(x)) = \max\{\deg(e_1), \ldots, \deg(e_n)\} + 1$.

Rank of an ε-Expression

An ε-expression e is subordinate to $\varepsilon x A$ if e is a proper sub-expression of A and contains x.

- $\rk(e) = 1$ if no sub-ε-expression of e is subordinate to e.
- If e_1, \ldots, e_n are all the ε-expressions subordinate to e, then $\rk(e) = \max\{\rk(e_1), \ldots, \rk(e_n)\} + 1$.
Examples

\[P(\varepsilon x [P(x) \lor Q(\varepsilon y \neg Q(y))] \lor Q(\varepsilon y \neg Q(y))) \]
\[e_2 \]
\[e_1 \]

\[\deg(e_1) = 1, \deg(e_2) = 2 \]

\[\text{rk}(e_1) = \text{rk}(e_2) = 1 \]

\[A(\varepsilon x A(x, \varepsilon z A(x, z)), \varepsilon y A(\varepsilon x A(x, \varepsilon z A(x, z)), y)) \]
\[e_2 \]
\[e_1(e_2) \]
\[e_2 \]

\[\deg(e_2) = 1, \deg(e_1(e_2)) = 2 \]

\[\text{rk}(e_2) = 2, \text{rk}(e_1(e_2)) = 1 \]
Rank of Critical Formulas and Derivations

Rank of a critical formula \(A(t) \rightarrow A(\varepsilon x A(x)) \) is \(\text{rk}(\varepsilon x A(x)) \).

Rank of a derivation \(\text{rk}(\pi) \): maximum rank of its critical formulas.

Critical \(\varepsilon \)-term of a derivation: \(\varepsilon \)-term \(e \) so that \(A(t) \rightarrow A(e) \) is a critical formula.

Degree of a derivation \(\text{deg}(\pi) \): maximum degree of its critical \(\varepsilon \)-terms of maximal rank.

Order of a derivation \(o(\pi, r) \) wrt. rank \(r \): number of different critical formulas of rank \(r \).
The First Epsilon Theorem

(Proof for case without =)

Suppose \(\mathcal{P} \mathcal{C}^\varepsilon \vdash \pi \varepsilon \) and \(\varepsilon \) contains no bound variables. We show that \(\mathcal{E} \mathcal{C} \vdash \varepsilon \) by induction on the rank and degree of \(\pi \).

First, w.l.o.g. we assume \(\pi \) is actually a derivation in \(\mathcal{E} \mathcal{C}^\varepsilon \). Since \(\varepsilon \) contains no bound variables, \(\varepsilon^\varepsilon = \varepsilon \).

Second, w.l.o.g. we assume \(\pi \) doesn’t contain any free variables (replace free variables by new constants—may be resubstituted later).

Lemma. Let \(e \) be a critical \(\varepsilon \)-term of \(\pi \) of maximal degree among the critical \(\varepsilon \)-terms of maximal rank. Then there is \(\pi_e \) with end formula \(A \) so that \(\text{rk}(\pi_e) \leq \text{rk}(\pi) \), \(\text{deg}(\pi_e) \leq \text{deg}(\pi) \) and \(o(\pi_e, \text{rk}(e)) = o(\pi, \text{rk}(e)) - 1. \)
The First Epsilon Theorem: Main Lemma

Proof. Construct π_e as follows:

1. Suppose $A(t_1) \rightarrow A(e), \ldots, A(t_n) \rightarrow A(e)$ are all the critical formulas belonging to e. For each critical formula

 $$A(t_i) \rightarrow A(e),$$

 we obtain a derivation

 $$\pi_i \vdash A(t_i) \rightarrow E :$$

 - Replace e everywhere it occurs by t_i. Every critical formula $A(t) \rightarrow A(e)$ belonging to e turns into a formula of the form $B \rightarrow A(t_i)$.
 - Add $A(t_i)$ to the axioms. Now every such formula is derivable using the propositional tautology

 $$A(t_i) \rightarrow (B \rightarrow A(t_i)),$$

 and modus ponens.
 - Apply the deduction theorem for the propositional calculus to obtain π_i.

The First Epsilon Theorem: Main Lemma

2. Obtain a derivation π' of $\bigwedge \neg A(t_i) \rightarrow E$ by:
 - Add $\bigwedge \neg A(t_i)$ to the axioms. Now every critical formula $A(t_i) \rightarrow A(e)$ belonging to e is derivable using the propositional tautology $\neg A(t_i) \rightarrow (A(t_i) \rightarrow A(e))$.
 - Apply the deduction theorem.

3. Combine the proofs

 $$\pi_i \vdash A(t_i) \rightarrow E,$$

 and

 $$\pi' \vdash \bigwedge \neg A(t_i) \rightarrow E,$$

 to get $\pi_e \vdash E$ (case distinction)
Why is this correct?

Verify that the resulting derivation is indeed a derivation in EC^e with the required properties.

We started with critical formulas of the form

$$A(t_i) \rightarrow A(e).$$

Facts:

- The proof π' contains no critical formulas belonging to e, and all other critical formulas remain unchanged.
- In the construction of π_i, we substituted e by t throughout the proof. Such uniform substitution of a term by another are proof-preserving.
- Replacing e by t_i in $A(e)$ indeed results in $A(t_i)$, since e cannot occur in $A(x)$—else $e = \varepsilon x A(x)$ would be a proper subterm of itself, which is impossible.
- If e appears in another critical formula $B(s) \rightarrow B(\varepsilon y B(y))$, we have three cases.
Case I

Case: e occurs only in s.

Replacing e by t_i results in a critical formula $B(s') \rightarrow B(\varepsilon y B(y))$.

The new critical critical formula belongs to the same ε-term as the original formula.

Hence maximal rank and order of π_i wrt. $rk(e)$ remain unaffected.
Case II

Case: e may occur in $B(y)$ and perhaps also in s, but contains neither s nor $\varepsilon y B(y)$.

In other words, the critical formula has the form

$$B'(s'(e), e) \rightarrow B'(\varepsilon y B'(y, e), e).$$

But then the ε-term belonging to this critical formula

$$e' = \varepsilon y B'(y, e),$$

is of higher degree than e.

By our assumptions, this implies that $\text{rk}(\varepsilon y B'(y, e)) < \text{rk}(e)$.

Replacing e by t_i results in a different critical formula

$$B'(s'(t_i), t_i) \rightarrow B'(\varepsilon y B'(y, t_i), t_i),$$

belonging to the ε-term $\varepsilon y B'(y, t_i)$ which has the same rank as e' and hence a lower rank than e itself.
Case III

Case: \(e \) does contain \(s \) or \(\varepsilon y B(y) \).

Then \(e \) is of the form \(e'(s) \) or \(e'((\varepsilon y B(y)) \), and

\(B(a) \) is really of the form \(B'(e'(a)) \) where \(e'(a) \) is an \(\varepsilon \)-term of the same rank as \(e \).

Then \(\varepsilon y B(y) \) has the form \(\varepsilon y B'(e'(y)) \), to which the \(\varepsilon \)-expression \(e'(y) \) is subordinate.

But then \(\varepsilon y B'(e'(y)) \) has higher rank than \(e'(y) \), which has the same rank as \(e \). This cannot happen.
The First Epsilon Theorem: Proof

By induction on $\text{rk}(\pi)$.

If $\text{rk}(\pi) = 0$, there is nothing to prove (no critical formulas).

If $\text{rk}(\pi) > 0$ and the order of π wrt. $\text{rk}(\pi)$ is m, then m-fold application of the lemma results in a derivation π' of rank $< \text{rk}(\pi)$.

Note that by the 2nd case above there may be $n \cdot c$ critical ε-terms in π_e (where c is number of critical formulas in π); these are all of rank $< \text{rk}(e)$, however.

To remove all ε-terms of rank $\text{rk}(e)$ increases the number of critical ε-terms by $2^{O(c)}$. Bound for the necessary steps in the ε-elimination: $2^{O(c)}_{\text{rk}(\pi)}$.
The Extended First Epsilon Theorem

Theorem. If $\exists x_1 \ldots \exists x_k A(x_1, \ldots, x_k)$ is a purely existential formula containing only the bound variables x_1, \ldots, x_k, and

$$\text{PC}^\varepsilon \vdash \exists x_1 \ldots \exists x_k A(x_1, \ldots, x_k),$$

then there are terms t_{ij} such that

$$\text{EC} \vdash \bigvee_i A(t_{i1}, \ldots, t_{ik}).$$

Consider proofs in PC^ε of $\exists x_1 \ldots \exists x_k A(x_1, \ldots, x_k)$, where $A(a_1, \ldots, a_k)$ contains no bound variables.

Employing embedding we obtain a derivation π of $A(s_1, \ldots, s_k)$, where s_1, \ldots, s_k are terms (containing ε’s).

Proof Sketch. We employ the same sequence of elimination steps as in the proof of the First Epsilon Theorem. The difference being that now the end-formula $A(s_1, \ldots, s_k)$ may contain ε-terms.

Hence the first elimination step transform the end-formula into a disjunction.

$$A(s_{01}, \ldots, s_{0k}) \lor \ldots \lor A(s_{n1}, \ldots, s_{nk}).$$
The Second Epsilon Theorem

Theorem. If A is an ε-free formula and $PC^\varepsilon \vdash A$ then $PC \vdash A$.

Assume A has the form

$$\exists x \forall y \exists z B(x, y, z),$$

with $B(x, y, z)$ quantifier-free and no other than the indicated variables occur in A.

Herbrand Normal Form. Suppose $A = \exists x \forall y \exists z B(x, y, z)$. If f is a new function symbol, then the Herbrand normal form A^H of A is $\exists x \exists z B(x, f(x), z)$.

Lemma. Suppose $PC^\varepsilon \vdash A$. Then $PC^\varepsilon \vdash A^H$.
Second Epsilon Theorem: Proof

The Strong First Epsilon Theorem yields:

There are \(\varepsilon \)-free terms \(r_i, s_i \) so that

\[
\text{EC} \vdash \bigvee_i B(r_i, f(r_i), s_i) \quad (1)
\]

We now can replace the \(t_i \) by new free variables \(a_i \) and obtain from (1), that

\[
\bigvee_i B(r_i, a_i, s_i) \quad (2)
\]

is deducible in \(\text{EC} \).

Then the original prenex formula \(A \) can be obtained from (2) if we employ the following rules (deducible in \(\text{PC} \))

\[
(\mu) : F \lor G(t) \vdash F \lor \exists y G(y)
\]

\[
(\nu) : F \lor G(a) \vdash F \lor \forall z G(z), \text{ provided } a \text{ appears only in } G(a) \text{ at the displayed occurrences.}
\]
Corollaries

Conservative Extension. Due to the Second Epsilon Theorem the Epsilon Calculus (with equality) is a conservative extension of pure predicate logic.

Equivalence. Due to the Embedding Lemma we have $PC^\varepsilon \vdash A$ implies $EC^\varepsilon \vdash A^\varepsilon$. Due to the Second Epsilon Theorem we obtain $EC^\varepsilon \vdash A^\varepsilon$ implies $PC^\varepsilon \vdash A$.

Herbrand’s Theorem. Assume $A = \exists x \forall y \exists z B(x, y, z)$. Iff $PC^\varepsilon \vdash A$, then there are terms r_i, s_i such that $EC \vdash \lor_i B(r_i, f(r_i), s_i)$.
Generalizations

First Epsilon Theorem. Let A be a formula without bound variables (no quantifiers, no epsilons) but possible including $=$. Then

$$PC^e \cup Ax \vdash A \implies EC \cup Ax \vdash A,$$

where Ax includes instances of quantifier-free (and e-free) axioms.

Extended First Epsilon Theorem. Let $\exists \bar{x}A(\bar{x})$ be a purely existential formula (possibly containing $=$). Then

$$PC^e \cup Ax \vdash \exists \bar{x}A(\bar{x}) \implies EC \cup Ax \vdash \bigvee_{i} A(t_{i1}, \ldots, t_{in}),$$

where Ax is defined as above.
Generalizations (cont’d)

Second Epsilon Theorem. If \(A \) is an \(\varepsilon \)-free formula (possibly containing \(= \)) and

\[
\text{PC}^\varepsilon \cup \text{Ax} \vdash A \text{ implies } \text{PC} \cup \text{Ax} \vdash A,
\]

where \(\text{Ax} \) includes instances of \(\varepsilon \)-free axioms.
Some facts in favour of the Epsilon Calculus:

- The input parameter for the proof of Herbrand’s Theorem is the collection of critical formulas \(C \) used in the derivation. E.g. this gives a bound depending only on \(C \).
- The Epsilon Calculus allows a condensed representation of proofs.

 \(\text{Why: Assume } \text{EC}^\varepsilon \vdash A^\varepsilon. \text{ Then there exists a tautology of the form} \)

 \[
 \bigwedge_{i,j} (B_i(t_j) \rightarrow B_i(\varepsilon x B_i(x))) \rightarrow A^\varepsilon. \tag{3}
 \]

 Thus as soon as the critical formulas \(B_i(t_j) \rightarrow B_i(\varepsilon x B_i(x)) \) are known, we only need to verify that (3) is a tautology to infer that \(A^\varepsilon \) is provable in \(\text{EC}^\varepsilon \).
- Formalization of proofs should be simpler in the Epsilon Calculus.
A bluffer’s guide to Hilbert’s “Ansatz”

Assume we work within number theory and let \(\mathcal{N} \) denote the standard model of number theory.

(For conciseness we ignore induction.)

- The initial substitution \(S_0 \): Assign the constant function 0 to all \(\varepsilon \)-terms (well, to precise \(\varepsilon \)-matrices).
- Assume the substitution \(S_n \) has already been defined. Define \(S_{n+1} \): Pick a false critical axiom, e.g.

\[
P(t) \rightarrow P(\varepsilon x P(x)).
\]

(False means wrt. to \(\mathcal{N} \) and the current substitution \(S_n \)).
- Let \(z \in \mathbb{N} \) denote the value of \(t \) under \(S_n \). Then the next substitution \(S_{n+1} \) is obtained by assigning the value \(z \) to \(\varepsilon x P(x) \).

Note that the critical axiom \(P(t) \rightarrow P(\varepsilon x P(x)) \) is true wrt. to \(\mathcal{N} \) and the current substitution \(S_{n+1} \).
Peano Arithmetic: Results

1-consistency. Every purely existential formula derivable in PA^ε is true.

Provable Recursive Functions. The numerical content of proofs of purely existential formulas in PA^ε is extractable.

Put differently: The provable recursive functions of PA^ε are exactly the $<\varepsilon_0$-recursive functions.

Assume $PA^\varepsilon \vdash \forall x \exists y A(x, y)$ with $A(a, b)$ quantifier-free and without free variables other than the shown. Then we can find a $<\varepsilon_0$-recursive function f such that $\forall x A(x, f(x))$ holds.
Non-counter example interpretation. Let
\[\exists x \forall y \exists z A(a,x,y,z) \]
be deducible in PA^ε such that only the indicated free variable \(a\) occurs. Let \(\exists x \exists z A(a,x,f(x),z) \) denote the Herbrand normal form of \(A\).

Then there exists \(< \varepsilon_0\)-recursive functionals \(G\) and \(H\) such that for all functions \(f\),
\[A(n, G(f,n), f(G), H(f,n)) , \]
holds.

The transformation \(\varepsilon^\varepsilon: L^\varepsilon \rightarrow L_{PC}\) defined yesterday, can be employed to show that Peano Arithmetic embeds into PA^ε:

Then if \(PA \vdash A\), then \(PA^\varepsilon \vdash A^\varepsilon\).