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Abstract
Completion is the process of turning a set of equations into an equivalent confluent and
terminating set of rewrite rules. It is known that completion will always succeed if the input
equations are ground and the employed reduction order is total on (equivalent) ground
terms. Moreover, every reduced ground rewrite system can be obtained by completion from
any equivalent set of ground equations. We present the first formalized correctness proofs
of these results.

1 Introduction

We assume familiarity with term rewriting [1] but recall the inference rules of abstract completion.

Definition 1. The inference system KB of abstract (Knuth-Bendiz) completion operates on
pairs £, R of equations £ and rules R. It consists of the following inference rules:

deduce __&R if s rée—-—prt compose S’R&J—M ift >ru
EU{s~1LR R R POSE ERULs = ul R
EW{s~t},R . EW{s~t},R .
t
ERU[s >t 157 EU{u~tp,R TeTRY
orient simplify
—S&J{S%t}’R ift>s —E&J{s&‘:t},R ift =g u
ERU{t— s} EU{s~u},R R
delete LIS ShR colapse S EAEEE
E,R P EU{u~s},R R

Here > is an arbitrary but fived reduction order. The inference system KB~ consists of the
inference rules of KB except for deduce.

Snyder [8] proved that ground sets of equations (also called equational systems or ESs for
short) can always be completed by KB~. In the next section we present a proof of this result
that we formalized in Isabelle/HOL [5]. Snyder further proved that every reduced ground
rewrite system is canonical and can be obtained by completion from any equivalent set of ground
equations, our formalization of which is the topic of Section 3.

Our formalization is part of IsaFoR [9]! version 2.31 where it is located in the file thys/
Abstract_Completion/Ground_Completion.thy. Furthermore all definitions, theorems, and
lemmas in the PDF version of this manuscript are active hyperlinks to a (human readable)
HTML presentation of our formalization.

We conclude this introduction with an example illustrating the inference system KB~ on a
set of ground equations.
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Example 1. Consider the ES £ consisting of the ground equations
f(f(f(a))) = f(b) f(f(b)) =~ c f(c)~a f(a) = f(f(b))

As reduction order we take LPO induced by the total precedence a > b > c > f. We start by
applying orient to the last two equations:

f(f(f(a))) = f(b) f(f(b)) =~ c f(c) «+ a f(a) — f(f(b))

F(F(F(F(C))) ~ F(b) f(f(b)) — c f(c) < a f(f(c) —
Two applications of simplify produce

c = f(b) f(f(b)) — ¢ f(c) «+ a f(f(c)) = c
Orienting the remaining equation followed by a collapse step produces

¢« f(b) fc)=~c f(c) < a f(f(c)) = ¢

Finally, we orient the only remaining equation and collapse, compose, simplify, and delete exhaus-
tively, thereby obtaining the TRS R

c + f(b) f(c) —>c c+a

which constitutes a canonical presentation of £.

2 Correctness

The absence of deduce from KB~ does not hurt for ground systems. If s - - — ¢ and the two
contracted redexes are at parallel positions then trivially s — - < ¢. If the steps are identical
then s = ¢t. In the remaining case one of the contracted redexes is a subterm of the other
contracted redex, and the effect of deduce is achieved by the collapse inference rule.

On the contrary, the absence of deduce is crucial to conclude that KB~ derivations are always
finite.

Lemma 1. There are no infinite sequences £y, @ Frg- €1, R1 Fg- - for finite ground ESs &;.
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Proof. Let > denote the lexicographic combination of the multiset extension >y of the reduction
order > with the standard order on natural numbers >y. Furthermore let M (€, R) denote the
(finite) multiset of left-hand sides and right-hand sides occurring in £ and R

M(ER) = st} | (s,t) €€} U [J st} | (s,0) € R}

and consider the function P that maps the pair (£, R) to (M (€, R), |€|). Now it is straightforward
to verify that any infinite F¢g--sequence would give rise to an infinite sequence P(&y, @) >
P(&1,R1) > - -+, contradicting the well-foundedness of . O

The formalization of the following preliminary result is covered by previous work [2].

Lemma 2. If (§,R) Fig (£, R') then +—— = <——. O
EUR E'UR/

Theorem 1. If > is total on £-equivalent ground terms then every mazimal KB~ run produces

an equivalent canonical presentation for ground ES &.

Proof. Consider a maximal KB~ run &,9 + &,Ry F -+ F &,, R, where & = £ is a ground
ES. Because the run is maximal, no inference rule of KB~ is applicable to the final pair (&,,R).
In particular, compose and collapse are not applicable and hence the final TRS R,, is reduced.
Since R, is also ground, it is canonical. From Lemma 2 and the inclusion KB~ C KB we infer
that £ and &, UR,, are equivalent. It follows that > is total on &, -equivalent ground terms and
thus &, = @, for otherwise the run could be extended with an application of delete or simplify.
Hence R,, and & are equivalent. O

The restriction on the reduction order > in the above correctness theorem is easy to satisfy.
In particular, it holds for any LPO or KBO based on a total precedence.

3 Completeness

The final result of this note states the completeness of ground completion. The proof makes use
of the following preliminary results. The formalization of the first one is detailed in previous
work [3].

Theorem 2 (Métivier [4]). Let R and S be equivalent canonical TRSs. If R and S are compatible
with the same reduction order then R = S. 0

Here R = S denotes that R and S are identical modulo renaming of variables (that is,
each rule of R has a variant in S and vice versa). The next concept is useful in the analysis
of rewrite strategies [7]. It generalizes a number of earlier concepts, including the property
+ .= C = - < U= which is known as WCR! and true for left-reduced ground TRSs.

Definition 2. A TRS R has random descent if for every conversion a <* b with normal form b
we have a =™ b withn+1=r. Herel (r) denotes the number of < (—) steps in the conversion
a <" b.

Theorem 3 (van Oostrom [6]). Let R be a TRS with random descent. If a <»* b with normal
form b then a is complete and all rewrite sequences from a to b have the same length.

The short and direct proof given below has been formalized.


http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Abstract_Completion.html#KB_rtrancl_conversion
http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Ground_Completion.html#ground_max_run_canonical
http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Ground_Completion.html#ground_max_run_canonical
http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Normalization_Equivalence.html#EQ_imp_litsim
http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Normalization_Equivalence.html#EQ_imp_litsim
http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Ground_Completion.html#RD
http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Ground_Completion.html#RD
http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Ground_Completion.html#RD
http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Ground_Completion.html#RD_NF
http://cl-informatik.uibk.ac.at/isafor/v2.31/IWC2017/Ground_Completion.html#RD_NF

Formalized Ground Completion Middeldorp and Sternagel

Proof. Let I (r) be the number of <— (—) steps in the conversion from a to b. We have | < r
since n + [ = r for some n by random descent. First we prove termination of a. For a proof by
contradiction, suppose the existence of an infinite rewrite sequence

a=ayg—>ay —> ag — - -

Clearly, a —"=t g,_; and thus there exists a conversion a,_; *¢ a <* b with r backwards
and r forwards steps. Hence a,_; = b by another application of random descent and therefore
b — a,—_;+1, contradicting the fact that b is a normal form. Next we prove confluence of a.
Suppose ¢ *<— a —* d. We obtain the two conversions ¢ <»* b and d <+* b, which are transformed
into ¢ | d by two applications of random descent. Finally, assume there are two rewrite sequences
a —"™band a =™ b from a to b of length m and n. Reversing the first sequence and appending
the second one yields a conversion b <+* b with m backwards and n forwards steps. A final
application of random descent yields b —* b for some k with k 4+ m = n. Since b is a normal
form, k£ = 0 and thus m = n as desired. O

Lemma 3. Reduced ground TRSs are canonical and have random descent.

Proof. First we show that every left-reduced ground TRS R has random descent. To this end let
5 +>* t be a conversion between s and the normal form t. Now we proceed by induction on the
length of the conversion. If it is empty or the first step is to the right, we are done. Otherwise,
we have s <— u <+* t where the conversion has [ (r) left-steps (right-steps) and obtain u —* ¢
with k& + [ = r by the induction hypothesis. The remainder of the proof proceeds by induction
on k together with the observation that left-reduced ground TRSs enjoy the WCR® property.

Moreover, every right-reduced ground TRS R is terminating. For assuming non-termination
there would be a minimal non-terminating term ¢. This means that after a finite number of
non-root steps t —* u there will be a root-step u — v such that v is non-terminating. But since
R is right-reduced and ground, v is a ground normal form.

Since all terms are terminating, confluence of R is an immediate consequence of the definition
of random descent. O

Theorem 4. For every ground ES £ and every equivalent reduced ground TRS R there exist a
reduction order > and a derivation £, Fyg- -+ Fyg- 9, R.

Proof. Let > be a reduction order that contains R and is total on £-equivalent ground terms.
Consider a maximal KB~ run starting from £ and using >. According to Theorem 1, the run
produces an equivalent reduced TRS R’. Since R C > and R’ C >, we obtain R = R’ from
Theorem 2. It remains to show that > exists. Let O be a total precedence and define s > ¢
if and only if s <3} ¢ and either dg(s) > dg(t) or both dr(s) = dr(t) and s Jjpo t.2 Here
dgr (u) is the number of rewrite steps in R to normalize the term wu, which is well-defined since
all normalizing sequences in a reduced ground TRS have the same length as a consequence of
Lemma 3 and Theorem 3. It is easy to show that > has the required properties. The only
interesting cases are closure under contexts and substitutions. Both are basically handled
by the following observation: dg(C[to]) = dr(C[tlo]) + dr(t) for any term t (which holds
due to random descent together with termination). This allows us to lift dg(s) = dg(t) and
dr(s) > dr(t) into arbitrary contexts and substitutions. O

The above result cannot be generalized to left-linear right-ground systems, as shown in the
following example due to Dominik Klein (personal communication).

2In the formalization we actually use Ty, with all weights set to 1, since in contrast to LPO, for KBO
ground-totality for total precedences has already been formalized before.
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Example 2. Consider the ES £ consisting of the two equations f(x) ~ f(a) and f(b) = b. Let
> be a reduction order. If f(b) > b does not hold, no inference rule of KB is applicable to (€, D).
If f(b) > b then the second equation can be oriented

(€,2) F ({f(x) = f(a)}, {f(b) = b})

At this point trivial equations of the shape f™(b) = f™(b) with n > 0 can be deduced and
subsequently deleted. No other possibilities exist and hence completion will fail on €. Nevertheless,
the TRS R consisting of the rewrite rule f(x) — b constitutes a canonical presentation of £.
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