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Abstract

We present an Isabelle/HOL formalization of an earlier result by Suzuki, Middeldorp,
and Ida; namely that a certain class of conditional rewrite systems is level-confluent. Our
formalization is basically along the lines of the original proof, from which we deviate mostly
in the level of detail as well as concerning some basic definitions.

1 Introduction

In the realm of standard term rewriting, many properties of term rewrite systems (TRSs) can be
conveniently checked “at the push of a button” due to a wealth of existing automated tools. To
maximize the reliability of this approach, such automated tools are progressively complemented
by certifiers, that is, verified programs that rigorously ensure that the output of an automated
tool for a given input is correct. At the time of writing the prevalent methodology for certifier
development consists of the following two phases: First, employ a proof assistant (in our case
Isabelle/HOL [5]) in order to formalize the underlying theory, resulting in a formal library (in
our case IsaFoR,1 an Isabelle/HOL Formalization of Rewriting). Then, verify a program using
this library, resulting in the actual certifier (in our case CeTA [9]).

Our ultimate goal is to establish the same state of the art also for conditional term rewrite
systems (CTRSs). As a starting point, we present our Isabelle/HOL formalization of the
following result:

Lemma 1 (Suzuki et al. [8, Corollary 4.7]). Orthogonal, properly oriented, right-stable 3-CTRSs
are level-confluent.

Which is actually a corollary of a more general result, whose statement – together with
a high-level overview of its proof – we defer until after we have established some necessary
preliminaries.

The development we describe in this note is now part of the IsaFoR library and is freely
available for inspection at:

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/a2cd778de34a/

IsaFoR/Conditional_Rewriting/Level_Confluence.thy

Throughout the remainder we will from time to time refer to the Isabelle/HOL sources of our
development (by active hyperlink).

∗The research described in this paper is supported by FWF (Austrian Science Fund) project P27502.
1http://cl-informatik.uibk.ac.at/software/ceta/
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2 Preliminaries

We assume familiarity with (conditional) term rewriting [1, 6]. In the sequel we consider oriented
3-CTRSs where extra variables in conditions and right-hand sides of rewrite rules are allowed,
i.e., for all rules ` → r ⇐ c in the CTRS we only demand Var(r) ⊆ Var(`, c). For such systems
extended TRSs Rn are inductively defined for each level n > 0 as follows

R0 = ∅

Rn+1 = {`σ → rσ | ` → r ⇐ c ∈ R and sσ
∗−−→
Rn

tσ for all s ≈ t ∈ c}

where →Rn denotes the standard (unconditional) rewrite relation of the TRS Rn. We write
s→R t if we have s→Rn t for some n > 0. Moreover, for brevity, the latter is written s→n t
whenever the corresponding CTRS is clear from the context. Given two variable disjoint variants
`1 → r1 ⇐ c1 and `2 → r2 ⇐ c2 of rules in a CTRS R, a function position p in `1, and a most
general unifier (mgu) µ of `1|p and `2; we call the triple (`1 → r1 ⇐ c1, `2 → r2 ⇐ c2, p) a
conditional overlap of R. A conditional overlap (`1 → r1 ⇐ c1, `2 → r2 ⇐ c2, p) with mgu µ is
infeasible (that is, cannot occur during actual rewriting) if there is no substitution σ such that
sσ →∗R tσ for all s ≈ t in c1µ, c2µ.

A note on permutations. At the highly formal level of Isabelle/HOL (which we tend to avoid
in the following exposition) we employ an existing formalization of permutation types (that
is, types that contain variables which may be renamed w.r.t. a given permutation) to tackle
variable renamings, renaming rules apart, and checking whether two rules are variants of each
other. This abstract view on renamings (as opposed to explicit renaming functions on strings)
proved to be useful in previous applications [3, 4].

We call a CTRS almost orthogonal [2] (modulo infeasibility) if it is left-linear and all its
conditional overlaps are either infeasible or take place at root position (`1µ = `2µ) and are either
between variants of the same rule or also result in syntactically equal right-hand sides (r1µ = r2µ).
A CTRS R is called properly oriented if for all rules ` → r ⇐ s1 ≈ t1, . . . , sk ≈ tk ∈ R
where Var(r) 6⊆ Var(`) and 1 6 i 6 k we have Var(si) ⊆ Var(`, t1, . . . , ti−1). It is called
right-stable if for every rule ` → r ⇐ s1 ≈ t1, . . . , sk ≈ tk ∈ R and 1 6 i 6 k we have
Var(`, s1, . . . , si, t1, . . . , ti−1)∩Var(ti) = ∅ and ti is either a linear constructor term or a ground
Ru-normal form.

We say that two binary relations →α and →β have the commuting diamond property [1],
whenever α← ·→β ⊆ →β · α←. Moreover, we adopt the notion of extended parallel rewriting
from Suzuki et al. [8].

Definition 2. Let R be a CTRS. We say that there is an extended parallel R-rewrite step at level
n from s to t, written s ↪→∥ Rn t (or s ↪→∥ n t for brevity), whenever we have a multihole context C,
and sequences of terms s1, . . . , sk and t1, . . . , tk, such that s = C[s1, . . . , sk], t = C[t1, . . . , tk],
and for all 1 6 i 6 k we have one of (si, ti) ∈ Rn (that is, a root-step at level n) and si →∗n−1 ti.

Suzuki et al. [8], state this definition slightly differently, that is, instead of multihole contexts
they try to rely exclusively on sets of positions:

We write s ↪→∥ n t if there exists a subset P of pairwise disjoint positions in s such
that for all p ∈ P either (s|p, t|p) ∈ Rn or s|p →∗n−1 t|p.

While it is quite clear what is meant, a slight problem (at least for a formal development inside
a proof assistant) is the fact that this definition does not enforce t to be exactly the same as s
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outside of the positions in P , that is, it does not require the multihole context around the |P |
rewrite sequences to stay the same. In order to express this properly, it seems unavoidable to
employ multihole contexts (or something equivalent).

In the remainder we employ the convention that the number of holes of a multihole context,
is denoted by the corresponding lower-case letter, e.g., c for a multihole context C, d for D, e
for E, etc.

3 The Main Result

As remarked in the last two sections of Suzuki et al. [8], we actually consider almost orthogonal
systems modulo infeasibility. We are now in a position to state the main theorem.

Theorem 3 (Suzuki et al. [8, Theorem 4.6]). Let R be an almost orthogonal (modulo infeasibility),
properly oriented, right-stable 3-CTRS. Then, for any two levels m and n, the extended parallel
rewrite relations ↪→∥ m and ↪→∥ n, have the commuting diamond property.

As a special case of the above theorem, we obtain that for a fixed level n, the relation
↪→∥ n has the diamond property. Moreover, it is well known that whenever a relation S with
the diamond property, is between a relation R and its reflexive, transitive closure (that is,
R ⊆ S ⊆ R∗), then R is confluent. Taken together, this yields level-confluence of →R, since
clearly →n ⊆ ↪→∥ n ⊆ →∗n.

We now give a high-level overview of the proof of Theorem 3. The general structure
is similar to the one followed by Suzuki et al. [8], only that we employ multihole contexts
instead of sets of positions. Therefore, we do not give all the details (if you are interested,
see Conditional_Rewriting/Level_Confluence, starting from comm_epar_n in line 1499), but
mostly comment on the parts that differ (if only slightly).

Proof (Sketch) of Theorem 3. We proceed by complete induction on m + n. By induction
hypothesis (IH) we may assume the result for all m′ + n′ < m + n. Now consider the peak
t m←↩∥ s ↪→∥ n u. If any of m and n equals 0, we are done (since ↪→∥ 0 is the identity relation).
Thus we may assume m = m′ + 1 and n = n′ + 1 for some m′ and n′. By the definition of
extended parallel rewriting, we obtain multihole contexts C and D, and sequences of terms
s1, . . . , sc, t1, . . . , tc, u1, . . . , ud, v1, . . . , vd, such that s = C[s1, . . . , sc] and t = C[t1, . . . , tc], as
well as s = D[u1, . . . , ud] and u = D[v1, . . . , vd]; and (si, ti) ∈ Rm or si →∗m′ ti for all 1 6 i 6 c,
as well as (ui, vi) ∈ Rn or ui →∗n′ vi for all 1 6 i 6 d.

Now we identify the common part E of C and D, employing the semi-lattice properties
of multihole contexts (see Rewriting/Multihole_Context), that is, E = C u D. Then C =
E[C1, . . . , Ce] and D = E[D1, . . . , De] for some multihole contexts C1, . . . , Ce and D1, . . . , De

such that for each 1 6 i 6 e we have Ci = 2 or Di = 2. This also means that there is
a sequence of terms s′1, . . . , s

′
e such that s = E[s′1, . . . , s

′
e] and for all 1 6 i 6 e, we have

s′i = Ci[ski , . . . , ski+ci−1] for some subsequence ski , . . . , ski+ci−1 of s1, . . . , sc (we denote similar
terms for t, u, and v by t′i, u

′
i, and v′i, respectively). Moreover, note that by construction

s′i = u′i for all 1 6 i 6 e. Since extended parallel rewriting is closed under multihole contexts
(see epar_n_mctxt), it suffices to show that for each 1 6 i 6 e there is a term v such that
t′i ↪→∥ n v m←↩∥ v′i, in order to conclude the proof. We concentrate on the case that Ci = 2 (the
case Di = 2 is completely symmetric). Moreover, note that when we have s′i →∗m′ t′i, the proof
concludes by IH (together with some basic properties of the involved relations), and thus we
remain with (s′i, t

′
i) ∈ Rm. At this point we distinguish the following cases:
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1. (Di = 2). Also here, the non-root case u′i →∗n′ v′i is covered by the IH. Thus, we may
restrict to (u′i, v

′
i) ∈ Rn, giving rise to a root overlap. Since R is almost orthogonal

(modulo infeasibility), this means that either the resulting conditions are not satisfiable
or the resulting terms are the same (in both of these cases we are done) or two variable
disjoint variants of the same rule ` → r ⇐ c were involved. Without extra variables in r,
this is the end of the story; but since we also want to cover the case where Var(r) 6⊆ Var(l),
we have to reason why this does not cause any trouble. This case is finished by a technical
lemma (see trs_n_peak) that shows, by induction on the number of conditions in c, that
we can join the two respective instances of the right-hand side r by extended parallel
rewriting. (This is also where proper orientedness and right-stability of R is first used,
that is, were we to relax this properties, we had to adapt the technical lemma.)

2. (Di 6= 2). Then for some 1 6 k 6 d, we have (uj , vj) ∈ Rn or uj →∗n′ vj for all
k 6 j 6 k + di − 1, that is, an extended parallel rewrite step of level n from s′i =
u′i = Di[uki , . . . , uki+di−1] to Di[vki , . . . , vki+di−1] = v′i. Since R is almost orthogonal
(modulo infeasibility) and, by Di 6= 2, root overlaps are excluded, the constituent parts
of the extended parallel step from s′i to v′i take place exclusively inside the substitution
of the root-step to the left (which is somewhat obvious – as also stated by Suzuki et
al. [8] – but surprisingly hard to formalize, see epar_n_varpeak’, even more so when
having to deal with infeasibility). We again close this case by induction on the number of
conditions making use of proper orientedness and right-stability of R, see epar_n_varpeak
for details.

4 Conclusions and Future Work

In the original paper [8] the proof of Theorem 3 begins after only three definitions (proper
orientedness, right-stability, and extended parallel rewriting) and stretches across two pages,
including two figures.

By contrast, in our formalization we need 8 definitions and 42 lemmas (mainly stating
properties of extended parallel rewriting) before we can start with the main proof. Furthermore,
we need two auxiliary technical lemmas to cover the induction proofs on the number of conditions
which are nested inside the main case analysis. All in all, resulting in a theory file of about 1500
lines. This yields a de Bruijn factor of approximately 18, that is, for every line in the original
“paper proof,” our formal proof development contains 18 lines of Isar (the formal language of
Isabelle/HOL).

In the latest version of our formalization we further relaxed the condition for conditional
overlaps to be infeasible (making the result applicable to a larger class of systems) and proved that
the main result still holds. More concretely, a conditional overlap (`1 → r1 ⇐ c1, `2 → r2 ⇐ c2, p)
with mgu µ is infeasible iff

∀mn.
∗←−
m
· ∗−→
n
⊆ ∗−→

n
· ∗←−
m

=⇒ @σ. (∀s ≈ t ∈ c1µ. sσ
∗−→
m

tσ) ∧ (∀s ≈ t ∈ c2µ. sσ
∗−→
n
tσ).

That is, we may assume “level-commutation” (which is called shallow-confluence in the literature)
when showing that the combined conditions of two rules are not satisfiable. This may be helpful,
since it allows us to turn diverging sequences (as would for example result from two conditions
with identical left-hand sides) into joining sequences.

Future Work. The ultimate goal of this formalization is of course to certify level-confluence
proofs of conditional confluence tools, e.g. ConCon [7]. To this end we need executable check
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functions for the syntactic properties a CTRS has to meet in order to apply the theorem. The
check functions for proper orientedness as well as right-stability should be straightforward to
implement. For orthogonality, however, there is a small obstacle to overcome. On the one
hand, in our formalization we use the abstract notion of permutation types inside the definition
of conditional critical pairs, only demanding that the set of variables is infinite. While this
guarantees that we can always rename two finite sets of variables apart, we do not directly have
an executable renaming function at our disposal. On the other hand, in the current version of
IsaFoR the type of variables in (standard) critical pairs is fixed to strings, and their definition
employs a concrete, executable renaming function. Therefore, it remains to establish a suitable
connection between the executable implementation using strings and the abstract definition:
for each critical pair in the abstract definition, there is some variant that we obtain by the
executable implementation.

Moreover, Suzuki et al. [8] additionally remark (without proof) that the proof of Theorem 3
could easily be adapted to extended proper orientedness. To us, it is not immediately clear how
to adapt our formalization. For the time being, we leave this enhancement as future work.
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