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Abstract
Term rewriting in the presence of associative and commuta-
tive function symbols constitutes a highly expressive model
of computation, which is for example well suited to reason
about parallel computations.

However, it is well known that the standard notion of ter-
mination does not apply any more: any term rewrite system
containing a commutativity rule is nonterminating. Thus,
instead of adding AC-rules to a rewrite system, we switch
to the notion of AC-termination. AC-termination can for
example be shown using AC-compatible reduction orders.
One specific example of such an order is ACKBO.

We present our Isabelle/HOL formalization of the ACKBO
order. On an abstract level this gives us a mechanized proof
of the fact that ACKBO is indeed an AC-compatible reduc-
tion order. Moreover, we integrated corresponding check
functions into the verified certifier CeTA. This has the more
practical consequence of enabling the machine certification
of AC-termination proofs generated by automated termina-
tion tools.

CCSConcepts •Theory of computation→Equational
logic and rewriting; Higher order logic; • Software and
its engineering → Formal software verification.

Keywords ACKBO, AC-termination, certification, formal-
ization, Isabelle/HOL, term rewriting
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1 Introduction
Rewriting in the presence of associative and commutative
symbols is useful when reasoning about parallel computa-
tions. To illustrate this point, here is an example that we
adapted from All About Maude [3] (a book about the Maude
framework, which employs rewriting logic to specify and
reason about parallel systems):

Example 1.1. Consider a distributed banking system,where
an account account(i, x) is identified by its ID i and has a
current balance x. The two basic operations are to withdraw
an amount y from an account i (writtenwithdraw(i, y)) or to
deposit an amount y into an account i (written deposit(i, y)).
The behavior of the banking system should be captured by
the following two rewrite rules (assuming appropriate rules
for addition and subtraction):

account(i, x) ∥ deposit(i, y) → account(i, x + y)

account(i, x) ∥ withdraw(i, y) → account(i, x − y)

Since we want to be able to represent an arbitrary state of a
distributed system, we moreover require ∥ to be associative
and commutative. Then the “global” state can be represented
by a term o1 ∥ o2 ∥ · · · ∥ on , where each oi is either an account
or an operation. However, if we try to ensure associativity
and commutativity of ∥ by explicitly adding corresponding
rewrite rules, we immediately end up with nontermination:
x ∥ y → y ∥ x → · · · (due to the commutativity rule of ∥).
Thus, we instead require ∥ to be associative and com-

mutative on a meta-level and thereby move from standard
rewriting to rewriting modulo associativity and commutativ-
ity (AC-rewriting, for short).

On the one hand, in the previous example we saw that
adding AC-rules to a rewrite system always introduces non-
termination. On the other hand, switching from standard
rewriting to AC-rewriting comes with its own problems: it
is not possible to use standard termination techniques to
conclude AC-termination of a term rewrite system (TRS), as
demonstrated by the following example.

Example 1.2. Consider the TRS consisting of the single rule
a + b → b + a where a and b are constants. Disregarding
commutativity of +, we can conclude termination by most
any technique that is available: for example using the Knuth-
Bendix order with precedence + > a > b and all weights set
to 1.

https://doi.org/10.1145/3293880.3294099
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However, the above TRS is not AC-terminating, since a+b
is AC-equivalent to b + a and thus AC-rewriting allows us
to construct the infinite derivation a + b → a + b → · · ·

Hence the demand for termination techniques that allow
us to conclude AC-termination of a given TRS. One class of
such termination techniques is induced by AC-compatible
reduction orders, with ACKBO as specific representative.
ACKBO is a variant of Knuth and Bendix’s seminal or-

der [4] that is AC-compatible and implemented in termina-
tion tools like TTT2 [5]. Moreover, a recent trend for termi-
nation tools is to formalize the underlying techniques in a
proof assistant and thereby support formal verification of
generated proofs. In the same spirit we formalized ACKBO.

More specifically, our contributions are as follows:

• We present our Isabelle/HOL formalization of ACKBO,
the first formalization of an AC-compatible reduction
order ever. After recalling the definition of ACKBO
(Section 2), we give an overview of its key properties
(Section 3) when it comes to proving AC-termination.

• Moreover, we develop verified executable check func-
tions that allow us to rigorously check the correct ap-
plication of ACKBO to concrete examples (Section 4).

• Finally, we evaluate the resulting formally verified
certifier CeTA on a benchmark of certificates that are
generated by the automated termination tool TTT2 (Sec-
tion 5). In the process we reveal a bug in TTT2’s SMT
encoding of ACKBO.

The presented work is part of the Isabelle Formalization
of Rewriting (or IsaFoR for short)1 since version 2.35, and
compatible with Isabelle2018 [6].

In the remainder we aim to give a high-level overview of
our formalization, but provide pointers (marked by✓) to an
HTML rendering of our formalization for those who want
to dive right into the actual Isabelle code.

2 ACKBO
In this section we fix some required preliminaries, before we
recall the definition of ACKBO that we use in our formal-
ization. Throughout we assume basic familiarity with term
rewriting and equational reasoning [1].

Preliminaries. In the remainder, let F be the set of function
symbols andV be the set of variables over whichwe build our
terms. Moreover, letAC denote the set of AC-symbols (that is,
those function symbols, for which we assume associativity
and commutativity). The corresponding equivalence rela-
tion, written =AC, is the symmetric, transitive, and reflexive
closure of the rewrite relation induced by the rules

f (x, y) → f (y, x) f (f (x, y), z) → f (x, f (y, z)) ✓

1http://cl-informatik.uibk.ac.at/isafor

for each f ∈ AC. When using infix symbols like + and · for
AC-symbols we assume the usual operator priority · > + in
order to save some parentheses.
Given a TRS R with AC-symbols, its induced AC-rewrite

relation→R/AC is given by: s →R/AC t iff s =AC · →R · =AC t
(where · denotes relation composition). Intuitively, this can
be thought of as rewriting on AC-equivalence classes of
terms.
A relation > is terminating (or strongly normalizing) if

it does not admit any infinite descending sequences x1 >
x2 > x3 > · · · We sometimes write SN>(T ) and SN>(t) to
express that there are no infinite descending sequences with
respect to relation > that start from terms in the set T and
the term t , respectively. In such a case we also say that > is
strongly normalizing on the set T or the term t . Also note
that there is no real difference between well-foundedness
and termination/strong normalization of a relation as far as
our formalization is concerned.2 Nevertheless, for specific
results, we usually stick to the parlance that is used in the
literature.

If, given a TRS R, the relation →R/AC is terminating (that
is, does not allow any infinite rewrite sequences), we say
that R is AC-terminating.
We use standard set-notation like ∅ and {e1, . . . , en} for

finite multisets, but write M + N for the sum of two mul-
tisets M and N , and M − N for their difference. The size
of a multiset M , written |M |, is the number of elements it
contains.

Given an AC-symbol f , its AC top (sometimes also called
top flattening) is the multiset given by

∇f (f (®tn)) = ∇f (t1) + · · · + ∇f (tn) ✓

∇f (t) = {t}

Which is to say that we collect the subterms remaining after
removing the topmost layer of f symbols. (Since f is as-
sumed to be AC, a multiset is an appropriate representation
for its arguments.)
Given an arbitrary relation > we write >mul and >lex for

its multiset extension ✓ and lexicographic extension ✓, re-
spectively.

Given a multiset of termsT , we writeT ↾P for its restriction
to elements whose root symbols satisfy predicate P and T ↾V
for its restriction to variable terms. For example, given that
f > g, we have {f(x), g(y)}↾≮f = {f(x)} (the submultiset
of elements whose root symbols are not less than f) and
{f(x), y}↾V = {y} (the submultiset of elements which are
variables).

2The only difference we are aware of is that the predicate SN of IsaFoR
assumes that relations decrease to the right—as is typical for term rewrit-
ing applications—while, maybe for historical reasons, the predicate wf of
Isabelle/HOL assumes that relations decrease to the left. This sometimes
requires tedious conversions between the two notions inside a formalization
but is otherwise irrelevant for our presentation.

http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/AC_Rewriting_Base.html#def:acstep
http://cl-informatik.uibk.ac.at/isafor
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/AC_Equivalence.html#def:actop
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Multiset_Extension2.html#def:s_mul_ext
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Lexicographic_Extension.html#def:lex_ext
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Given a function symbol f ∈ F and an arbitrary binary
relation > (we will for example use >ACKBO and =AC later
on), we write >f for the order on multisets defined by S >f T
iff S↾≮f >mul T ↾≮f +T ↾V − S↾V .
To save some space, we sometimes write ®xn instead of

x1, . . . ,xn .

ACKBO. A weight function consists of two components: a
base weight w0 that is used for variables and a weight w(f )
for each function symbol f ∈ F . The weight✓ of a term is
computed recursively using the two equations w(x) = w0
for all x ∈ V and w(f (®tn)) = w(f ) +w(t1) + · · · +w(tn) for
all function symbols f ∈ F .

A weight function is called admissible✓ (with respect to a
precedence >) whenever it satisfies the following properties:

1. w(c) ≥ w0 > 0 for all constants c ∈ F , and
2. w(f ) = 0 and f , д implies f < д, for all unary f ∈ F .

The latter allows for a unique unary function symbol f with
weight 0 as long as it is least in the precedence. (This is for
example required to accommodate the inverse operation of
groups [4].)
Definition 2.1 (ACKBO ✓). Let > be a precedence and
(w,w0) an admissible weight function. The order >ACKBO is
inductively defined as follows: s >ACKBO t if |s |x ≥ |t |x for
all x ∈ V and either w(s) > w(t) or w(s) = w(t) and one of
the following holds
0. s = f k (t), t ∈ V for some k > 0 or
1. s = f (®sm), t = д(®tn), f > д or
2. s = f (®sm), t = f (®tm), f < AC, (®sm) >lexACKBO (®tm) or
3. s = f (s1, s2), t = f (t1, t2), f ∈ AC, S = ∇f (s), T = ∇f (t),
a. S >fACKBO T or
b. S =fAC T and |S | > |T | or
c. S =fAC T , |S | = |T |, and S↾<f >mul

ACKBO T ↾<f .
Here =AC is used as preorder in >lexACKBO and >mul

ACKBO.
Example 2.2. Recall Example 1.1. By adding the following
rules for addition and subtraction (here, s stands for successor
and p for predecessor) we arrive at the complete system:

0 + y → y x − 0 → x p(s(x)) → x

s(x) + y → s(x + y) x − s(y) → p(x − y) s(p(x)) → x

p(x) + y → p(x + y) x − p(y) → s(x − y)

All rules can be oriented from left to right using ACKBO
with precedence
0 > account > ∥ > withdraw > + > − > p > deposit > s

and weights
w0 = w(p) = w(s) = w(0) = w(deposit) = w(∥) = 1

and
w(−) = w(withdraw) = w(+) = w(account) = 0.

In the next section we establish that ACKBO can be used
to show AC-termination.

3 Formalization
In this section we give an overview of the key results of our
formalization that allow us to conclude the desired result,
namely that >ACKBO is an AC-compatible reduction order.
Before we continue, we summarize some concepts that

we will need later in this section.

Preliminaries. A pair of relations (≥, >) is called an order
pair ✓ if both ≥ and > are transitive, ≥ is reflexive, and the
two orders are compatible, that is, ≥ · > · ≥ ⊆ >.
A relation > is AC-compatible if =AC · > · =AC ⊆ >. Note

that this implies for every order pair of the shape (=AC, >)
that > is AC-compatible.
A reduction order is a well-founded, transitive, binary re-

lation on terms that is closed under contexts and under sub-
stitutions.
If a term t is a subterm of a term s , we write s ▷ t . A

relation > has the subterm property, whenever s ▷ t implies
s > t for all terms s and t .

Proving AC-Termination. To see why AC-compatible re-
duction orders imply AC-termination, assume for the sake
of a contradiction that a TRS R is oriented by just such an
order >, that is, we have ℓ > r for all rules ℓ → r ∈ R, but in
addition R admits an infinite AC-rewrite sequence:

t1 →R/AC t2 →R/AC t3 →R/AC · · ·

First note that each step ti →R/AC ti+1 of this sequence can
be decomposed into

ti =AC C[ℓσ ] →R/AC C[rσ ] =AC ti+1

for some rule ℓ → r ∈ R, contextC , and substitution σ . Now
since all rules of R are oriented by >, we clearly have ℓ > r .
Moreover, since > is a reduction order, it is closed under
contexts and substitutions, and therefore we have C[ℓσ ] >
C[rσ ]. Finally, AC-compatibility of > yields ti > ti+1, which
contradicts the well-foundedness of >.

The Formalization. Our formalization mostly follows an
earlier pen-and-paper proof by Yamada et al. [14] which
is interesting from a formalization perspective for at least
the following two reasons: (1) proofs are most of the time
spelled out in great detail, and (2) Yamada et al. prove general
properties of the structure that is shared among several AC-
compatible reduction orders.
We formalize these general properties so that in princi-

ple it is possible to reuse our results also for the other AC-
compatible reduction orders mentioned by Yamada et al.
Concerning well-foundedness, we actually have formal-

ized two different proofs with slightly different implica-
tions. Our first proof follows Yamada et al. in establishing
that ACKBO is a simplification order (which implies well-
foundedness) and relies on an earlier formalization ofKruskal’s
tree theorem [7]. However, this result only holds for TRSs
over a finite set of function symbols. While in principal this

http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/AC_Weight.html#def:weight
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/AC_Weight.html#loc:admissible_weight_fun
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo.html#ind:ackbo
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/List_Order.html#loc:order_pair
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restriction is no problem for certification of termination
tools (which usually take finite TRS as inputs), the existing
framework for reduction orders in IsaFoR/CeTA demands well-
foundedness over arbitrary signatures (including infinite
ones). Therefore we also present a direct well-foundedness
proof of >ACKBO that holds for arbitrary signatures.

In the remainder of this section we mostly concentrate on
proofs that deviate from the approach by Yamada et al. [14].

The following result gives us sufficient conditions for com-
bining a countable collection of order pairs into a single order
pair.

Lemma 3.1 ([14, Lemma A.3]✓). Assume that for all k ∈ N
we have that (≥, >k ) is an order pair. Moreover assume that
>k ⊆ >k+1 for all k ∈ N. Then also (≥,

⋃
{>k | k ∈ N}) is an

order pair.

The next lemma gives us a way to obtain an order pair on
multisets of terms from an order pair of terms.

Lemma 3.2 ([14, Lemma A.2] ✓). Let f ∈ F and (≥, >) be
an order pair. Then (≥f , >f ) is an order pair too.

Proof. We were not able to reconstruct the proof of this
lemma from [14, Lemma A.2]. Here is an alternative proof.
Suppose we have

• S↾≮f ≥mul T ↾≮f +T ↾V − S↾V
• T ↾≮f >mul U ↾≮f +U ↾V −T ↾V

From the fact that A ≥mul B and B >mul C implies A >mul C ,
together with T ↾≮f ∩ S↾V = ∅, we obtain

S↾≮f >mul U ↾≮f +U ↾V −T ↾V +T ↾V − S↾V .

Moreover, we have

U ↾V − S↾V ⊆ U ↾V −T ↾V +T ↾V − S↾V ,

and therefore we can show

S↾≮f >mul U ↾≮f +U ↾V − S↾V .

In total this yields that S ≥f T and T >f U implies S >f U
for all multisets S , T , and U . At this point, compatibility and
transitivity follows trivially from the fact that S >f T implies
S ≥f T . □

We once more follow Yamada et al. [14] by decomposing
>ACKBO into several orders that facilitate easier proofs of
AC-compatibility, transitivity, etc. Here, the indices indicate
which cases of Definition 2.1 are covered.

• ✓ s >01 t if |s |x ≥ |t |x for all x ∈ V and either
w(s) > w(t) or w(s) = w(t) and case 0 or case 1 of
Definition 2.1 applies.

• ✓ s >23,k t if |s |, |t | ≤ k , |s |x ≥ |t |x for all x ∈ V ,
w(s) = w(t) and case 2 or case 3 of Definition 2.1
applies.

This decomposition induces a stratification of the set of
terms that are oriented by the recursive calls of >ACKBO. In
the following, let >k = >01 ∪ >23,k .

Lemma 3.3 ([14, Lemma A.1]). The following statements
hold:

1. ✓ >ACKBO =
⋃
{>k | k ∈ N}

2. ✓ (=AC, >01) is an order pair
3. ✓ (>01 · >k ) ∪ (>k · >01) ⊆ >01

Lemma 3.4 ([14, Proof of Lemma 5.4]✓). For all k ∈ N, we
have that (=AC, >k ) is an order pair.

Proof. This can be shown by induction on k . The base case
is a direct consequence of Lemma 3.3(2) and the fact that
for k = 0 we have >k=>01. For the case k = n + 1 we
have that (=AC, >n) is an order pair. From Lemma 3.3(3) and
Lemma 3.3(2) we get that (=AC, >k ) is an order pair when-
ever (=AC, >23,k ) is an order pair. It is well known that lexico-
graphic extension and multiset extension preserve compati-
bility and transitivity. Therefore, we only need to consider
case 3 of Definition 2.1 which follows from Lemma 3.2. □

Lemma 3.5 ([14, Lemma 5.4]✓). The pair (=AC, >ACKBO) is
an order pair.

Proof. From Lemma 3.3(1) we have that >ACKBO is the union
of all >k for k ∈ N. Moreover, >k ⊆ >k+1 by construction
and (=AC, >k ) is an order pair by Lemma 3.4 for all k ∈ N.
Thus, the desired result follows directly from Lemma 3.1. □

Remember that being an order pair where the first com-
ponent is =AC implies AC-compatibility. Hence, >ACKBO is
AC-compatible.

Next, we turn towards the question whether >ACKBO is a
reduction order. Since Lemma 3.5 already gives us transitivity
of >ACKBO, it remains to establish well-foundedness, closure
under contexts and closure under substitutions. We defer
well-foundedness to the end of this section.

The hard part of establishing closure under contexts is
covered by the following result for AC-symbols.

Lemma 3.6 (✓). Let + be an AC-symbol and s >ACKBO t ,
then u + s >ACKBO u + t and s + u >ACKBO t + u for all terms
u.

Proof sketch. This can be shown using admissibility, closure
under multiset sum of case 3 of Definition 2.1 and case analy-
sis. The cases wherew(s) > w(t) and t is a variable are trivial.
The remaining cases are covered by considering the relation
between the root symbols of s and t and + with respect to
the precedence relation. □

At this point we obtain closure under contexts of >ACKBO.

Lemma 3.7 (Closure under Contexts✓). If s >ACKBO t , then
C[s] >ACKBO C[t], for arbitrary contexts C .

Proof. First we prove the following statement: if s >ACKBO t
then f (s1, . . . , sn) >ACKBO f (t1, . . . , tn) where si = s, ti = t
and ∀j ∈ {1, . . . ,n} \ {i}. sj = tj . Consider f ∈ AC then
case 3 of Definition 2.1 applies which follows directly from
Lemma 3.6. If f < AC then we have ∀j < i . sj =AC tj and

http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/AC_Aux.html#lem:order_pair_subset_rel
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/AC_Aux.html#lem:A2
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_split.html#ind:ackbo_base
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_split.html#ind:ackbo_ext
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_split.html#lem:ackbo_eq_ackbo_wk_all_k
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_split.html#int:base
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_split.html#lem:comp_base_wk
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_split.html#int:ackbo_wk_ord_p
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_split.html#loc:ackbo_ord_p
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_simp_ord.html#lem:lemma_5_7
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_simp_ord.html#lem:ackbo_ctxt
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from the assumption si >ACKBO ti . Hence, case 2 of Defini-
tion 2.1 applies.

Finally, we prove closure under contexts by induction on
the context. □

It turns out that the subterm property is useful for proving
closure under substitutions. Thus, we cover it first.

Lemma 3.8 (Subterm Property✓). Whenever s ▷ t then also
s >ACKBO t .

Towards closure under substitutions we moreover provide
a general lemma for the structure of case 3 of Definition 2.1
for arbitrary strict and non strict relations.

Lemma 3.9 ([14, Lemma 5.8]✓). Let S = ∇f (s), T = ∇f (t),
S ′ = ∇f (s · σ ), and T ′ = ∇f (t · σ ). Moreover, assume that
(≥, >) is an order pair, ≥ and > are closed under substitutions,
> has the subterm property, and f ∈ AC . Then the following
statements hold:

1. If S↾≮f >mul T ↾≮f +T ↾V − S↾V
then S ′↾≮f >mul T ′↾≮f +T ′↾V − S ′↾V

2. If S↾≮f ≥mul T ↾≮f +T ↾V − S↾V
then S ′↾≮f >mul T ′↾≮f +T ′↾V − S ′↾V or
• S ′↾≮f ≥mul T ′↾≮f +T ′↾V − S ′↾V ,
• |S | − |T | ≤ |S ′ | − |T ′ |, and
• if S↾<f >mul T ↾<f then S ′↾<f ≥mul T ′↾<f

In the proof of this lemma from [14] the following inter-
mediate statement is claimed:

∇f ((T − S) ↾v σ ) ↾v = ∇f (T ↾v σ ) ↾v −∇f (S ↾v σ ) ↾v .

However, this does not hold in general as can be seen from
the following counter example. Consider σ = {x 7→ y},
S = {y} and T = {x}. Then we have

∇f ((T − S) ↾v σ ) ↾v = {y}

and
∇f (T ↾v σ ) ↾v −∇f (S ↾v σ ) ↾v = {}.

Thus, instead of the above statement, we prove the follow-
ing subset relationship:

∇f (T ↾v σ ) ↾v −∇f (S ↾v σ ) ↾v ⊆ ∇f ((T − S) ↾v σ ) ↾v .

The remainder of the proof of [14, Lemma 5.8] goes through
if we perform this replacement.

Lemma 3.10 (Closure under Substitutions✓). For arbitrary
substitutions σ , we have that whenever s >ACKBO t , then also
sσ >ACKBO tσ .

Proof. We show this by well-founded induction on s with
respect to the subterm relation. The variable case is trivial.
Consider the case where s is a function symbol applied to
arguments. Then we get that >ACKBO is closed under sub-
stitution for all subterms of s and t using the subterm prop-
erty Lemma 3.8 and the induction hypothesis. If s >ACKBO t
is not obtained by case 3 of Definition 2.1 we conclude
sσ >ACKBO tσ from the standard proof of KBO. If s >ACKBO t

holds by cases 3a or 3b then we get sσ >ACKBO tσ from
Lemma 3.9. If s >ACKBO t holds by case 3c and cases 3a and
3b are not applicable then we get |∇f (sσ )| = |∇f (tσ )| and
∇f (sσ )↾<f ≥mul ∇f (tσ )↾<f from Lemma 3.9. Hence we have
sσ >ACKBO tσ . □

Taken together, the earlier results of this section establish
that >ACKBO is an AC-compatible rewrite order as well as the
fact that >ACKBO is a simplification order (any rewrite order
that has the subterm property is). Now, for finite signatures F ,
being a simplification order already yields well-foundedness.
However, as we argued before, we are interested in well-

foundedness for arbitrary signatures. Therefore, we spend
the remainder of this section to establish well-foundedness
of >ACKBO.

Well-foundedness. The well-foundedness proof of >ACKBO
mainly follows the structure of a similar proof by Sternagel
and Thiemann for plain KBO [8, Theorem 3.7].

We start by a definition that covers case 3 of Definition 2.1,
but for arbitrary base relations >R in place of >ACKBO.

Definition 3.11. We write s >CASE3R t if s = f (s1, s2), t =
f (t1, t2), f ∈ AC, S = ∇f (s), T = ∇f (t), and

1. S↾≮f >mul
R T ↾≮f +T ↾V − S↾V or

2. S =fAC T and |S | > |T | or
3. S =fAC T , |S | = |T |, and S↾<f >mul

R T ↾<f

Before we prove well-foundedness of >ACKBO below, we
provide the following auxiliary results that will allow us to
extend Sternagel and Thiemann’s proof to the AC-case.

Lemma3.12 (✓). If (≥, >R ) is an order pair and>R is strongly
normalizing, then >CASE3R is also strongly normalizing.

Lemma 3.13 (✓). The relation
{(s, t) | (∀u ◁ s . SNR (u)) ∧ s >CASE3R t}

is strongly normalizing whenever (≥, >R ) is an order pair and
≥ is symmetric.

Proof. We prove the statement by constructing a strongly
normalizing order from>R that preserves the order pair prop-
erty and orients arbitrary terms s and t whenever s >CASE3R t :

>U = {(s, t) | (∀u ◁ s . SNR (u)) ∧ s >CASE3R t}

We proceed by contradiction and assume that >U is not
strongly normalizing.
Then we know that there is an infinite sequence of the

form t1 >U t2 >U · · · in which all terms share the same root
symbol, which is an AC-symbol.
Let T =

⋃
{ti | i ∈ N} denote the set of all terms of this

infinite sequence, S = {u | u ◁ s ∧ s ∈ T } denote the set of
all subterms of these terms, and S ′ = {s | t ∈ S ∧ s ≥ t}.
We have SNR (S) from the fact that S contains the collec-

tion of all subterms of terms in T . Moreover, from SNR (t)
we know that for all u where t >R u it follows that SNR (u).

http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_simp_ord.html#lem:ackbo_subterm_property
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_simp_ord.html#lem:lemma_5_8_1
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_simp_ord.html#lem:ackbo_subst
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_wf.html#lem:case3_filtered_rel_sn
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_wf.html#lem:case3_SN
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Therefore, we can conclude SNR (S
′), because if s ≥ t then

t ≥ s follows by symmetry and for all u where s >R u it
follows that t >R u by compatibility.
Now we can conclude that

>R′ = {(s, t) | s ∈ S ′ ∧ t ∈ S ′ ∧ s >R t}

is strongly normalizing.
We can show that t1 >CASE3R′ t2 >

CASE3
R′ · · · holds using

our assumption and by case analysis. At this point, the fact
that (≥, >R′) is an order pair follows trivially from the fact
that (≥, >R ) is an order pair together with the construction
of >R′ . Hence, using Lemma 3.12, we deduce that >CASE3R′

is strongly normalizing. However, we have the following
infinite chain t1 >

CASE3
R′ t2 >

CASE3
R′ · · · which contradicts the

strong normalization of >CASE3R′ . □

Lemma 3.14 (Well-foundedness ✓). The order >ACKBO is
well-founded.

As mentioned before, our proof follows the structure of
[8, Theorem 3.7]. For the sake of self-containedness and
readability, we reproduce most of the proof and outline the
differences.

Proof. Let s be an arbitrary term. We show that SN>ACKBO (s)
holds. We prove this by well-founded induction on s with
respect to the subterm relation ▷; in contrast to the original
proof, where induction on the term structure was employed.
(The main difference being that in the latter case we only
obtain the IH for direct subterms, that is, arguments of a
term, but not for arbitrary subterms.)

This gives us the induction hypothesis

∀u ◁ s . SN>ACKBO (u) =⇒ SN>ACKBO (s) (1)

If s is a variable then s is in normal form with respect to
>ACKBO. Otherwise, if s = f (s1, . . . , sn) then we have to
show that ∀u ◁ s . SN>ACKBO (u) holds.
This is shown by the second, nested induction on f and

s1, . . . , sn where the induction relation compares the pair
(w(f (s1, . . . , sn)), f ) lexicographically. For the first compo-
nent the standard order on natural numbers and for the
second one the precedence > is used.

This gives us the induction hypothesis

w(д(t1 . . . , tn)) ≤ w(f (s1, . . . , sn)) ∧ д < f ∧

{u | u ◁ д(t1, . . . , tn)} ⊆ {s | SN>ACKBO (s)} =⇒ (2)
SN>ACKBO (д(t1, . . . , tn))

The proof for case 2 of Definition 2.1 is analogous to the
proof in [8], it differs by the additional assumption that the
root symbol is not in AC. Both cases are mutually exclusive.
We focus on case 3 of Definition 2.1, because this extends
the theorem.

With a further induction we add a third component to the
lexicographic comparisons, namely

{(s, t) | (∀u ◁ s . SN>ACKBO (u)) ∧ s >CASE3ACKBO t}.

From Lemma 3.13 we know that this relation is strongly
normalizing and we prove the following property for all
д ∈ AC and for all t1, . . . , tn .

f ≥ д ∧w(f (s1, . . . , sn)) ≥ w(д(t1, . . . , tn)) ∧

SN>ACKBO {u | u ◁ д(t1, . . . , tn)} ⇒

SN>ACKBO (д(t1, . . . , tn))

To prove this we assume the precondition for an arbitrary д
and t1, . . . , tn and show that SN>ACKBO (д(t1, . . . , tn)) follows.
We can close the second induction after we have shown
this (the case where д < AC is described in [8] as mentioned
before). This will be done by proving that for all termsu with
д(t1, . . . , tn) >ACKBO u it follows that SN>ACKBO (u). We do
this by a fourth induction on the term u using well-founded
induction with respect to the subterm relation.
The variable case is trivial. For the function case let u =

h(h1, . . . ,hn). From the fourth induction hypothesis we know
that ∀s ◁u .д(t1, . . . , tn) >ACKBO s ⇒ SN>ACKBO (s). Using the
structure of u, the subterm property of >ACKBO, Lemma 3.8,
and д(t1, . . . , tn) >ACKBO h(h1, . . . ,hn), we finally obtain
SN>ACKBO {h | h ◁ u}.
Now if we have that w(f (s1, . . . , sn)) > w(h(h1, . . . ,hn))

or f > h then we can use induction hypothesis (2) to con-
clude strong normalization. Otherwise, we can conclude
that f = h and w(f (s1, . . . , sn)) = w(h(h1, . . . ,hn)) using
the preconditions and д(t1, . . . , tn) >ACKBO h(h1, . . . ,hn).
Moreover we know that д(t1, . . . , tn) >CASE3ACKBO h(h1, . . . ,hn)
must hold, because д ∈ AC. Therefore, we can deduce that
SN>ACKBO (h(h1, . . . ,hn)) using the third induction hypothe-
sis. □

Example 3.15. At this pointwe can concludeAC-termination
of the TRS fromExample 1.1, since all its rules can be oriented
by ACKBO as shown in Example 2.2 and moreover, we have
established in this section that ACKBO is an AC-compatible
reduction order.

4 Certification
In the previous section we proved all the abstract properties
that are required for ACKBO so that it can in principle be
used for proving termination.

Now, for certification, the setup is as follows. An external
tool—like the automated termination prover TTT2—tries to
show termination of a specific input TRS using ACKBO. This
means that the tool tries to find a specific precedence and
specific weights, such that the resulting ACKBO orients all
the rules of the input TRS from left to right.

This information (the precedence and the weights) should
now be provided in form of a certificate that can later be
checked by an independent certifier (CeTA in our case). The
agreed-upon format for termination proofs is the certification
problem format [9] (an XML format which is also used in

http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo_wf.html#lem:ackbo_sn
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the annual international termination competition3). There-
fore, a slight modification of the external tool is needed, so
that it provides the required information in form of a CPF
certificate.
On the side of the certifier CeTA, we need so called check

functions that are able to take the certificate and make sure
that it is indeed possible to orient all the rules of an input
TRS by the corresponding ACKBO. While, so far, our for-
malization could employ arbitrary HOL formulas, a check
function is required to be executable, since otherwise it is
not possible to code-generate it into CeTA.
For our specific case of ACKBO this means that we need

an executable function that corresponds to Definition 2.1
and can, given two terms s and t , decide whether s >ACKBO t
holds. It is mostly straight-forward to turn the inductive spec-
ification of Definition 2.1 ✓ into a recursive function. How-
ever, it is worth mentioning that in order to check >lexACKBO
and >mul

ACKBO, which take=AC as preorder, we also need an exe-
cutableway to checkAC-equivalence (=AC) of two terms. The
corresponding check function✓ computes what we call AC-
normal forms of two terms s and t , and then checks for syn-
tactic equality. Computing the normal forms is achieved by
recursive top flattening of AC-symbols, so that AC-symbols
in the resulting terms take multisets of arguments instead of
lists. For example, the normal form of the term g(y+z+a)+x
is +{x, g(+{a, y, z})}. Finally, AC-normal forms are unique
(and executable) as soon as we fix some arbitrary total order
on terms.

5 Evaluation
In order to evaluate our addition of ACKBO to CeTA, we
extended the existing TTT2 implementation of ACKBO [14]
by certificate generation. We then ran experiments on the
same 145 TRSs with AC-symbols that were also used by
Yamada et al. [14]. As expected, we obtained certificates for
the same 32 TRSs that were also reported by Yamada et al.
Of those, 31 can be certified by CeTA, while one certificate
was rejected.

Example 5.1. The rejected certificate was generated for the
TRS consisting of the following rules:

g(g(x)) · x + g(x + y) → g(x) · g(x) + (g(x) + y)

(x + y) · x → x · y + x

g(x) + y → g(x + y)

In the certificate TTT2 (version 1.17) wrongly claims that we
can orient the first rule by >ACKBO with the precedence h >
+ > g. However, we are in case 3 of ACKBO and computing

S = {g(g(x)) · x, g(x + y)}, S↾≮+ = {g(g(x)) · x}, S↾V = ∅

T = {g(x) · g(x), g(x), y}, T ↾≮+ = {g(x) · g(x)},T ↾V = {y}

3http://termination-portal.org/wiki/Termination_Competition

reveals that the variable y in the right-hand side cannot
be covered when comparing the two multisets S↾≮+ and
T ↾≮+ +T ↾V − S↾V .

After we reported this problem it could be traced back to
an error in the SMT encoding of ACKBO in TTT2 (version
1.17) that was fixed in the meantime. The fixed version of
TTT2 (version 1.18) does no longer find an AC-termination
proof for the above example.

Statistics. In total, our formalization comprises six new the-
ory files (all in the subdirectory thys/Orderings), namely:
AC_Aux, AC_Weight, Ackbo, Ackbo_split, Ackbo_simp_ord,
and Ackbo_wf (the main entry point which contains the
well-foundedness proof of ACKBO and imports the other
theories).

Among these six theories we have 14 definitions that are
used in proofs of 265 facts. The whole formalization spreads
roughly across 5,000 lines of Isar [10] and took about three
person-months to finish.

6 Related Work
TheKnuth-Bendix order (KBO)was first introduced by Knuth
and Bendix in their seminal paper on completion [4]. Later
several AC-compatible variantswere developed. An overview
of these orders is given by Yamada et al. [14]. Various ver-
sions of the original KBO are nowadays used in automatic
termination tools. A particularly powerful variant that cov-
ers most implementations was formalized in Isabelle/HOL
by Sternagel and Thiemann [8].
In another interesting line of research, Becker et al. [2]

extended KBO to lambda-free higher-order terms and for-
malized the resulting order in Isabelle/HOL.
The only implementation of ACKBO that we are aware

of is in TTT2, which, in turn, is used in the multi-completion
tool mkbTT [11].4

7 Conclusion and Future Work
We presented our Isabelle/HOL formalization of ACKBO,
an AC-compatible variant of the well-known Knuth-Bendix
order (KBO). Moreover, we integrated an executable check
function for ACKBO proofs into the certifier CeTA and eval-
uated the resulting system on a benchmark of certificates
that were generated by TTT2. In the process we uncovered an
error in the SMT encoding of ACKBO that was previously
used by TTT2.

While some existing techniques can already be used to cer-
tify AC-termination proofs (for example by explicitly adding
AC-rules as constraints for polynomial interpretations), our
formalization constitutes to the best of our knowledge, the
first formalization of an AC-compatible reduction order us-
ing a proof assistant.
4An older version of NaTT [12] used to implement ACKBO (without pro-
ducing XML certificates though), but the current version does not.

http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/Ackbo.html#def:ackbo_impl
http://cl-informatik.uibk.ac.at/isafor/v2.35/CPP2019/AC_Equivalence.html#lem:aocconv_iff
http://termination-portal.org/wiki/Termination_Competition
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Future Work. Since 2016, IsaFoR supports a variant of the
dependency pair framework that applies to AC-termination
problems [13]. Thus it would be interesting future work to
integrate AC-dependency pairs into TTT2 and evaluate how
powerful the combination with ACKBO is.
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