
Certified Non-Confluence with ConCon 1.5∗

Thomas Sternagel and Christian Sternagel

University of Innsbruck, Austria
{thomas,christian}.sternagel@uibk.ac.at

We present three methods to check CTRSs for non-confluence: (1) an ad hoc method for
4-CTRSs, (2) a specialized method for unconditional critical pairs, and finally, (3) a method
that employs conditional narrowing to find non-confluence witnesses. We shortly describe our
implementation of these methods in ConCon [8], then look into their certification with CeTA [11],
and finally conclude with experiments on the confluence problems database (Cops).1

1 Preliminaries

We assume familiarity with the basic notions of (conditional) term rewriting [1, 4], but shortly
recapitulate terminology and notation that we use in the remainder. Given an arbitrary binary
relation →, we write ←, →+, →∗ for inverse, transitive closure, and reflexive transitive closure,
respectively. We use V(·) to denote the set of variables occurring in a given syntactic object,
like a term, a pair of terms, a list of terms, etc. The set of terms T (F ,V) over a given
signature of function symbols F and set of variables V is defined inductively: x ∈ T (F ,V) for all
variables x ∈ V , and for every n-ary function symbol f ∈ F and terms t1, . . . , tn ∈ T (F ,V) also
f(t1, . . . , tn) ∈ T (F ,V). We say that terms s and t unify if sσ = tσ for some substitution σ. The
topmost part of a term that does not change under rewriting (sometimes called its “cap”) can be
approximated for example by the tcap function [2]. Informally, tcap(x) for a variable x results in
a fresh variable, while tcap(t) for a non-variable term t = f(t1, . . . , tn) is obtained by recursively
computing u = f(tcap(t1), . . . , tcap(tn)) and then asserting tcap(t) = u in case u does not unify
with any left-hand side of rules in the TRS R, and a fresh variable, otherwise. We call a bijective
variable substitution π : V → V a (variable) renaming. A CTRS R is a set of conditional rewrite
rules of the shape ` → r ⇐ c where ` and r are terms and c is a (possibly empty) sequence of pairs
of terms s1 ≈ t1, . . . , sk ≈ tk. For all rules in R we have that ` /∈ V . If additionally V(r) ⊆ V(`, c)
for all rules we call R a 3-CTRS otherwise a 4-CTRS. We restrict our attention to oriented
CTRSs where conditions are interpreted as reachability requirements. The rewrite relation
induced by an oriented CTRS R is structured into levels. For each level i, a TRS Ri is defined
recursively as follows: R0 = ∅, and Ri+1 = {`σ → rσ | ` → r ⇐ c ∈ R,∀s ≈ t ∈ c. sσ →∗Ri

tσ}.
The rewrite relation of R is defined as →R =

⋃
i>0 →Ri

. By dropping all conditions from a
CTRS R we obtain its underlying TRS, denoted Ru. Note that→R ⊆ →Ru . We sometimes label
rules like ρ : ` → r ⇐ c. Two variable-disjoint variants of rules `1 → r1 ⇐ c1 and `2 → r2 ⇐ c2 in
R such that `1|p /∈ V and `1|pµ = `2µ with most general unifier (mgu) µ, constitute a conditional
overlap. A conditional overlap that does not result from overlapping two variants of the same
rule at the root, gives rise to a conditional critical pair (CCP) `1[r2]pµ ≈ r1µ ⇐ c1µ, c2µ. A
CCP u ≈ v ⇐ c is joinable if uσ →∗R · ∗R← vσ for all substitutions σ such that sσ →∗R tσ for
all s ≈ t ∈ c. Moreover, a CCP u ≈ v ⇐ c is infeasible if there is no substitutions σ such that
sσ →∗R tσ for all s ≈ t ∈ c.

∗This work is supported by FWF (Austrian Science Fund) project P27502.
1http://cops.uibk.ac.at/?q=ctrs+oriented

http://cops.uibk.ac.at/?q=ctrs+oriented

Certified Non-Confluence using ConCon 1.5 Sternagel and Sternagel

2 Finding Witnesses for Non-Confluence of CTRSs

To prove non-confluence of a CTRS we have to find a witness, that is, two diverging rewrite
sequences starting at the same term whose end points are not joinable.

The first criterion only works for CTRSs that contain at least one unconditional rule of type
4, that is, with extra-variables in the right-hand side.

Lemma 1. Given a 4-CTRS R and an unconditional rule ρ : ` → r in R where V(r) * V(`)
and r is a normal form with respect to Ru then R is non-confluent.

Proof. Since V(r) * V(`) we can always find two renamings µ1 and µ2 restricted to V(r) \ V(`)
such that rµ1 ρ← `µ1 = `µ2 →ρ rµ2 and rµ1 6= rµ2. As r is a normal form with respect to Ru

also rµ1 and rµ2 are (different) normal forms with respect to Ru (and hence also with respect
to R). Because we found a non-joinable peak R is non-confluent.

Example 2. Consider the second (unconditional) rule of the 4-CTRS R320 = {e→ f(x)⇐ l ≈
d, A → h(x, x)} from Cops. Its right-hand side h(x, x) is a normal form with respect to the
underlying TRS of R320 and the only variable occurring in it does not appear in its left-hand
side A. So by Lemma 1 R320 is non-confluent.

A natural candidate for diverging situations are the critical peaks of a CTRS. We will base
our next criterion on the analysis of unconditional critical pairs (CPs) of CTRSs. This restriction
is necessary to guarantee the existence of the actual peak. If we would also allow conditional
CPs, we first would have to check for infeasibility, since infeasibility is undecidable in general
these checks are potentially very costly (see for example [9]).

Lemma 3. Given a CTRS R and an unconditional CP s ≈ t of it. If s and t are not joinable
with respect to Ru then R is non-confluent.

Proof. The CP s ≈ t originates from a critical overlap between two unconditional rules ρ1 : `1 →
r1 and ρ2 : `2 → r2 for some mgu µ of `1|p and `2 such that s = `1µ[r2µ]p ← `1µ[`2µ]p → r1µ = t.
Since s and t are not joinable with respect to Ru they are of course also not joinable with respect
to R and we have found a non-joinable peak. So R is non-confluent.

Example 4. Consider the 3-CTRSR271 = {p(q(x))→ p(r(x)), q(h(x))→ r(x), r(x)→ r(h(x))⇐
s(x) ≈ 0, s(x) → 1} from Cops. First of all we can immediately drop the third rule because
we can never satisfy its condition and so it does not influence the rewrite relation of R271.
This results in the TRS R′271. Now the left- and right-hand sides of the unconditional CP
p(r(z)) ≈ p(r(h(z))) are not joinable because they are two different normal forms with respect
to the underlying TRS of R′271. Hence R271 is not confluent by Lemma 3.

While the above lemmas are easy to check and we have fast methods to do so they are also
rather ad hoc. A more general but potentially very expensive way to search for non-joinable
forks is to use conditional narrowing [3].

Definition 5 (Conditional narrowing). Given a CTRS R we say that s (conditionally) narrows
to t, written s σ t if there is a variant of a rule ρ : ` → r ⇐ c ∈ R, such that V(s) ∩ V(ρ) = ∅
and u ∗σ v for all u ≈ v ∈ c, a position p ∈ PosF (s), a unifier2 σ of s|p and `, and t = s[r]pσ.
For a narrowing sequence s1 σ1 s2 σ2 · · · σn−1 sn of length n we write s1 n

σ sn where
σ = σ1σ2 · · ·σn−1. If we are not interested in the length we also write s ∗σ t.

The following property of narrowing carries over from the unconditional case:

2In our implementation we start from an mgu of s|p and ` and extend it while trying to satisfy the conditions.

2

Certified Non-Confluence using ConCon 1.5 Sternagel and Sternagel

Property 6. If s σ t then sσ → tσ with the same rule that was employed in the narrowing step.
Moreover, if s1 σ1

s2 σ2
· · · σn−1

sn then s1σ1σ2 · · ·σn−1 → s2σ2 · · ·σn−1 → · · · → sn.
Again employing the same rule for each rewrite step as in the corresponding narrowing step.

Using conditional narrowing we can now formulate a more general non-confluence criterion.

Lemma 7. Given a CTRS R, if we can find two narrowing sequences u ∗σ s and v ∗τ t such
that uσµ = vτµ for some mgu µ and sσµ and tτµ are not Ru-joinable then R is non-confluent.

Proof. Employing Property 6 we immediately get the two rewriting sequences uσ →∗R sσ and
vτ →∗R tτ . Since rewriting is closed under substitutions we have sσµ ∗R← uσµ = vτµ→∗R tτµ.
As the two endpoints of these forking sequences sσµ and tτµ are not joinable by Ru they are
certainly also not joinable by R. This establishes non-confluence of the CTRS R.

Example 8. Consider the 3-CTRS R262 = {0+y → y, s(x)+y → x+s(y), f(x, y)→ z ⇐ x+y ≈
z + z′} from Cops. Starting from a variant of the left-hand side of the third rule u = f(x′, y′) we
have a narrowing sequence f(x′, y′) σ x1 using the variant f(x1, x2)→ x3 ⇐ x1 + x2 ≈ x3 + x4
of the third rule and the substitution σ = {x′ 7→ x1, x3 7→ x1, x4 7→ x2}. We also have
another narrowing sequence f(x′, y′) τ x3 using the same variant of rule three and substitution
τ = {x 7→ x3 + x4, x

′ 7→ 0, y′ 7→ x3 + x4, x1 7→ 0, x2 7→ x3 + x4} where for the condition
x1 + x2 ≈ x3 + x4 we have the narrowing sequence x1 + x2 τ x3 + x4, using a variant of
the first rule 0 + x → x. Finally, there is an mgu µ = {x1 7→ 0, x2 7→ x3 + x4} such that
uσµ = f(0, x3 + x4) = uτµ. Moreover, x1σµ = 0 and x3τµ = x3 are two different normal forms.
Hence R262 is non-confluent by Lemma 7.

3 Implementation

Starting from its first participation in the confluence competition (CoCo)3 in 2014 ConCon 1.2.0.3
came equipped with some non-confluence heuristics. Back then it only used Lemmas 1 and 3 and
had no support for certification of the output. In the next two years (ConCon 1.3.0 and 1.3.2) we
focused on other developments [5, 6, 9, 10] and nothing changed for the non-confluence part. For
this year’s CoCo (2017) we have added Lemma 7 employing conditional narrowing to ConCon 1.5
and the output of all of the non-confluence methods is now certifiable by CeTA.

Our implementation of Lemma 1 takes an unconditional rule ρ : ` → r, a substitution σ =
{x 7→ y} with x ∈ V(r)\V(`) and y fresh w.r.t. ρ and builds the non-joinable fork r ρ← `→ρ rσ.

For Lemma 3 we have three concrete implementations that consider an overlap from which
an unconditional CP s ≈ t arises: The first of which just takes this overlap and then checks that
s and t are two different normal forms with respect to Ru. The second employs the tcap-function
to check for non-joinability, that is, it checks whether tcap(s) and tcap(t) are not unifiable. The
third makes a special call to the TRS confluence checker CSI [12] providing the underlying TRS
Ru as well as the unconditional CP s ≈ t where all variables in s and t have been replaced by
fresh constants. We issue the following command:

csi -s ’(nonconfluence -nonjoinability -steps 0 -tree)[30]’ -C RT

The strategy ‘(nonconfluence -nonjoinability -steps 0 -tree)[30]’ tells CSI to check
non-joinability of two terms using tree automata techniques. Here ‘-steps 0’ means that CSI
does not rewrite the input terms further before checking non-joinability (this would be unsound
in our setting). The timeout is set to 30 seconds. To encode the two terms for which we want

3http://coco.nue.riec.tohoku.ac.jp

3

http://coco.nue.riec.tohoku.ac.jp

Certified Non-Confluence using ConCon 1.5 Sternagel and Sternagel

to check non-joinability in the input we set CSI to read relative-rewriting input (‘-C RT’). We
provide Ru in the usual Cops-format and add one line for the CP s ≈ t where its “grounded”
left- and right-hand sides are related by ‘->=’, that is, we encode it as a relative-rule. This is
necessary to distinguish the unconditional CP from the rewrite rules.

Now, for an implementation of Lemma 7 we have to be careful to respect the freshness
requirement of the variables in the used rule for every narrowing step with respect to all the
previous terms and rules. The crucial point is to efficiently find the two narrowing sequences,
to this end we first restrict the set of terms from which to start narrowing. As a heuristic
we only consider the left-hand sides of rules of the CTRS under consideration. Next we also
prune the search space for narrowing. Here we restrict the length of the narrowing sequences
to at most three. In experiments on Cops allowing sequences of length four or more did not
yield additional non-confluence proofs but slowed down the tool significantly to the point where
we lost other proofs. Further, we also limit the recursion depth of conditional narrowing by
restricting the level (see the definition of the conditional rewrite relation in the Preliminaries) to
at most two. Again, we set this limit as tradeoff after thorough experiments on Cops. Finally,
we use Property 6 to translate the forking narrowing sequences into forking conditional rewriting
sequences. In this way we generate a lot of forking sequences so we only use fast methods, like
non-unifiability of the tcap’s of the endpoints or that they are different normal forms, to check
for non-joinability of the endpoints. Calls to CSI are to expensive in this context.

4 Certification

Certification is quite similar for all of the described methods. We have to provide a non-confluence
witness, that is, a non-joinable fork. So besides the CTRS R under investigation we also need
to provide the starting term s, the two endpoints of the fork t and u, as well as, certificates for
s →+

R t and s →+
R u, and a certificate that t and u are not joinable. For the forking rewrite

sequences we reuse a recent formalization of ours to build the certificates (see [7]). We also want
to stress that because of Property 6 we did not have to formalize conditional narrowing because
going from narrowing to rewrite sequences is already done in ConCon and in the certificate only
the rewrite sequences show up. For the non-joinability certificate of t and u there are three
options: either we state that t and u are two different normal forms or that tcap(t) and tcap(u)
are not unifiable; both of these checks are performed within CeTA; or, when the witness was
found by an external call to CSI, we just include the generated non-joinability certificate.

5 Experiments

We tested the above non-confluence methods on all 129 oriented CTRSs from Cops (as of
2017-06-27). Most of those are 3-CTRSs but there are also four 4-CTRSs. On the whole
ConCon 1.5 and CeTA are able to certify non-confluence of 42 systems (including all 4-CTRSs).
Last year’s version of ConCon can show non-confluence of 30 of the same 129 CTRSs only using
the implementation of Lemmas 1 and 3. By first removing infeasible rules, a feature which
we have also recently implemented in ConCon, we gain another system (271, see Example 4).
Another new feature is inlining of conditions (see [7]) which gives two more systems (351, 353).
Finally, with the help of conditional narrowing (Lemma 7) we gain another 9 systems (272, 328,
330, 352, 391, 404, 410, 411, 524). In contrast ConCon 1.5 succeeds in showing confluence of
60 systems (where 7 use methods that are not certifiable yet, like using Waldmeister to show
infeasibility of CCPs). So from ConCon’s perspective only 27 of the 129 oriented CTRSs of Cops

4

Certified Non-Confluence using ConCon 1.5 Sternagel and Sternagel

Lem. 1 + 3
30

- infeasible rules

+1

+ inlining

+2 +9

+ Lem. 7

NO: 42 MAYBE: 34 (27) YES: 53 (60)

Confluence methods
described in other
publications
(see [5, 6, 9, 10]).

Figure 1: (Non)-confluence results on 129 oriented CTRSs.

are still open. These results are summarized in Figure 1.
Concerning future work we currently employ standard conditional narrowing in our imple-

mentation. Implementing basic conditional narrowing or LSE conditional narrowing should
increase efficiency and maybe yield new NO-instances.

Acknowledgments. We thank Bertram Felgenhauer for providing the CSI-interface to check
non-joinability of two terms. Also the first author wants to thank Vincent van Oostrom for
valuable insights during the implementation of conditional narrowing.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and Disproving Termination of Higher-
Order Functions. In Proc. 5th FROCOS, volume 3717 of LNCS, pages 216–231. Springer, 2005.
doi:10.1007/11559306_12.

[3] A. Middeldorp and E. Hamoen. Completeness Results for Basic Narrowing. Appl. Algebra Eng.
Commun. Comput., 5:213–253, 1994. doi:10.1007/BF01190830.

[4] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

[5] C. Sternagel and T. Sternagel. Level-Confluence of 3-CTRSs in Isabelle/HOL. In Proc. 4th IWC,
pages 28–32, 2015. arXiv:1602.07115.

[6] C. Sternagel and T. Sternagel. Certifying Confluence of Almost Orthogonal CTRSs via Exact Tree
Automata Completion. In Proc. 1st FSCD, volume 51 of LIPIcs, pages 29:1–29:16. Dagstuhl, 2016.
doi:10.4230/LIPIcs.FSCD.2016.29.

[7] C. Sternagel and T. Sternagel. Certifying Confluence of Quasi-Decreasing Strongly Deterministic
Conditional Term Rewrite Systems. In Proc. 26th CADE, LNCS. Springer, 2017. To be published.

[8] T. Sternagel and A. Middeldorp. Conditional Confluence (System Description). In Proc. Joint
25th RTA and 12th TLCA, volume 8560 of LNCS, pages 456–465. Springer, 2014. doi:10.1007/
978-3-319-08918-8_31.

[9] T. Sternagel and A. Middeldorp. Infeasible Conditional Critical Pairs. In Proc. 4th IWC, pages
13–17, 2015.

[10] T. Sternagel and C. Sternagel. Formalized Confluence of Quasi-Decreasing, Strongly Deterministic
Conditional TRSs. In Proc. 5th IWC, pages 60–64, 2016. arXiv:1609.03341.

[11] R. Thiemann and C. Sternagel. Certification of Termination Proofs using CeTA. In Proc. 22nd
TPHOLs, volume 5674 of LNCS, pages 452–468. Springer, 2009. doi:10.1007/978-3-642-03359-9_
31.

[12] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A Confluence Tool. In Proc. 23rd CADE,
volume 6803 of LNAI, pages 499–505. Springer, 2011. doi:10.1007/978-3-642-22438-6_38.

5

http://dx.doi.org/10.1007/11559306_12
http://dx.doi.org/10.1007/BF01190830
https://arxiv.org/abs/1602.07115
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.29
http://dx.doi.org/10.1007/978-3-319-08918-8_31
http://dx.doi.org/10.1007/978-3-319-08918-8_31
https://arxiv.org/abs/1609.03341
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-642-22438-6_38

	Preliminaries
	Finding Witnesses for Non-Confluence of CTRSs
	Implementation
	Certification
	Experiments

