
A Formal Proof of Kruskal’s Tree Theorem
in Isabelle/HOL

Christian Sternagel?

JAIST, Japan
c-sterna@jaist.ac.jp

Abstract. We give the first formalization of Kruskal’s tree theorem
in a proof assistant – the closure of a long-standing challenge. More
concretely, we present our Isabelle/HOL development of Nash-Williams’
minimal bad sequence argument for proving the tree theorem. Along the
way, we discuss proofs of Dickson’s lemma and Higman’s lemma; and
close all gaps in the original proofs.

Keywords: Well-Quasi-Orders, Dickson’s Lemma, Minimal Bad Sequences,
Higman’s Lemma, Kruskal’s Tree Theorem

1 Introduction

Kruskal’s tree theorem [1] (sometimes called the tree theorem in the following) is
a famous result in combinatorics, more precisely well-quasi-order (wqo) theory.
Neglecting details, it states that:

When a set A is wqo’d, then so is the set of finite trees over A. (†)

In [2], Nash-Williams gave a short and elegant (according to several authors
citing his work) proof of the tree theorem, where he first established what is
now known as the minimal bad sequence argument : assume the existence of a
minimal “bad” infinite sequence of elements, construct an even smaller “bad”
infinite sequence, thus contradicting minimality and proving wqo’dness (since
the definition of wqo requires all infinite sequences of elements to be “good”).

Besides the minimal bad sequence argument, [2] contains proofs of Dickson’s
lemma [3] (if A and B are wqo’d, then so is the Cartesian product A×B) and a
variant of Higman’s lemma [4] (if A is wqo’d, then so is the set of finite subsets of
A), where the latter also incorporates an instance of the minimal bad sequence
argument. We will see later that some more facts are used implicitly.

We formalized Nash-Williams’ proofs in the proof assistant Isabelle [5].1

Mostly we agree with other authors that his argumentation is short (in fact,

? Supported by the Austrian Science Fund (FWF): J3202.
1 Available from http://isabelle.in.tum.de/website-Isabelle2013-RC2

(we recommend Isabelle/jEdit for browsing).

http://isabelle.in.tum.de/website-Isabelle2013-RC2

[2] consists of only two and a half pages in total) and elegant, which was also
the main reason why we chose his work for our formalization in the first place.
However, formalizations (using proof assistants) typically require us to be more
rigorous than with pen and paper. Thus, we had to close some gaps, which results
in a somewhat longer (about three and a half thousand lines of Isabelle/HOL
theories) and slightly less elegant proof. Fortunately the biggest of those gaps
could be localized (pun intended; see also [6]), thus not derogating the elegance
of the remaining proof.

We stress that everything we present in the following, was formalized using
the proof assistant Isabelle. Here, we give a high-level overview of our formal-
ization. The full development is part of the Archive of Formal Proofs [7].

Contributions. To the best of our knowledge, our work constitutes the first
unrestricted (though non-constructive) formalization of Higman’s lemma in Isa-
belle/HOL as well as the first formalization of Kruskal’s tree theorem ever.

We think that formalizations are valuable since they (have to) contain all
non-trivial (where the definition of “trivial” is directly related to the power of
the used proof assistant) steps of a proof. No doubt, more often than not, those
steps where already conducted in the minds of the original proof authors (but
then again, maybe not). The point is that when the original author writes down
his proof in a condensed form for publishing, some of the steps may get lost (be
it that they are considered trivial or that explaining them would be too much
trouble). If, much later, another person tries to understand the proof, there may
be some mental gaps (or in the worst case even errors). Thus, formalizations are
of archival and educational value – in addition to the more obvious fact that
they are highly trustworthy. On the other hand, formalizations are often hard
to read for non-experts (note that the Isar language for Isabelle was a huge
improvement in that respect). Thus we hope that this high-level overview makes
our formalization more accessible.

Differences to [2]. Our formalization of Nash-Williams’ arguments differs from
[2] in several details: As stated above, Nash-Williams proved a variant of Hig-
man’s lemma. The actual statement of Higman’s lemma is usually along the
lines: If A is wqo’d, then so is A∗, the set of finite words (or lists) over A; which
is also the version that we formalized. Why do both of these variants lead to the
tree theorem? In fact, it depends on the exact formulation of the tree theorem
whether they do. From (†), we just know that there exists some wqo on the set of
finite trees over A. Typically, we are interested in a specific order, namely home-
omorphic embedding. However, this is not what Nash-Williams used (neither for
his variant of Higman’s lemma, nor in his proof of the tree theorem).

In the following, whenever we refer to Higman’s lemma, we mean “If A is
wqo’d, then A∗ is wqo’d by homeomorphic embedding on lists,” and when we
refer to the tree theorem we mean “If A is wqo’d, then the set of finite trees over
A is wqo’d by homeomorphic embedding on trees.”

Overview. The remainder is structured as follows. In Section 2, we cover prelim-
inaries. Then, in Section 3, we review the structure of Nash-Williams’ original
proofs from [2]. The next four sections present our formalization of Dickson’s
lemma (featuring a proof of a variant of Dickson’s lemma for almost-full rela-
tions, i.e., not relying on transitivity), in Section 4; our general construction of
minimal bad sequences, in Section 5; our formalization of Higman’s lemma, in
Section 6; and ultimately, our formalization of Kruskal’s tree theorem, in Sec-
tion 7. Finally, we conclude in Section 8, where we also sketch applications,
discuss future work, and refer to related work.

2 Preliminaries

Throughout our exposition, we use standard mathematical notation as far as
possible. However, we also employ some Isabelle specific notation, since we used
Isabelle’s document preparation facilities for typesetting all lemmas and theo-
rems (in the words of [8]: no typos, no omissions, no sweat; alas, this does not
extend to the regular text). Thus, some explanation might be in order.

Isabelle/HOL, is a higher-order logic based on the simply-typed lambda cal-
culus. Thus, every term has a type, where we use Greek letters α, β, γ, . . . for
type variables, and type constructors like nat for natural numbers, α ⇒ β for
the function space, α × β for ordered pairs, α set for sets, and α list for finite
lists. Type constraints are written t ::τ and denote that term t is of type τ . As
usual for lambda calculi, function application is denoted by juxtaposition, i.e.,
f x applies the function f to the argument x. We use the type α ⇒ α ⇒ bool
to encode binary relations. (An alternative would have been to use (α × α) set,
however, the two representations are mostly equivalent and the former is used
for many binary relations of Isabelle/HOL’s standard library.)

We freely use the following constants from Isabelle/HOL’s standard library:
◦::(α⇒ β)⇒ (γ ⇒ α)⇒ γ ⇒ β, where f ◦ g denotes the functional composition

of the two functions f and g, i.e., f ◦ g
def
= λx . f (g x); fst ::α × β ⇒ α and

snd ::α × β ⇒ β extract the first and second component of a pair, respectively;
set ::α list ⇒ α set , where set xs is the set of elements occurring in the list xs;
[]::α list, the empty list; ·::α ⇒ α list ⇒ α list, where x ·xs denotes “consing” the
element x in front of the list xs; and @::α list ⇒ α list ⇒ α list, where xs @ ys
denotes the concatenation of the two lists xs and ys. Note that since · and @
are both right-associative and have the same priority, xs @ y ·ys is the same as
xs @ (y ·ys) and denotes a list that is constructed by inserting the element y
between the elements of xs and ys.

Moreover, we sometimes use Isabelle specific notation when stating formulas.
Then,

∧
is universal quantification, =⇒ is (right-associative) implication, and

nested implication, like A =⇒ B =⇒ C, is abbreviated to [[A; B]] =⇒ C.
Let � be a binary relation and A a set. We say that � is reflexive (on A),

written reflA(�), iff ∀ x∈A. x � x ; and transitive (on A), written transA(�), iff
∀ x∈A. ∀ y∈A. ∀ z∈A. x � y ∧ y � z −→ x � z .

Infinite sequences over elements of type α are represented by functions of type
nat ⇒ α. A binary relation � is transitive on a sequence f, written transf(�),

iff ∀ i j . i < j −→ f i � f j . A sequence f is good (w.r.t. �), written good�(f),
iff ∃ i j . i < j ∧ f i � f j. If a sequence is not good, it is called bad.

We follow Veldman [9] and Vytiniotis et al. [10] in basing wqos on almost-full
relations (which are basically wqos without transitivity). The main reason for
doing so, is that all the properties we are interested in also hold for almost-full
relations and are easily extended to wqos.

The relation � is almost-full (on A), written af A(�), iff all infinite sequences

over elements of A are good, i.e., af A(�)
def
= ∀ f . (∀ i . f i ∈ A) −→ good�(f). Note

that every almost-full relation is necessarily reflexive (see, e.g., [6, Lemma 1]).
Let � be almost-full on A. If in addition � is transitive on A, then � is a

wqo on A (equivalently, A is wqo’d by �), written wqoA(�).

3 Nash-Williams’ Proof

Before we give a detailed account of our formalization (in the sections to come),
let us review the structure of Nash-Williams’ original proofs. This allows us
to familiarize the reader with the overall structure, highlight differences to our
approach, and indicate gaps. Since we do not reproduce the full proofs, a copy
of [2] might be useful for reference.

Nash-Williams starts by giving a proof of Dickson’s lemma: If A and B are
wqo’d, then so is A×B [2, Lemma 1]. The proof is presented rather sketchy, which
makes it difficult to see what additional facts are actually required. In essence,
we have two infinite sequences a (over elements of A) and b (over elements of B)
that are both known to be good, and have to construct witnesses i and j such
that i < j and (a i , b i) � (a j , b j). It seems that the proof requires the axiom
of choice2 as well as transitivity of � (none of which is mentioned explicitly). In
contrast, in our formalization we prove Dickson’s lemma for almost-full relations
based on an existing formalization of Ramsey’s theorem (whose proof employs
the axiom of dependent choice) and do not require transitivity of �.

Next comes a proof of Higman’s lemma: If A is wqo’d, then A∗ is wqo’d by
homeomorphic embedding on lists [2, Lemma 2]. Assume that the statement is
false. Then construct a minimal bad sequence, i.e., a bad sequence such that
replacing any given element by a smaller one, the resulting sequence would be
good. The first gap is: we are to construct a minimal bad sequence, but

it is not shown how to construct a minimal bad sequence (G1)

or proved that such a sequence even exists. More specifically, the only thing
Nash-Williams has to say about the construction of a minimal bad sequence is
roughly (where we use Ao to denote the set of “objects” built over elements of
A; which might refer to the set of finite subsets, the set of finite lists, the set of
finite trees, . . . in a concrete case):

2 In Isabelle: ∀ x . ∃ y . Q x y =⇒ ∃ f . ∀ x . Q x (f x).

Select an x1 ∈ Ao such that x1 is the first term of a bad sequence of
members of Ao and |x1| is as small as possible. Then select an x2 such
that x1, x2 (in that order) are the first two terms of a bad sequence of
members of Ao and |x2| is as small as possible [. . .]. Assuming the axiom
of choice, this process yields a [minimal] bad sequence [. . .]

This is not enough, since it is neither shown that the sketched process is well-
defined, nor that it would indeed result in a minimal bad sequence. Interestingly,
most non-formalized proofs of Higman’s lemma and Kruskal’s tree theorem in
the literature (that the author is aware of) are similarly vague about the actual
construction of a minimal bad sequence.

In our formalization, we found the construction of a minimal bad sequence
(and the accompanying proof that the constructed sequence is indeed minimal
and bad) to be the hardest and most technical part. For now, assume that we
have a minimal bad sequence m (which is a sequence of finite lists). Let h be the
sequence of heads of m and t the sequence of corresponding tails. It is then shown
that there is no sequence of some special shape over T =

⋃
i{t i} (otherwise m

would be good). Furthermore, it is claimed (without proof) that

a bad sequence over T indicates a sequence of this special shape (G2)

which we consider the second gap. Thus T is wqo’d, since there are no bad se-
quences. Let H =

⋃
i{h i}, which is wqo’d since A is. Then, by Dickson’s lemma,

H×T is wqo’d. Hence, there are i and j such that i < j and (h i , t i) � (h j , t j),
which implies m i � m j and thus contradicts the badness of m.

Finally, for the tree theorem the proof structure is very similar to the previous
one (only using finite trees instead of finite lists and homeomorphic embedding on
trees instead of homeomorphic embedding on lists). Assume that the statement
is false. Again we have to construct a minimal bad sequence m (and thus we
again have the same gap as for Higman’s lemma). Instead of heads and tails of
lists, we have roots and direct subtrees (which we also call successors) of trees.
Let r and s denote the sequences of roots and successors of m. Let S ′ be the
set of successors occurring in s, i.e., S ′ = {t | ∃ i . t ∈ set (s i)}. This time it is
claimed (again without proof) that

a bad sequence over S ′ indicates a sequence of a special shape (G3)

(another special shape than above). This we consider the third gap.

4 Dickson’s Lemma

Essentially, our formalization is about preservation of wqo’dness by certain
set/type constructors (Dickson’s lemma for pairs, Higman’s lemma for lists, and
the tree theorem for trees). For each of these set/type constructors, we need a
construction that extends the order(s) on the base set/type(s) to an order on
the newly constructed set/type. For Dickson’s lemma we use the following con-
struction: Given two orders �1 and �2, the pointwise order on pairs is defined

by (a1, a2) � (b1, b2)
def
= a1 �1 b1 ∧ a2 �2 b2.

The following lemma shows that the pointwise combination of orders pre-
serves wqo’dness, when forming the Cartesian product of two sets.

Lemma 1. [[af A1
(�1); af A2

(�2)]] =⇒ af A1 ×A2
(�)

Before we consider the proof of Lemma 1, let us have a look at how Ramsey’s
theorem allows us to disregard transitivity (and hence prove the lemma already
for almost-full relations rather than wqos).

We use the following variant of Ramsey’s theorem (which was formalized as
part of Isabelle/HOL’s library; ~~/src/HOL/Library/Ramsey.thy):

[[infinite Z ; ∀ i∈Z . ∀ j∈Z . i 6= j −→ h {i , j} < n]]
=⇒ ∃ I c. I ⊆ Z ∧ infinite I ∧ c < n ∧ (∀ i∈I . ∀ j∈I . i 6= j −→ h {i , j} = c)

In words: Let Z be an infinite set and let h be a function that, given a two-
element subset of Z, returns a natural number smaller than n. Then there is an
infinite subset I of Z and a natural number c smaller than n such that h encodes
all two-element subsets of I by c. More abstractly, assume we have an infinite
graph with nodes from Z such that every edge has exactly one of n colors. Then
there is an infinite subgraph with nodes from I and edges of color c.

Using Ramsey’s theorem, we prove the auxiliary fact that whenever the union
of two binary relations is transitive on an infinite sequence, then there is an
infinite subsequence on which either the first or the second relation is transitive.

Lemma 2. transf(�1 ∪ �2) =⇒ ∃ϕ. transϕ(<) ∧ (transf ϕ(�1) ∨ transf ϕ(�2))

Here ϕ is a strictly monotone (since < is transitive on it) mapping from natural
numbers to natural numbers. Hence, f ◦ ϕ (which we write f ϕ, for brevity) is a
subsequence of f whose elements are in the same relative order.

Proof (of Lemma 2). Assume transf(�1 ∪ �2), which means that

for all i < j, either f i �1 f j or f i �2 f j. (?)

We colorize the set of two-element subsets {i , j} of the natural numbers using
h, defined by, if i < j and f i �1 f j, then h {i , j} is 0 (white), otherwise
1 (black). Now we can apply Ramsey’s theorem from above (since the set of
natural numbers is infinite and there are exactly two colors). Thus, we obtain
an infinite set I of natural numbers and a color c such that for all i 6= j in
I, the corresponding color h {i , j} is c. Since I is countably infinite, there is
some function ϕ::nat ⇒ nat that enumerates its elements in increasing order,
i.e., transϕ(<). We consider two cases (for arbitrary but fixed i < j):

– case (c is white). Since ϕ is strictly monotone, we have ϕ i < ϕ j. Therefore
h {ϕ i , ϕ j} = 0, and thus f ϕ i �1 f ϕ j.

– case (c is black). Again, we have ϕ i < ϕ j. Thus h {ϕ i , ϕ j} = 1 which,
together with (?), implies f ϕ i �2 f ϕ j. ut

Proof (of Lemma 1). Assume af A1
(�1) and af A2

(�2). Moreover, to derive a
contradiction, assume ¬ af A1 ×A2

(�). Then there is some sequence f on A1×A2

which is bad. Let x � y and x � y denote fst x 6�1 fst y and snd x 6�2 snd y ,
respectively. Since f is bad, we have ∀ i j . i < j −→ f i � f j ∨ f i � f j, i.e.,
transf(� ∪ �). Then, by Lemma 2, we obtain a strictly monotone mapping ϕ

such that transf ϕ(�) or transf ϕ(�). In the first case fst ◦ f ϕ is bad and in the

second snd ◦ f ϕ is bad, both contradicting our assumptions. ut

Dickson’s Lemma. [[wqoA1
(�1); wqoA2

(�2)]] =⇒ wqoA1 ×A2
(�)

Proof. Assuming transitivity of �1 on A1 and �2 on A2, it is trivial to show
transitivity of � on A1 ×A2. With Lemma 1, we obtain Dickson’s lemma. ut

5 Minimal Bad Sequences

Since the minimal bad sequence argument is needed for Higman’s lemma as well
as the tree theorem, we aim for a general construction that is applicable to both
cases. To this end, we employ Isabelle/HOL’s locale mechanism which allows
us to define new constants and prove facts using an “interface” of hypothetical
constants and assumptions. As long as the assumptions can be discharged, the
new constants and proven facts can be instantiated to arbitrary special cases.

Below, we describe the locale mbs which captures the construction of a min-
imal bad sequence over elements from a given set (which we call objects). Such
objects are built from elements of some other set (e.g., the elements of a list, or
the nodes of a tree). The locale fixes the following constants:

– A function o, where Ao returns the set of all objects over elements of A,
– a relation �A that is used to check whether an infinite sequence of objects

is good (where A restricts the set of objects that may be compared),
– and a relation � that is used to compare the structural size of two objects.

Furthermore, it has the assumptions:

wf
Ao(�) (M1)

[[x � y ; y � z]] =⇒ x � z (M2)

[[x � y ; y ∈ Ao]] =⇒ x ∈ Ao (M3)

[[z ∈ Ao; x �A y ; y � z]] =⇒ x �A z (M4)

That is, the structural comparison is well-founded on objects from Ao (M1)
(thus, it makes sense to talk about a minimal object), transitive (M2), and
preserves the property of being in Ao (M3). Moreover, it is (right-)compatible
with �A (M4). It turns out that these ingredients are enough to construct –
under the assumption that there is a bad sequence – a minimal bad sequence.
Well, to be precise, we first need to say explicitly what we mean by a minimal
bad sequence. Informally, we mean of course that replacing any single object by

some smaller one, the result will no longer be bad. More formally, we say that
an infinite sequence f is minimal at a position n, written minA

n (f), iff

∀ g . (∀ i<n. g i = f i) ∧ g n � f n ∧ (∀ i≥n. ∃ j≥n. g i � f j) −→ good�A
(g)

In words: for every sequence g such that its initial part up to (but not including)
position n coincides with f, the n-th object of g is strictly smaller than the n-th
object of f, and every object of g after position n is smaller than or equal to some
object of f at a later or equal position; g is good. This definition facilitates the
construction of an overall minimal bad sequence from some given bad sequence
by iterating over its positions: objects before the current position will never
change, at the current position we insert the smallest possible object, and objects
at later positions are required to be built from elements that have already been
present in f (we will point out the place in our proofs where we require the last
assumption, since it may not seem very natural).

As indicated above, we want to modify a given sequence iteratively. We will
do so by splicing it with another sequence at a certain position. The way we
splice two sequences at a position n is as follows: given the sequences f and g,

we have f〈n〉g def
= λj . if n ≤ j then g j else f j. Thus, all objects before position n

are taken from f and all others from corresponding positions of g. This operation
can be used to splice two bad sequences into a new one by the following lemma
(which is the origin of the third assumption in the definition of min).

Lemma 3. [[∀ i . f i ∈ Ao; bad�A
(f); bad�A

(g); ∀ i≥n. ∃ j≥n. g i � f j]] =⇒
bad�A

(f〈n〉g)

Proof. Assume that f i ∈ Ao for all i, f and g are bad, and ∀ i≥n. ∃ j≥n. g i � f j.
Moreover, for the sake of a contradiction, assume that f〈n〉g is good. Thus, there
are i < j such that (f〈n〉g) i �A (f〈n〉g) j. We analyze three cases:

– case (j < n). Hence f i �A f j, contradicting the badness of f.
– case (n ≤ i). Hence g i �A g j, contradicting the badness of g.
– case (i < n and n ≤ j). Then there is some k ≥ n such that g j � f k.

Moreover, f i �A g j . By compatibility, we obtain f i �A f k (since f k ∈ Ao),
contradicting the badness of f. ut

For our iterative construction of a minimal bad sequence, we employ the following
auxiliary lemma (which shows that from a sequence that is minimal at position
n, we may obtain a sequence that is also minimal at the next position n+1):

Lemma 4. [[∀ i . f i ∈ Ao; minA
n (f); bad�A

(f)]]
=⇒ ∃ g . (∀ i≤n. g i = f i) ∧

g (n+1) � f (n+1) ∧
(∀ i≥n+1. ∃ j≥n+1. g i � f j) ∧
bad�A

(f〈n+1〉g) ∧ minA
n+1(f〈n+1〉g)

Proof. Since � is well-founded on Ao, we have the induction schema

[[x ∈ Ao;
∧

x . [[x ∈ Ao;
∧

y . [[y ∈ Ao; y � x]] =⇒ P y]] =⇒ P x]] =⇒ P x

Assume f (n+1) ∈ Ao, minA
n (f), and bad�A

(f). Let ∃ g . C g f (f (n+1)) abbre-
viate the conclusion of Lemma 4 (parametrized over the sequences g and f and
the element on which we apply induction). In order for the (later) induction to
go through, we prove a slightly stronger statement than Lemma 4. To this end,
let I x abbreviate

∀ f . x = f (n+1) ∧ (∀ i . f i ∈ Ao) ∧ minA
n (f) ∧ bad�A

(f) −→ (∃ g . C g f x)

(i.e., we generalize over f and let x – on which we will apply well-founded in-
duction – equal the n+1-th element of f).

For an arbitrary but fixed x, let x = f (n+1). Hence, from the assumption
∀ i . f i ∈ Ao we have that x ∈ Ao. Now we use the above induction schema to
prove (discharging its first assumption by x ∈ Ao):

∧
x . x = f (n+1) =⇒ I x.

Thus, we have x ∈ Ao for some arbitrary but fixed x, as well as the induction
hypothesis (IH)

∧
y . [[y ∈ Ao; y � x]] =⇒ I y. Then we prove I x.

Therefore, we assume x = f (n+1), ∀ i . f i ∈ Ao, minA
n (f), and bad�A

(f)

for some arbitrary but fixed f. Now either we have minA
n+1(f) (and are done) or

not. In the latter case we obtain a sequence h such that

h (n+1) � f (n+1) (1)

∀ i≥n+1. ∃ j≥n+1. h i � f j (2)

bad�A
(h) (3)

employing the definition of min.
Let g abbreviate f〈n+1〉h. From (1), we have g (n+1) ∈ Ao and g (n+1) � x

(by basic properties of � and 〈 〉). Thus, by IH, we have I (g (n+1)).
Moreover, we have ∀ i . g i ∈ Ao (by (2) and some basic reasoning), minA

n (g)
(from minA

n (f) with (2) and some further reasoning) as well as bad�P
(g) by

bad�A
(f) and (3) with Lemma 3. Thus, by specializing I (g (n+1)) to g, we

obtain a sequence m such that C m g (g (n+1)). Additionally, from (1) and
transitivity of � we have m (n+1) � x ; and with (2) and C m g (g (n+1)) we
have ∀ i≥n+1. ∃ j≥n+1. m i � f j. Combining the previous facts, we finally have
∃m. C m f x, thus finishing our prove of

∧
x . x = f (n+1) =⇒ I x. Choosing

x = f (n+1) and using our initial assumptions we have ∃ g . C g f (f (n+1)). ut

For a step-wise construction of a minimal bad sequence we still need to
show that from an arbitrary bad sequence we can obtain one that is minimal at
position 0. This is taken care of by the next lemma.

Lemma 5. [[f 0 ∈ Ao; bad�A
(f)]]

=⇒ ∃ g . (∀ i . ∃ j . g i � f j) ∧ minA
0 (g) ∧ bad�A

(g)

Proof. Similar structure to the proof of Lemma 4 (but much simpler). ut

At this point we are ready to prove that if a relation is not almost-full, then
there is a minimal bad sequence, thereby taking care of gap (G1).

Theorem 1. ¬ af Ao(�A) =⇒
∃m. bad�A

(m) ∧ (∀n. minA
n (m)) ∧ (∀ i . m i ∈ Ao)

Proof. Assume ¬ af Ao(�A). Then there is a bad sequence f, i.e., ∀ i . f i ∈ Ao

and bad�A
(f). With Lemma 4, together with the axiom of choice, we obtain a

choice function ν such that

∀ f n.
(∀ i . f i ∈ Ao) ∧ minA

n (f) ∧ bad�A
(f) −→

(∀ i≤n. ν f n i = f i) ∧
ν f n (n+1) � f (n+1) ∧
(∀ i≥n+1. ∃ j≥n+1. ν f n i � f j) ∧
bad�A

(f〈n+1〉(ν f n)) ∧ minA
n+1(f〈n+1〉(ν f n))

That is, ν f n provides a witness to Lemma 4, provided that f and n sat-
isfy its assumptions. Moreover, by Lemma 5, we obtain a sequence g such that
∀ i . ∃ j . g i � f j as well as minA

0 (g) and bad�A
(g).

Then we define an auxiliary sequence (of sequences) m ′ by m ′ 0 = g and
m ′ (n+1) = (m ′ n)〈n+1〉(ν (m ′ n) n). We define the desired minimal bad se-
quence m, to be λi . m ′ i i (i.e., the “diagonal” of the auxiliary sequence m ′).
Of course, we have to prove that m actually is a minimal bad sequence. To this
end, we simultaneously prove the following statements by induction on n:

∀ i . m ′ n i ∈ Ao

∀ i≤n. minA
i (m ′ n)

∀ i≤n. m i = m ′ n i

bad�A
(m ′ n)

n = 0 −→ (∀ i≥n. ∃ j≥n. m ′ n i � g j)

0 < n −→ (∀ i≥n. ∃ j≥n. m ′ n i � m ′ (n − 1) j)

This is the most tedious part of our prove (which we spare the casual reader; all
details are available from [7], lemma mbs in theory Almost-Full-Relations). Just
note that the above statements are strengthened in order to make the induction
go through. Afterwards, we are able to obtain bad�A

(m), ∀n. minA
n (m), and

∀ i . m i ∈ Ao, concluding the proof. ut

6 Higman’s Lemma

Before we can formally state Higman’s lemma for almost-full relations, we need
to give a construction that extends a given order on elements to an order on
lists: homeomorphic embedding. Furthermore, we need a kind of structural com-
parison between lists as well as the set of lists built over a given set of elements.
The set of lists over elements from a set A, written A∗, is defined inductively:

[] ∈ A∗
x ∈ A xs ∈ A∗

x ·xs ∈ A∗

A list xs is a proper suffix of the list ys iff ∃ us. ys = us @ xs ∧ us 6= [] (we
write xs < ys). Homeomorphic embedding on lists, for a given base order �, is

defined inductively by the rules:

[] �∗ ys

xs �∗ ys

xs �∗ y ·ys

x �= y xs �∗ ys

x ·xs �∗ y ·ys

Note that this definition makes �∗ reflexive for arbitrary �. For reflexive (and
thus also for almost-full) �, we can replace �= by �. Intuitively, it might be
easier to think about homeomorphic embedding on lists as follows: a list xs
is embedded in a list ys iff we can obtain xs from ys by dropping elements
and replacing elements with arbitrary smaller ones (w.r.t. the base order). An
important special case of embedding is =∗, which we call the sublist relation. In
that case we have xs =∗ ys iff we can obtain xs from ys by dropping elements.

Using the definitions above, we can instantiate the mbs locale as follows (for
some arbitrary relation �): use ∗ for o, (λA xs ys. xs �∗ ys) for � (for this
instance we just discard the parameter A, since we do not need it), and < for
�. The assumptions of the mbs locale are discharged by the following facts (see
[7] for the corresponding proofs):

wf A∗(<) [[xs < ys; ys ∈ A∗]] =⇒ xs ∈ A∗

[[xs < ys; ys < zs]] =⇒ xs < zs [[xs �∗ ys; ys < zs]] =⇒ xs �∗ zs

Thus, we have

¬ af A∗(�∗) =⇒ ∃m. bad�∗(m) ∧ (∀n. minA
n (m)) ∧ (∀ i . m i ∈ A∗)

At this point, we can state Higman’s lemma for almost-full relations.

Lemma 6. af A(�) =⇒ af A∗(�∗)

Proof. We assume af A(�) but ¬ af A∗(�∗), for the sake of a contradiction. Then
there is a bad sequence f. This, in turn, implies the existence of a minimal bad
sequence m. All lists in m are non-empty (since otherwise m would be good).
Hence, there are sequences h and t of heads and tails of m (i.e., m i = h i ·t i).

First we show that there is no index mapping ϕ such that ϕ 0 ≤ ϕ i
for all i and the sequence tϕ is bad. Assume, to the contrary, that such a
ϕ exists. Let n abbreviate ϕ 0 and c be the combination of m with t, de-

fined by c i
def
= if i < n then m i else t (ϕ (i − n)) (i.e., c is the same as tϕ, but

prepended by the first n elements of m). Then c is bad, since otherwise we ob-
tain a contradiction as follows. Assume c is good. Then we obtain i < j such
that c i �∗ c j . Now we analyze the following cases:

– case (j < n). Then m i �∗ m j, contradicting badness of m.
– case (n ≤ i). Let i ′= i − n and j ′= j − n. Then i ′< j ′ and tϕ i ′ �∗ tϕ j ′,

contradicting badness of tϕ.
– case (i < n and n ≤ j). Let j ′ = j − n. We have t (ϕ j ′) ≤ m (ϕ j ′) (since

the tail of a non-empty list is obviously also a suffix) and m i �∗ t (ϕ j ′)
(from c i �∗ c j). Then m i �∗ m (ϕ j ′) (since the suffix relation is a special
case of embedding and embedding is transitive). Since we also have i < ϕ j ′,
this contradicts the badness of m.

Thus, c is bad. Furthermore, we have ∀ i<n. c i = m i, c n < m n, and
∀ i≥n. ∃ j≥n. c i ≤ m j , and thus c is good (since m is minimal): A contra-
diction, concluding the proof of

@ϕ. (∀ i . ϕ 0 ≤ ϕ i) ∧ bad�∗(tϕ). (?)

Let H and T denote the sets of heads and tails in m, respectively (i.e., H =⋃
i{h i} and T =

⋃
i{t i}). We obviously have that � is almost-full on H (since

H ⊆ A and � is almost-full on A). Moreover, since every bad sequence over T
would admit a subsequence of the shape in (?), we obtain that �∗ is almost-full
on T. With Lemma 1, we have that the pointwise combination of � and �∗ is
almost-full on H × T . Thus, there are i < j with h i �= h j and t i �∗ t j. By
the definition of �∗, this implies m i �∗ m j, contradicting the badness of m. ut

But wait a moment, “since every bad sequence over T . . . ” above, is exactly
gap (G2). To close it, we prove the claim by the lemma:

Lemma 7. [[refl⋃
i{t i}(�); ∀ i . f i ∈

⋃
i{t i}; bad�(f)]]

=⇒ ∃ϕ. (∀ i . ϕ 0 ≤ ϕ i) ∧ bad�(tϕ)

Proof. Assume that � is reflexive (on
⋃

i{t i}), and f is a bad sequence (over⋃
i{t i}). First note that for every i, there exists a j such that f i = t j. By the

axiom of choice, we obtain an index mapping ϕ ′ with f i = tϕ ′ i for all i. Since

f is bad, also tϕ ′ is bad. Next we prove that

for every i there is a j > i such that ϕ ′ 0 ≤ ϕ ′ j. (?)

Assume otherwise, then there is some i such that for all j > i we have ϕ j < ϕ ′ 0 .
Thus, the image of ϕ ′ under {j | i < j} is finite, whereas {j | i < j} itself is
infinite. By the pigeonhole principle, we obtain a k > i such that there are in-
finitely many j > i with ϕ ′ j = ϕ ′ k. But then, there is some l > k for which
ϕ ′ l = ϕ ′ k . Since � is reflexive and k < l, this implies that tϕ ′ is good; a con-

tradiction. Using (?) and the axiom of choice, we obtain an index mapping ψ ′

such that i < ψ ′ i and ϕ ′ 0 ≤ ϕ ′ (ψ ′ i) for all i. Now, let ψ abbreviate λi . ψ ′i 0
(the i -fold application of ψ ′ to 0) and ϕ abbreviate ϕ ′ ◦ ψ. Then we have that
ψ is strictly monotone and ϕ 0 ≤ ϕ i for all i. Moreover, since tϕ ′ is bad and ψ

is monotone, we also have that tϕ is bad. This concludes the proof. ut

Higman’s Lemma. wqoA(�) =⇒ wqoA∗(�∗)

Proof. We refer to lemma list-hembeq-trans in theory Sublist, for transitivity of
�∗ (under the assumption that � is transitive). Together with Lemma 6, we
obtain Higman’s lemma. ut

7 The Tree Theorem

The tree theorem is for finite trees, what Higman’s lemma is for finite lists.
However, whereas for finite lists, their representation inside Isabelle/HOL is

quite unambiguous and the existing datatype is generally applicable; this is not
so much the case for finite trees. Consider the following two datatypes

datatype α t = Node α (α t list)

datatype α t ′ = Empty | Node α (α t ′ list)

or the type of first-order terms

datatype (α, β) term = Var β | Fun α ((α, β) term list)

also a kind of finite tree (and more importantly, one of the types to which we
intend to apply the tree theorem, in order to formalize the fact that the Knuth-
Bendix order is a simplification order [11]). Restricting our results to a specific
datatype would strongly restrict their applicability. Therefore, we again employ
Isabelle/HOL’s locale mechanism. This time, for a locale finite-tree that fixes
the following constants:

– A function mk ::β ⇒ α list ⇒ α that is used to construct a finite tree from
a given node and a given list of finite trees.

– A function root ::α ⇒ β that extracts the root node from a given tree.
– As well as a function succs::α⇒ α list that extracts the list of direct subtrees

(successors) from a given tree.

These constants are required to satisfy the following assumptions (thereby turn-
ing mk into kind of a datatype constructor with extractors root and succs):

root (mk f ts) = f (F1)

succs (mk f ts) = ts (F2)

(mk f ss = mk g ts) = (f = g ∧ ss = ts) (F3)

As opposed to a real datatype, the above assumptions do not guarantee that
all finite trees are built from a finite number of applications of mk. Thus, we
define the set of finite trees over nodes from A, written T (A), inductively by:

f ∈ A ∀ t∈set ts. t ∈ T (A)

mk f ts ∈ T (A)

The notion of structural decrease, as needed to instantiate the mbs locale, is
provided by the subtree relation:

t ∈ set ts

t � mk f ts

s � t t ∈ set ts

s � mk f ts

Where a tree s is a proper subtree of another tree t, if it is either a direct subtree
of t itself or a proper subtree of one of the direct subtrees of t.

Homeomorphic embedding on finite trees is also defined inductively by:

t ∈ set ts

t �emb mk f ts

s �emb t t �emb u

s �emb u

s �emb t

mk f (ss1 @ s·ss2) �emb mk f (ss1 @ t ·ss2)

f �= g ss =∗ ts

mk f ss �emb mk g ts

The first three rules are easy: homeomorphic embedding extends the subtree
relation, is transitive, and is closed under contexts. The last rule states that
we may replace the nodes of a tree by smaller ones (w.r.t. �) as well as drop
arbitrary successors. From this definition, we can prove the following property:

Lemma 8. [[f �= g ; ss �emb
∗ ts]] =⇒ mk f ss �emb mk g ts

Proof. This property seems obvious, as �emb is reflexive, transitive, and closed
under contexts. However, it turns out to be surprisingly tedious to formalize (or
at least we did not find an elegant way). We spare the reader some tedium and
refer to lemma tree-hembeq-list-hembeq in theory Finite-Tree for details. ut

To instantiate the mbs locale, we proved the following facts (see [7] for proofs):

wf T (A)(�) [[s � t ; t ∈ T (A)]] =⇒ s ∈ T (A)

[[s � t ; t � u]] =⇒ s � u [[s �emb t ; t � u]] =⇒ s �emb u

Thus, we have

¬ af T (A)(�emb) =⇒ ∃m. bad�emb
(m) ∧ (∀n. minA

n (m)) ∧ (∀ i . m i ∈ T (A))

Finally, we can state and prove the tree theorem for almost-full relations.

Theorem 2. af A(�) =⇒ af T (A)(�emb)

Proof. We assume af A(�) but ¬ af T (A)(�emb) for the sake of a contradiction.

Then there is a bad sequence and thus a minimal bad sequence m. All trees in
m are in the set T (A) (and thus non-empty). Hence, there are sequences r and
s of roots and successor lists of m (i.e., m i = mk (r i) (s i)).

First we show that there is no sequence of trees t and index mapping ϕ such
that t i ∈ set (sϕ i) (i.e., the sequence t selects an arbitrary successor of mϕ i as
its i -th element) and ϕ 0 ≤ ϕ i for all i, and t is bad. Assume, to the contrary,
that such t and ϕ exist. Let n abbreviate ϕ 0 and c be the sequence defined by

c i
def
= if i < n then m i else t (i − n). Then c is bad, since assuming that it was

good results in a contradiction by a similar case analysis as we conducted in the
proof of Lemma 6 above. Furthermore, we have ∀ i<n. c i = m i, c n � m n,
and ∀ i≥n. ∃ j≥n. c i � m j, and thus c is good (since m is minimal). This
contradiction concludes the proof of

@ t ϕ. (∀ i . t i ∈ set (sϕ i) ∧ ϕ 0 ≤ ϕ i) ∧ bad�emb
(t). (?)

Let R and S denote the sets of roots and successor lists in m (i.e., R =⋃
i{r i} and S =

⋃
i{s i}). Clearly, � is almost-full on R (since R ⊆ A). Let

S ′ abbreviate {t | ∃ i . t ∈ set (s i)}. Every bad sequence over S ′ would admit
a sequence of the shape in (?), thus �emb is almost-full on S ′. From Lemma 6,

together with S ⊆ S ′∗, we have that �emb
∗ is almost-full on S. With Lemma 1,

we have that the pointwise combination of � and �emb
∗ is almost-full on R×S.

Thus, there are i < j such that r i �= r j and s i �emb
∗ s j, which, employing

Lemma 8, implies that m i �emb m j and thus contradicts the badness of m. ut

Note that “Every bad sequence over S ′ . . . ” above, corresponds to gap (G3).
To close it, we prove the lemma:

Lemma 9. Let � be a binary relation and X be the set {t | ∃ i . t ∈ set (s i)}
for a sequence of lists s. Then we have

[[reflX(�); ∀ i . f i ∈ X ; bad�(f)]]
=⇒ ∃ t ϕ. (∀ i . t i ∈ set (sϕ i) ∧ ϕ 0 ≤ ϕ i) ∧ bad�(t)

Proof. The proof is structured similar to the proof of Lemma 7 but slightly more
involved, due to the extra indirection via list elements. For details, we refer to
lemma bad-of-special-shape ′ in theory Kruskal-Auxiliaries of [7]. ut

Kruskal’s Tree Theorem. wqoA(�) =⇒ wqoT (A)(�emb)

Proof. Theorem 2 and transitivity of �emb yield the tree theorem. ut

8 Conclusion

We presented our Isabelle/HOL formalization of three important results from
combinatorics: Dickson’s lemma, Higman’s lemma, and Kruskal’s tree theorem.

Parts of our formalization were used by Wu et al. [12] to formalize a proof of:
For every language A, the languages of sub- and superstrings of A are regular.
(Details are presented in a submitted journal version of [13].)

Moreover, in [11], we employ the tree theorem for a proof that the Knuth-
Bendix order is a simplification order. To this end, we actually need a variant of
the tree theorem as presented here – which we call the term theorem. The reason
is that in the above mentioned proof it is essential to consider arities of function
symbols, whereas in Section 7, we allow a node in a tree to have an arbitrary
(finite) number of successors. The term theorem is the reason for having the
additional parameter A in �A in Section 5 (which is neither used in Higman’s
lemma nor in the tree theorem), since in the presence of a signature we have to
make sure that the terms we compare are well-formed w.r.t. this signature.

As future work, we will investigate whether the tedious induction in the proof
of Theorem 1 can be replaced by an invocation of Zorn’s lemma (and this in turn,
by an application of open induction [14,15], thereby hopefully giving also insight
in the computational content of the minimal bad sequence argument).

There are formalizations of Higman’s lemma in Isabelle/HOL [16] and other
proof assistants [17,18,19,20,21]. Those usually strive for constructive proofs,
whereas our approach is purely classical. An intuitionistic proof of Kruskal’s
tree theorem is presented in [9]. However, to the best of our knowledge our work
constitutes the first formalization of the tree theorem in a proof assistant ever.

Acknowledgments. We thank Mizuhito Ogawa (小川先生) for helpful discus-
sions on everything related to the tree theorem, as well as enabling (together
with the Austrian Science Fund) our stay in Japan.

References

1. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
95(2) (1960) 210–225 doi:10.2307/1993287.

2. Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. Proc. Cambridge
Philos. Soc. 59(4) (1963) 833–835 doi:10.1017/S0305004100003844.

3. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers withn
distinct prime factors. Amer.J.Math. 35(4) (1913) 413–422 doi:10.2307/2370405.

4. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. s3-2(1) (1952) 326–336 doi:10.1112/plms/s3-2.1.326.

5. Nipkow, T., et al.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic.
Volume 2283 of LNCS. (2002) doi:10.1007/3-540-45949-9.

6. Sternagel, C.: A locale for minimal bad sequences. In: IUW’12. arXiv:1208.1366.
7. Sternagel, C.: Well-Quasi-Orders. In Klein, G., et al., eds.: AFP. (2012) http:

//afp.sf.net/devel-entries/Well_Quasi_Orders.shtml.
8. Haftmann, F., et al.: LATEX sugar for Isabelle documents (2012) http://isabelle.

in.tum.de/dist/Isabelle2012/doc/sugar.pdf.
9. Veldman, W.: An intuitionistic proof of Kruskal’s theorem. Arch. Math. Logic

43(2) (2004) 215–264 doi:10.1007/s00153-003-0207-x.
10. Vytiniotis, D., et al.: Stop when you are almost-full - adventures in constructive

termination. In Beringer, L., et al., eds.: ITP’12. Volume 7406 of LNCS. 250–265
doi:10.1007/978-3-642-32347-8_17.

11. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix
completion. In: RTA’13. submitted.

12. Wu, C., et al.: The Myhill-Nerode theorem based on regular expressions. In Klein,
G., et al., eds.: AFP. (2011) http://afp.sf.net/entries/Myhill-Nerode.shtml.

13. Wu, C., et al.: A formalisation of the Myhill-Nerode theorem based on regular
expressions (proof pearl). In van Eekelen, M., et al., eds.: ITP’11. Volume 6898 of
LNCS. 341–356 doi:10.1007/978-3-642-22863-6_25.

14. Raoult, J.C.: Proving open properties by induction. Inform. Process. Lett. 29(1)
(1988) 19–23 doi:10.1016/0020-0190(88)90126-3.

15. Ogawa, M., Sternagel, C.: Open Induction. In Klein, G., et al., eds.: AFP. (2012)
http://afp.sf.net/devel-entries/Open_Induction.shtml.

16. Berghofer, S.: A constructive proof of Higman’s lemma in Isabelle. In Be-
rardi, S., et al., eds.: TYPES’03. Volume 3085 of LNCS. 66–82 doi:10.1007/

978-3-540-24849-1_5.
17. Murthy, C.R.: Extracting Constructive Content from Classical Proofs. PhD thesis,

Cornell University (1990) http://hdl.handle.net/1813/6991.
18. Fridlender, D.: Higman’s lemma in type theory. In Giménez, E., et al., eds.:

TYPES’96. Volume 1512 of LNCS. 112–133 doi:10.1007/BFb0097789.
19. Herbelin, H.: A program from an A-translated impredicative proof of Higman’s

lemma (1994) http://coq.inria.fr/pylons/contribs/view/HigmanNW/v8.3.
20. Seisenberger, M.: On the Constructive Content of Proofs. PhD thesis, LMU Munich

(2003) http://nbn-resolving.de/urn:nbn:de:bvb:19-16190.
21. Mart́ın-Mateos, F.J., et al.: A formal proof of Higman’s lemma in ACL2. J. Autom.

Reason. 47(3) (2011) 229–250 doi:10.1007/s10817-010-9178-x.

http://dx.doi.org/10.2307/1993287
http://dx.doi.org/10.1017/S0305004100003844
http://dx.doi.org/10.2307/2370405
http://dx.doi.org/10.1112/plms/s3-2.1.326
http://dx.doi.org/10.1007/3-540-45949-9
http://arxiv.org/abs/1208.1366
http://afp.sf.net/devel-entries/Well_Quasi_Orders.shtml
http://afp.sf.net/devel-entries/Well_Quasi_Orders.shtml
http://isabelle.in.tum.de/dist/Isabelle2012/doc/sugar.pdf
http://isabelle.in.tum.de/dist/Isabelle2012/doc/sugar.pdf
http://dx.doi.org/10.1007/s00153-003-0207-x
http://dx.doi.org/10.1007/978-3-642-32347-8_17
http://afp.sf.net/entries/Myhill-Nerode.shtml
http://dx.doi.org/10.1007/978-3-642-22863-6_25
http://dx.doi.org/10.1016/0020-0190(88)90126-3
http://afp.sf.net/devel-entries/Open_Induction.shtml
http://dx.doi.org/10.1007/978-3-540-24849-1_5
http://dx.doi.org/10.1007/978-3-540-24849-1_5
http://hdl.handle.net/1813/6991
http://dx.doi.org/10.1007/BFb0097789
http://coq.inria.fr/pylons/contribs/view/HigmanNW/v8.3
http://nbn-resolving.de/urn:nbn:de:bvb:19-16190
http://dx.doi.org/10.1007/s10817-010-9178-x

	A Formal Proof of Kruskal's Tree Theoremin Isabelle/HOL

