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Abstract. This paper describes the second edition of the Tyrolean Ter-
mination Tool—a fully automatic termination analyzer for first-order
term rewrite systems. The main features of this tool are its (non-)ter-
mination proving power, its speed, its flexibility due to a strategy lan-
guage, and the fact that the source code of the whole project is freely
available. The clean design together with a stand-alone OCaml library
for term rewriting, make it a perfect starting point for other tools con-
cerned with rewriting as well as experimental implementations of new
termination methods.
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1 Introduction

Termination of term rewrite systems (TRSs) is an undecidable property. Never-
theless a vast number of methods have been developed to determine termination,
many of which are suitable for implementation. This paper summarizes the main
design issues, features, and successes of the Tyrolean Termination Tool 2 (TTT2
for short), the completely redesigned successor of the award winning1 Tyrolean
Termination Tool (TTT) [10]. TTT2 is a tool for automatically proving termination
of TRSs, based on the dependency pair framework [7, 8, 10, 22]. It incorporates
several novel methods like increasing interpretations, a modular match-bound
technique, uncurrying, and outermost loops, which are not (yet) available in
other termination provers. It produces readable output and has a simple web in-
terface. Precompiled binaries, sources and documentation of TTT2 are available
at

http://cl-informatik.uibk.ac.at/software/ttt2/

In contrast to its predecessor, TTT2 is open source; published under terms of the
GNU Lesser General Public License. This work refers to version 1.0 of the tool.

The remainder of the paper is organized as follows. In the next section we de-
scribe how TTT2 can be used from the command line and sketch its web interface.

? This research is supported by FWF (Austrian Science Fund) project P18763.
1 Best paper award, RTA 2003.



Section 3 explains the strategy language of TTT2, which gives the user full control
over the implemented termination methods. Some of the available termination
techniques are listed in Section 4. In Section 5 we discuss the performance of our
tool in light of the latest issue of the termination competition before addressing
ongoing and future work in Section 6. We conclude in Section 7.

2 Design

The tool is written in OCaml2 and consists of about 30,000 lines of code. Ap-
proximately 13% are dedicated to provide some general useful functions and
data structures. Another 24% are used to implement the rewriting library which
deals with terms and rules. The biggest fragment—about 49%—is used to im-
plement termination methods and the strategy language. The rest (about 14%)
is concerned with input and output. Since our tool provides several techniques
that modify a termination problem by transforming it into different problem do-
mains, TTT2 interfaces the SAT solver MiniSat [2] and the SMT solver Yices [1].
For interfacing C code the third party contribution CamlIDL3 is needed. The
use of monads to implement the strategy language and several other parts of the
tool, allow a clean and abstract treatment of the internal prover state in a purely
functional way. Additionally, monads facilitate changes (like the integration of a
new termination method).

Besides the actual termination prover, we provide the following libraries:

• util extends the functionality of several modules from the standard OCaml
library. Furthermore modules for graph manipulation, advanced process and
timer handling, as well as monads are included.
• parsec is an OCaml port of the Haskell parsec4 library, i.e., the implemen-

tation of a functional combinator parser library.
• rewriting provides types and functions dealing with terms, substitutions,

contexts, TRSs, etc. The functionality is not only aimed at termination, e.g.,
the computation of overlaps and normal forms is also supported.
• logic provides an OCaml interface that abstracts over the two constraint

solvers MiniSat and Yices. To this end arithmetical formulas are encoded in
an intermediate datatype. When solving the constraints the user specifies
the back-end. In the case of MiniSat, additional information (how many bits
are used to represent numbers and intermediate results) can be provided. Af-
terwards the propositional formula is transformed into conjunctive normal
form by a satisfiability-preserving transformation [19]. Yices, on the other
hand, does neither require the number of bits as a parameter nor the trans-
formation due to built-in support for linear arithmetic and formulas not in
conjunctive normal form.

• processors collects the numerous (non-)termination methods.
• ttt2 contains the strategy language and connects the preceding libraries.

2 http://caml.inria.fr/
3 http://caml.inria.fr/pub/old_caml_site/camlidl/
4 http://legacy.cs.uu.nl/daan/parsec.html
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2.1 Command Line Interface

In order to run TTT2 from the command line, the user can either download the
source code from the TTT2 web page and install it following the installation
guidelines or alternatively download the binary of the latest version of TTT2.
After a successful installation, TTT2 can be started via the command

./ttt2 [options] <file> [timeout]

where [options] denotes a list of command line options, <file> specifies the
name of the file containing the TRS of which termination should be proved, and
[timeout]—a floating point number—defines the time limit for proving termi-
nation of the given TRS. The TRS must adhere to the termination problem
database format.5 The timeout is optional. To get a complete list of the com-
mand line options of TTT2 either read the documentation provided on the tool’s
homepage or execute the command ./ttt2 --help.

2.2 Web Interface

The web interface of TTT2 allows the user to play around with some termina-
tion methods and an automatic strategy. The design is intentionally simple to
abstract from the challenging task to provide a fast and powerful automatic
strategy.

3 The Strategy Language

As mentioned in the introduction, TTT2 is designed according to the dependency
pair framework which ensures that all methods are implemented in a modular
way. In order to combine these methods in a flexible manner, TTT2 provides a
strategy language. In the following the most important constructs of this language
are explained. For further information please consult the online documentation.

3.1 Syntax

The operators provided by the strategy language can be divided into three
classes: combinators, iterators, and specifiers. Combinators are used to combine
two strategies whereas iterators are used to repeat a given strategy a designated
number of times. In contrast, specifiers are used to control the behavior of strate-
gies. The most common combinators are the infixes ‘;’, ‘|’, and ‘||’. The most
common iterators are the postfixes ‘?’, ‘+’, and ‘*’. The most common specifier
is ‘[f]’ (also written postfix), where f denotes some floating point number. In
order to obtain a well-formed strategy s, these operators have to be combined
according to the grammar

s ::= m | (s) | s;s | s|s | s||s | s? | s+ | s* | s[f]
5 http://www.lri.fr/~marche/tpdb/format.html
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where m denotes any available method of TTT2 (possibly followed by some flags).
In order to avoid unnecessary parentheses, the following precedence is used:
?, +, *, [f] > ; > |, ||.

3.2 Semantics

In the remainder of this section we use the notion termination problem to de-
note a TRS, a dependency pair problem (DP problem), or a relative termination
problem. We call a termination problem terminating if the underlying TRS (DP
problem, relative termination problem) is terminating (finite, relative terminat-
ing). A strategy works on a termination problem. Whenever TTT2 executes a
strategy, internally, a so called proof object is constructed which represents the
actual termination proof. Depending on the shape of the resulting proof object
after applying a strategy s, we say that s succeeded or s failed.

This should not be confused with the possible answers of the prover: YES, NO,
and MAYBE. Here YES means that termination could be proved, NO indicates a
successful non-termination proof, and MAYBE refers to the case when termination
could neither be proved nor disproved. On success of a strategy s it depends
on the internal proof object whether the final answer is YES or NO. On failure,
the answer always is MAYBE. Based on the two possibilities success or failure, the
semantics of the strategy operators is as follows.

The combinator ‘;’ denotes sequential composition. Given two strategies s
and s′ together with a termination problem P , s;s′ first tries to apply s to P .
If this fails, then also s;s′ fails, otherwise s′ is applied to the resulting termi-
nation problem, i.e., the strategy s;s′ fails, whenever one of s and s′ fails. The
combinator ‘|’ denotes choice. Different from sequential composition, the choice
s|s′ succeeds whenever at least one of s or s′ succeeds. More precisely, given the
strategy s|s′, TTT2 first tries to apply s to P . If this succeeds, its result is the
result of s|s′, otherwise s′ is applied to P . The combinator ‘||’ is quite similar
to the choice combinator and denotes parallel execution. That means given the
strategy s||s′, TTT2 runs s and s′ in parallel on the termination problem P . As
soon as at least one of s and s′ succeeds, the resulting termination problem is
returned. This can be seen as a kind of non-deterministic choice, since on si-
multaneous success of both s and s′, it is more or less arbitrary whose result is
taken.

Example 1. Consider the following strategy:

dp;edg;sccs;(bounds -dp || (matrix -wm | kbo -af))

In order to prove termination of a TRS R using this strategy, TTT2 first com-
putes the dependency pairs P of R using the dp processor (thereby transforming
the initially supplied TRS into a DP problem). After that the estimated depen-
dency graph and the strongly connected components of the DP problem (P,R)
are computed, resulting in a set of DP problems {(P1,R), . . . , (Pn,R)}. Finally,
to conclude that the DP problem (P,R) is finite and hence that the TRS R
is terminating, TTT2 tries to prove finiteness of each DP problem (Pi,R) with
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1 6 i 6 n by running the match-bound technique and a combination of the ma-
trix method and the Knuth-Bendix order in parallel. Note that the substrategy
matrix -wm | kbo -af first applies the matrix method to a given termination
problem and on failure, applies the Knuth-Bendix order. Here the flag -wm indi-
cates that weakly monotone interpretations are used and the flag -af specifies
that argument filterings should be considered when computing the ordering.

Next we describe the iterators ‘?’, ‘+’, and ‘*’. The strategy s? tries to apply
the strategy s to a termination problem P . On success its result is returned,
otherwise P is returned unmodified, i.e., s? applies s once or not at all to P
and always succeeds. The iterators ‘+’ and ‘*’ are used to apply s recursively
to P until P cannot be modified any more. The difference between ‘+’ and ‘*’
is that s* always succeeds whereas s+ only succeeds if it can prove or disprove
termination of P . In other words, s* is used to simplify problems, since it applies
s until no further progress can be achieved and then returns the latest problem.
In contrast ‘+’ requires the proof attempt to be completed.

Example 2. We extend the strategy of the previous example by adding the iter-
ator ‘+’ and two new methods:

uncurry?;poly -ib 2 -ob 4*;
dp;edg;(sccs;(bounds -dp || (matrix -wm | kbo -af)))+

To prove termination of a TRS R, TTT2 performs the following steps. At first
uncurrying is applied. Since this method works only for applicative TRSs, the
iterator ‘?’ is added in order to avoid that the whole strategy fails if R is not
an applicative system. After that polynomial interpretations with two input bits
(coefficients) and four output bits (intermediate results) are used to simplify
the given TRS. (Restricting the values for intermediate computations results
in efficiency gains.) The iterator ‘*’ ensures that a maximal number of rewrite
rules is removed by applying the method as often as possible. Finally, after
the computation of the dependency pairs and the estimated dependency graph,
TTT2 tries to prove finiteness of the given DP problems, by applying the strategy
sccs;(bounds -dp || (matrix -wm | kbo -af)) recursively.

At last we explain the specifier ‘[f]’ which denotes timed execution. Given a
strategy s and a timeout f , s[f] tries to modify a given termination problem P
for at most f seconds. If s does not succeed or fail within f seconds (wall clock
time), s[f] fails. Otherwise s[f] succeeds and returns the termination problem
that remains after applying s to P .

Example 3. To ensure that the strategy of the previous example is executed for
at most 5 seconds we add the specifier ‘[5]’. In addition we limit the time spend
by the match-bound technique to 1 second.

(uncurry?;poly -ib 2 -ob 4*;
dp;edg;(sccs;(bounds -dp[1] || (matrix -wm | kbo -af)))+)[5]
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Using this strategy, TTT2 has at most 5 seconds to prove termination of a given
TRS R and in each iteration 1 second is available to simplify termination prob-
lems using the match-bound technique. If the 5 seconds expire, the execution is
aborted immediately.

3.3 Specification and Configuration

In order to call TTT2 with a certain strategy, the flag --strategy (or alternatively
the short form -s) has to be set. For convenience it is possible to call TTT2
without specifying any strategy. In this case a predefined strategy is used (for
details execute ./ttt2 --help). Note that the user is responsible for ensuring
soundness of the strategy, e.g., applying the processors in correct order.

Example 4. To call TTT2 with the strategy of Example 3, the following command
is used: ./ttt2 -s ’(uncurry?;poly -ib 2 -ob 4*; ...)[5]’ <file>. Al-
ternatively, one could also remove the outermost time limit of the strategy and
pass it as an argument to TTT2. In that case the command looks as follows:
./ttt2 -s ’(uncurry?;poly -ib 2 -ob 4*; ...)’ <file> 5.

Since strategies can get quite complex (e.g., the strategy used in the November
2008 termination competition consists of about 100 lines), TTT2 provides the
opportunity to specify a configuration file. This allows to abbreviate and connect
different strategies. By convention strategy abbreviations are written in capital
letters. To tell TTT2 which configuration file should be used, the flag --conf (or
the short form -c) followed by the file name has to be set.

Example 5. Consider the strategy of Example 3. In order to call TTT2 with this
strategy we write a configuration file ttt2.conf containing the following lines:

[Abbreviations]
PRE = uncurry?;poly -ib 2 -ob 4*
PARALLEL = (bounds -dp[1] || (matrix -wm | kbo -af))
AUTO = (PRE;dp;edg;(sccs;PARALLEL)+)[5]

It is important to note that abbreviations are not implicitly surrounded by paren-
theses since this allows more freedom in abbreviating expressions. To tell TTT2
that the strategy AUTO of the configuration file ttt2.conf should be used the
following flags have to be specified: ./ttt2 -c ttt2.conf -s AUTO <file>.

4 A Selection of Implemented Techniques

In this section some characteristic methods of TTT2 are presented.

Bounds. TTT2 provides the match-bound technique [5] which uses tree automata
techniques to prove termination of a TRS on a particular language (in general
the set of all ground terms). To increase the applicability of the match-bound
technique, TTT2 was the first tool that incorporated it—in a fully modular way—
into the dependency pair framework [14]. Moreover, match-bounds can be used
to prove complexity results. It is well-known that match-bounds imply linear
derivational complexity for non-duplicating systems [5].
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KBO. TTT2 employs the most sophisticated implementations of the Knuth-
Bendix ordering. The proof obligations are formulated as a propositional formula
(set of pseudo boolean constraints, linear arithmetic constraints) [24] and then
solved by MiniSat (MiniSat+,Yices).

Loops. Besides techniques from [18], for string rewrite systems (SRSs) loops
are searched with the help of SAT solving. After fixing parameters such as the
maximal length of words and the maximal length of the non-terminating se-
quence, loops are encoded in propositional logic [25]. Additionally, based on the
approach from [18], a novel idea [23] allows to check whether a given loop also
is an outermost loop, i.e., a loop under the outermost reduction strategy.

Matrices. TTT2 implements matrix [3, 12] and arctic [13] interpretations. Our
tool uses higher dimensions than competitors which sometimes results in very
short and elegant termination proofs. A direct termination proof by arctic ma-
trices yields linear derivational complexity and direct matrix interpretations (of
triangular shape) [15] give polynomial upper bounds.

Polynomials. Apart from polynomial interpretations over different carriers (nat-
ural numbers, integers, rationals), additional power is achieved by allowing ap-
proximations of minimum and maximum operations [4]. Furthermore, techniques
from [26] allow an increase in the constant part of the interpretation for some
rules.

Root-Labeling. TTT2 was the first tool that incorporated root-labeling within the
dependency pair framework [21]. As a result, in 2007 it was the first automated
tool that could prove termination of an SRS with non-primitive recursive deriva-
tion length (Zantema/z090). Since root-labeling preserves derivational complex-
ity it is a viable transformation for proofs of complexity.

Uncurrying. TTT2 incorporates uncurrying for non-proper systems [9] similar to
its predecessor TTT. Furthermore it integrates the method within the depen-
dency pair framework [11]. This makes it a very strong tool on the subclass of
applicative systems. Due to the fact that reductions in the uncurried system are
strictly longer compared to the original system, upper bounds for complexity
considerations are not affected by this transformation.

5 TTT2 in Action

It goes without saying that TTT2 is not the only tool for proving termination
of rewrite systems. Since 2004 some of these automated termination analyzers
compete against each other in regular competitions.6 In the following paragraphs
we compare our tool with some of the other systems that participated in the
latest editions of the international termination competition.7 TTT2 participated
in three categories with the aim to show its flexibility and speed.
6 http://termination-portal.org/wiki/Termination_Competition
7 http://termcomp.uibk.ac.at/
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SRS Standard. TTT2 won this category in front of AProVE [6] and Jambox.8

The main reason was that we used matrix and arctic interpretations of higher
dimensions than AProVE and Jambox. Proofs were found for the systems Trafo/
un02, Trafo/un15, Trafo/un17, and the randomly generated Waldmann07b/
size-12-alpha-3-num-469 which could not be handled by any other tool (also
not in previous competitions).

TRS Standard. TTT2 finished second behind AProVE but in front of Jambox. The
main emphasis was put on speed. TTT2 could (dis)prove termination of 970 TRSs
out of 1391 TRSs in less than ten minutes. That means, it could handle 79% of
the systems AProVE could answer but in just 10% of the time.

TRS Outermost. TTT2 could solve twice as much systems as each of the three
competitors. While all other tools employed transformations that allowed to use
methods designed for full termination, TTT2 integrated a direct approach for
finding loops under a specific strategy [23].

TTT2 is not only successful on its own. Two derivatives of TTT2 were involved in
other categories of the competition, namely CaT9 (which was developed by the au-
thors) and TCT[16] (an independent tool, built on top of the basic components of
TTT2). TCTwas the first tool dedicated to proving complexity certificates. The aim
of CaT was just to show how helpful it is to start from the basis of a well-designed
termination prover; the additional implementation effort took a single day. CaT
won both categories (Derivational Complexity – Full Rewriting and Derivational
Complexity – Innermost Rewriting) in which it participated. Another tool that
builds on TTT2 is MKBTT [20], which implements multi-completion using exter-
nal termination provers. Experimental results revealed that due to thousands of
calls to the external prover, a fast one is preferable over a powerful one. This
observation inspired our configuration of TTT2 for the TRS Standard category
in the November 2008 competition where we used less than 10% of the allowed
time, to show how many problems could be solved in a strongly limited amount
of time.

6 Future Work

Two main goals for the near future are: the improvement of the output produced
by TTT2 and the formalization and certification of (non-)termination methods.
Concerning the output we plan to transform the internal proof objects into XML.
Afterwards it should be possible to convert this XML format into either human
readable output or a proof format suitable for automatic certification. For the
second goal a parallel project addresses the formalization of rewriting (IsaFoR,
Isabelle Formalization of Rewriting) in the theorem prover Isabelle/HOL [17].

8 http://joerg.endrullis.de/
9 http://cl-informatik.uibk.ac.at/software/cat/
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This formalization deals with rewriting in general and (non-)termination based
on the dependency pair framework in particular. In order to be usable for au-
tomated certification of proofs generated by a termination tool, we employ Is-
abelle’s code-generation facilities to export verified Haskell code. This results in
the program CeTA10 (Certification of Termination Analysis), capable of certifying
(non-)termination proofs.

7 Conclusion

In this paper we described the termination prover TTT2, the successor of the well-
known Tyrolean Termination Tool. We presented its strategy language, some of
its characteristic methods, and we compared TTT2 with other termination provers
to show its flexibility and versatility. We conclude the paper by listing what we
believe to be the main attractions of TTT2:

• it is open source,
• it provides a strategy language which allows to configure it for all possible

applications,
• it benefits from multi-core architecture due to support for parallelism,
• it is one of the fastest and most powerful termination provers, and
• it provides stand-alone libraries for parsing, rewriting, and logic.

Acknowledgments. We thank Nao Hirokawa for providing the sources of TTT
and Sarah Winkler for writing a first interface for MiniSat.
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