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Abstract Automatic tools for proving (non)termination of term rewrite
systems, if successful, deliver proofs as justification. In this work, we fo-
cus on how to certify nontermination proofs. Besides some techniques
that allow to reduce the number of rules, the main way of showing
nontermination is to find a loop, a finite derivation of a special shape
that implies nontermination. For standard termination, certifying loops
is easy. However, it is not at all trivial to certify whether a given loop
also implies innermost nontermination. To this end, a complex decision
procedure has been developed in [1]. We formalized this decision proce-
dure in Isabelle/HOL and were able to simplify some parts considerably.
Furthermore, from our formalized proofs it is easy to obtain a low com-
plexity bound. Along the way of presenting our formalization, we report
on generally applicable ideas that allow to reduce the formalization effort
and improve the efficiency of our certifier.
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1 Introduction

In program verification the focus is on proving that a function satisfies some
property, e.g., termination. However, in presence of a bug it is more important
to find a counterexample indicating the problem. In this way, we can save a
lot of time by abandoning a verification attempt as soon as a counterexample
is found. In term rewriting, a well known counterexample for termination is a
loop, essentially giving some “input” on which a “program” does not terminate.
As soon as specific evaluation strategies are considered it might not be easy to
verify whether a given loop constitutes a proper counterexample. However, since
many programming languages employ an eager evaluation strategy, methods
for proving innermost nontermination are important. What is more, some very
natural functions are not even expressible without evaluation strategy. Take for
example equality on terms. There is no (finite) term rewrite system (TRS) that
encodes equality on arbitrary terms (the problem is the case where the two given
terms are different). Using innermost rewriting, encoding equality is possible by
the following four rules, as shown by Daron Vroon (personal communication; he
used this encoding to properly model the built-in equality of ACL2).
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x == y → chk(eq(x, y)) (1)
eq(x, x)→ true (2)

chk(true)→ true (3)
chk(eq(x, y))→ false (4)

Current techniques for proving innermost nontermination of TRSs consist
of preprocessing techniques (narrowing the search space by removing rules) fol-
lowed by finding a loop, for which the complex decision procedure of [1] allows to
decide whether it implies innermost nontermination. We formalized this decision
procedure as part of our Isabelle Formalization of Rewriting (IsaFoR). The cor-
responding certifier CeTA can be obtained by Isabelle/HOL’s code generator [2,3].
Both IsaFoR and CeTA are freely available at http://cl-informatik.uibk.ac.
at/software/ceta/ (the relevant theories for this paper are Innermost_Loops
and Nontermination, together with their respective implementation theories,
indicated by the suffix _Impl).

During our formalization we were able to simplify some parts of the decision
procedure considerably. Mostly, due to a new proof which, in contrast to the
original proof, does not depend on Kruskal’s tree theorem. As a result, we can
replace the most complicated algorithm of [1] by a single line. Moreover, we
report on how we managed to obtain efficient versions of other algorithms from
[1] within Isabelle/HOL [4].

The remainder is structured as follows. In Sect. 2 we give preliminaries. Then,
in Sect. 3, we describe the preprocessing techniques (narrowing the search space
for finding a loop) that are supported by our certifier. Afterwards, we present
details on loops w.r.t. the innermost strategy in Sect. 4. The main part of this
paper is on our formalization of the decision procedure for innermost loops in
Sect. 5, before we conclude in Sect. 6.

2 Preliminaries

We assume basic familiarity with term rewriting [5]. Nevertheless, we shortly
recapitulate what is used later on. A term t (`, r, s, u, v) is either a variable x
(y, z) from the set V, or a function symbol f (g) from the disjoint set F ap-
plied to some argument terms f(t1, . . . , tn). The root of a term is defined by
root(x) = x and root(f(t1, . . . , tn)) = f . The set args(t) of arguments of t is
defined by the equations args(x) = ∅ and args(f(t1, . . . , tn)) = {t1, . . . , tn}. The
set of variables occurring in a term t is denoted by V(t). A context C (D) is a
term containing exactly one occurrence of the special hole symbol �. Replacing
the hole in a context C by a term t is written C[t]. The term t is a (proper)
subterm of the term s, written (s B t) s D t, iff there is a (non-hole) context C
such that s = C[t], iff there is a (non-empty) position p such that s|p = t. We
write s DF t iff s D t and t /∈ V. A substitution σ (µ) is a mapping from vari-
ables to terms whose domain dom(σ) = {x | σ(x) 6= x} is finite. The range of
a substitution is ran(σ) = {σ(x) | x ∈ dom(σ)}. We represent concrete substi-
tutions using the notation {x1/t1, . . . , xn/tn}. We use σ interchangeably with
its homomorphic extension to terms, writing, e.g., tσ to denote the application
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of the substitution σ to the term t. A (rewrite) rule is a pair of terms ` → r
and a term rewrite system (TRS) R is a set of such rules. The rewrite relation
(induced by R) →R is defined by s→R t iff there is a context C, a rewrite rule
` → r ∈ R, and a substitution σ such that s = C[`σ] and t = C[rσ]. Here, we
call `σ a redex (short for reducible expression) and sometimes write s →R,`σ t
to make it explicit. A normal form is a term that does not contain any redexes.
When a rewrite step s→R,`σ t additionally satisfies that all arguments of `σ are
normal forms, it is called an innermost (rewrite) step, written s i→R t. We freely
drop R from s→R t if it is clear from the context.

A term t is (innermost) nonterminating w.r.t. R, iff there is an infinite (in-
nermost) rewrite sequence starting at t, i.e., a derivation of the form

t = t1
(i)→R t2

(i)→R t3
(i)→R · · ·

A TRS R is (innermost) nonterminating iff there is a term t that is (innermost)
nonterminating w.r.t. R.

3 A Framework for Certifying Nontermination

As for termination, there are several techniques that may be combined in order
to prove nontermination. On the one hand, there are basic techniques, i.e., those
that immediately prove nontermination; and on the other hand, there are trans-
formations, i.e., mappings that turn a given TRS R into a transformed TRS R′
(for which, proving nontermination is hopefully easier). Such transformations are
complete iff (innermost) nontermination of R′ implies (innermost) nontermina-
tion of R. In order to prove nontermination, arbitrary complete transformations
can be applied, before finishing the proof by a basic technique.

In our development we formalized the following basic techniques and com-
plete transformations. Except for innermost loops and string reversal, none of
these techniques posed any difficulties in the formalization.

Well-Formedness Check. A TRS R is (weakly) well-formed iff no left-hand side
is a variable and all (applicable) rules ` → r satisfy V(r) ⊆ V(`). Where a rule
is applicable iff the arguments of its left-hand side are normal forms (otherwise
the rule could never be used in the innermost case).

Lemma 1. If R is not (weakly) well-formed, it is (innermost) nonterminating.

Thus a basic technique is to check whether a TRS is (weakly) well-formed and
conclude (innermost) nontermination, if it is not.

Finding Loops. The second basic technique is to find a loop and it is treated in
more detail in Sect. 4.

Rule Removal. One way to narrow the search space when trying to prove nonter-
mination, is to get rid of rules that cannot contribute to any infinite derivation.
This can be done by employing the same techniques that are already known
from termination, namely monotone reduction pairs [6,7].



String Reversal. A special variant of TRSs are string rewrite systems, where all
function symbols are fixed to be unary. For this special case, string reversal (see,
e.g., [8] and [9] for its formalization) can be applied.

Dependency Pair Transformation. As for termination, also for nontermination,
it is possible to switch from TRSs to dependency pair problems (DPPs) [10].
This is done by the so called dependency pair transformation, which intuitively,
identifies the mutually recursive dependencies of rewrite rules and makes them
explicit in a second set of rewrite rules, the dependency pairs.

For nontermination of (innermost) DPPs, we support the following techniques:

Finding Loops. For DPPs (P,R) the search space for finding loops is further
restricted by the fact that pairs from P are only applied at the root position.

Rule Removal. Also for DPPs it is possible to narrow the search space by em-
ploying reduction pairs to remove pairs and rules that do not contribute to any
infinite derivation. Note that for nontermination analysis, also the dependency
graph processor and the usable rules processor do just remove pairs and rules.

Note. Since R is (innermost) nonterminating (by the well-formedness check)
whenever R contains a rule x→ r for some x ∈ V, we only consider TRSs where
all left-hand sides of rules are not variables in the remainder.

4 Loops

Loops are derivations of the shape t→+
R C[tµ]. They always imply nontermina-

tion where the corresponding infinite reduction is

t→+
R C[tµ]→+

R C[Cµ[tµ2]]→+
R C[Cµ[Cµ2[tµ3]]]→+

R · · · (5)

A TRS which admits a loop is called looping.
Note that for innermost rewriting, loopingness does not necessarily imply

nontermination, since the innermost rewrite relation is not closed under substi-
tutions. More precisely, it is not enough to have an “innermost loop” of the form
t

i→+
R C[tµ], since this does not necessarily imply an infinite sequence (5) when

restricting to innermost rewriting. Therefore, in [1], the notion of an innermost
loop was introduced. To facilitate the certification of innermost loops (i.e., to
decide for a given loop, whether it is innermost or not), we need its constituting
steps, i.e., a derivation of length m > 0 with redexes `iσi:

t = t1 →R,`1σ1 t2 →R,`2σ2 · · · →R,`mσm
tm+1 = C[tµ] (6)

Definition 2 (Innermost Loops). A loop (6) is an innermost loop iff for all
1 6 i 6 m and n ∈ N, the term `iσiµ

n is an innermost redex.

That is, no matter how often µ is applied, all steps should be innermost.

Lemma 3. A loop (6) is an innermost loop iff (5) is an innermost derivation.



Corollary 4. An innermost loop implies innermost nontermination.

Note that for every loop (6) and all n ∈ N, the term `iσiµ
n is a redex. Hence,

to make sure that those redexes are innermost, it suffices to check whether all
arguments of `iσiµn are normal forms for all n ∈ N. Since `iσi is not a variable
(we ruled out variables as left-hand sides of R) this is equivalent to checking that
for all arguments t of `iσi, the term tµn is a normal form for all n ∈ N. Thus, to
decide whether a loop is innermost, we can use the following characterization.

Lemma 5. Let R be a TRS, (6) a loop, and A =
⋃

16i6m args(`iσi) the set of
arguments of redexes in (6). Then, (6) is an innermost loop, iff for all t ∈ A
and n ∈ N the term tµn is a normal form, iff for all t ∈ A and ` → r ∈ R the
term tµn does not contain a redex `σ for any n ∈ N and σ.

Hence, we can easily check, whether a loop is innermost, whenever for two terms
t and `, and a substitution µ, we can solve the problem whether there exist n and
σ, such that tµn contains a redex `σ. Such problems are called redex problems
and a large part of [1] is devoted to develop a corresponding decision procedure.

Example 6. Consider a loop t →+ C[tµ] for a TRS R containing rules (1)-(4),
where µ = {x/cons(z, y), y/cons(z, x), z/0}. Let D[chk(eq(x, y))] → D[false] be
a step of the loop. Then, for an innermost loop we must ensure that the term
eq(x, y)µn does not contain a redex w.r.t. R, especially not w.r.t. rule (2).

The above decision procedure works in three phases: first, redex problems are
simplified into a set of matching problems. Then, a modified matching algorithm
is employed, where in the end identity problems have to be solved. Finally, a
decision procedure for identity problems is applied.

In the remainder, let µ be an arbitrary but fixed substitution (usually origi-
nating from some loop t→+

R C[tµ]).

Definition 7 (Redex, Matching, and Identity Problems). Let s, t, and `
be terms. Then a redex problem is a pair t |m `, a generalized matching problem
is a set of pairs {t1 m `1, . . . , tk m `k} (we call a generalized matching problem
having only one pair, a matching problem, and drop the surrounding braces),
and an identity problem is a pair s u t.

A redex problem t |m ` is solvable iff there is a context C, a substitution
σ, and an n ∈ N such that tµn = C[`σ]. A (generalized) matching problem is
solvable iff there is a substitution σ and an n ∈ N such that tiµn = `iσ for
all pairs ti m `i. An identity problem is solvable iff there is an n ∈ N such that
sµn = tµn. In those respective cases, we call (C, σ, n), (σ, n), and n, the solution.

5 Formalization

In [11] a straightforward certification algorithm for loops is described which does
nothing else than checking rewrite steps. We extend this result significantly by
also formalizing the necessary machinery to decide whether a loop is innermost.
In the following, we discuss the three phases of the decision procedure from [1].

From Redex Problems to Matching Problems. A redex problem t |m ` with ` ∈ V



is trivially solvable using the solution (�, {`/t}, 0). Thus, in the following we
assume that ` /∈ V. Then, solvability of t |m ` is equivalent to the existence of
a non-variable subterm s of tµn such that s = `σ (i.e., ` matches s). In order
to simplify redex problems, we represent these subterms in a finite way and
consequently generate only finitely many matching problems.

Either, s starts inside t, so s = uµn for some u EF t, or s is completely
inside µn. But then, it must be of the form uµn for some u EF xµ and x in
W(t) =

⋃
n V(tµn), whereW(t) collects all variables which can possibly occur in

a term of the form tµn. In both cases, the equality s = `σ can be reformulated
to uµn = `σ, i.e., solvability of the matching problem u m `. In total, the redex
problem is solvable iff one of the matching problems u m ` is solvable for some
u ∈ U(t), where U(t) = {u | t DF u or xµ DF u ∧ x ∈ W(t)}.

The following theorem (whose formalization was straightforward), corresponds
to [1, Theorem 10].

Theorem 8. Let t |m ` be a redex problem. Let

Minit(t, `) = if ` ∈ V then {t m `} else {u m ` | u ∈ U(t)}

be the set of initial matching problems. Then t |m ` is solvable iff one of the
matching problems in Minit(t, `) is solvable.

Example 9. Continuing with Example 6, from each redex problem eq(x, y) |m `
we obtain the matching problems eq(x, y) m `, cons(z, y) m `, cons(z, x) m `, and
0 m ` where ` is an arbitrary left-hand side of the TRS.

Theorem 8 shows a way to convert redex problems into matching problems.
However, for certification, it remains to develop an algorithm that actually com-
putes Minit . To this end, we need to compute U(t), which in turn requires to
enumerate all subterms of a term and to compute W(t). Whereas the former
is straightforward, computing W(t) is a bit more difficult: its original definition
contains an infinite union.

Note thatW(t) is only finite since we restrict to substitutions of finite domain
and can be computed by a fixpoint algorithm: iteratively compute V(t), V(tµ),
V(tµ2), . . . , until some V(tµk) is reached where no new variables are detected. In
principle, it is possible to formalize this algorithm directly, but we expect such a
formalization to require tedious manual termination and soundness proofs. Thus
instead, we characterize W(t) by the following reflexive transitive closure.

Lemma 10. Let R = {(x, y) | x 6= y, x ∈ V, y ∈ V(xµ)}. Then W(t) = {y |
∃x ∈ V(t), (x, y) ∈ R∗}.

Note that R in Lemma 10 can easily be computed since whenever (x, y) ∈ R
then x ∈ dom(µ). Moreover, R is finite since we only consider substitutions of
finite domain. Hence, the above characterization allows us to computeW by the
algorithm of [12] (generating the reflexive transitive closure of finite relations).

Note that W(t) can also be defined inductively as the least set such that
V(t) ⊆ W(t) and x ∈ W(t) =⇒ V(xµ) ⊆ W(t). And whenever a finite set
S is defined inductively, instead of implementing an executable algorithm for S
manually, it might be easier to characterize S via reflexive transitive closures and



afterwards execute it via the algorithm of [12]. This approach is not restricted to
W: it has been applied in the next paragraph and also in other parts of IsaFoR.

An alternative might be Isabelle/HOL’s predicate compiler [13]. It can be
used to obtain executable functions for inductively defined predicates and sets.
However, without manual tuning we were not able to obtain appropriate equa-
tions for the code generator. Furthermore, additional tuning is required to ensure
termination of the resulting code in the target language. Ultimately, the current
version of the predicate compiler provides a fixed execution model for predi-
cates and sets (goal-oriented depth-first search) which might not yield the best
performance for the desired application. Thus, for the time being we use our
proposed solution via reflexive transitive closures, but perhaps in future versions
of Isabelle/HOL, the predicate compiler will be a more convenient alternative.

From Matching Problems to Identity Problems. To decide solvability of a (gen-
eralized) matching problem {t1 m `1, . . . , tk m `k}, in [1], a variant of a standard
matching algorithm is used which simplifies (generalized) matching problems
until they are in solved form, i.e., all right-hand sides `i are variables (or ⊥ is
obtained which represents a matching problem without solution).

Definition 11 (Transformation of Matching Problems). In [1] the follow-
ing transformation⇒ on general matching problems is defined. IfM is a general
matching problem with M = {t m `} ]M′ where ` /∈ V, then

1. M⇒ {t1 m `1, . . . , tk m `k} ∪M′, if t = f(t1, . . . , tk) and ` = f(`1, . . . , `k)
2. M⇒⊥, if t = f(. . .), ` = g(. . .), and f 6= g
3. M⇒⊥, if t ∈ V \ Vincr

4. M⇒ {t′µ m `′ | t′ m `′ ∈M}, if t ∈ Vincr

The first two rules are the standard decomposition and clash rules. Moreover,
there are two special rules to handle the case where t is a variable. Here, the set
of increasing variables Vincr = {x | ∃n. xµn /∈ V} plays a crucial role. It collects
all those variables for which µ, if applied often enough, introduces a non-variable
term. In other words, xµn will always be a variable for x /∈ Vincr.

In our development, instead of using the above relation, we formalized the
rules directly as a function simplify-mp applying the transformation rules deter-
ministically (thereby avoiding the need for a confluence proof, as was required in
[1]). As input it takes two generalized matching problems (represented by lists)
where the second problem is assumed to be in solved form. Here, [] and · are the
list constructors, and @ denotes list concatenation. The possibility of failure is
encoded using Isabelle/HOL’s option type, which is either None, in case of an
error, or Some r for the result r. In contrast to Definition 11 of [1], our algorithm
also returns an integer i which provides a lower bound on how often µ has to
be applied to get a solution. The function is given by the following equations
(where for brevity do-notation in the option-monad is used):

simplify-mp [] s = return (s, 0)
simplify-mp ((t, x) ·mp) s = simplify-mp mp ((t, x) · s)
simplify-mp ((f(ss), g(ts)) ·mp) s = do { guard (f = g); ps ← zip-option ss ts;

simplify-mp (ps@mp) s }



simplify-mp ((x, g(ts)) ·mp) s = do { guard (x ∈ Vincr);
(mp′, i)← simplify-mp
(map-µ ((x, g(ts)) ·mp)) (map-µ s);

return (mp′, i+ 1) }
where, map-µ = map (λ(t, `).(tµ, `)) using the standard map function for lists,
zip-option combines two lists of equal length into Some list of pairs and yields
None otherwise, and guard aborts with None if the given predicate is not satisfied.

Example 12. For ` = eq(x, x), only one of the redex problems of Example 9
remains (all others are simplified to None), namely eq(x, y) m eq(x, x), for which
we obtain the simplified matching problem {x m x, y m x}.

In our formalization we show all relevant properties of simplify-mp, i.e., ter-
mination, preservation of solvability, and that simplify-mp mp [], if successful, is
in solved form. Moreover, we prove the computed lower bound to be sound.

Theorem 13. The function simplify-mp satisfies the following properties:

– It is terminating.
– It is complete, i.e., if (n, σ) is a solution for mp then simplify-mp mp [] =

Some (mp′, i), i 6 n, and (n− i, σ) is a solution for mp′;
– It is sound, i.e., if (n, σ) is a solution for mp′ and simplify-mp mp [] =

Some (mp′, i) then (n+ i, σ) is a solution for mp;
– If simplify-mp mp [] = Some (mp′, i) then mp′ is in solved form.

Proof. For termination of simplify-mp mp s, where mp = [(t1, `1), . . . , (tk, `k)],
we use the lexicographic combination of the following two measures: first, we
measure the sum of the sizes of the `i; and second, we measure the sum of the
distances of the ti before turning into non-variables. Here, the distance of some
term ti before turning into a non-variable is 0 if ti ∈ V \ Vincr and the least
number d such that tiµd /∈ V, otherwise.

For this lexicographic measure, we get a decrease in the first component for
the first and the second recursive call, and a decrease in the second component
for the third recursive call.

Proving soundness and completeness is done via the following property which
is proven by induction on the call structure of simplify-mp.

Whenever simplify-mp mp s = r then

– if r = None then mp ∪ s is not solvable,
– if r = Some (mp′, i), there is no solution (n, σ) for mp ∪ s where n < i, and

(n, σ) is a solution for mp′ iff (n+ i, σ) is a solution for mp ∪ s.

Finally, the fact that simplify-mp mp [] is in solved form is shown by an easy
induction proof on the call structure of simplify-mp, where [] is generalized to
an arbitrary generalized matching problem that is in solved form. ut

Although simplify-mp is defined as a recursive function, it cannot directly be
used as a certification algorithm, due to the following two problems:

The first problem is that Vincr is not executable, since it contains an existential
statement (remember that we had a similar problem for W earlier). Again, Vincr



could be computed via a fixpoint computation accompanied by a tedious manual
termination proof. Instead, we once more employ reflexive transitive closures to
characterize Vincr, which allows us to use the algorithm of [12] to compute it.

Lemma 14. Let R = {(x, y) | x 6= y, x = yµ, x ∈ V, y ∈ V}. Then Vincr = {y |
∃x ∈ V, xµ /∈ V, (x, y) ∈ R∗}.

The second problem is the usage of implicit parameters. Recall that at the
end of Sect. 4 we just fixed some substitution µ (which corresponds to what
we did in our formalization using Isabelle/HOL’s locale mechanism). Obviously,
both Vincr and simplify-mp depend on µ. Hence, we have to pass µ as argument
to both. As a result, the modified version of the last equation of simplify-mp
looks as follows:

simplify-mp µ ((x, g(ts)) ·mp) s = do {guard (x ∈ Vincr(µ));
(mp′, i)← simplify-mp µ (map-µ ((x, g(ts)) ·mp)) (map-µ s);
return (mp′, i+ 1) }

(7)

The problem of equation (7) is its inefficiency: In every recursive call, the set of
increasing variables Vincr(µ) is newly computed. Therefore, the obvious idea is
to compute Vincr(µ) once and for all and pass it as an additional argument V .

simplify-mp µ V ((x, g(ts)) ·mp) s = do {guard (x ∈ V );
(mp′, i)← simplify-mp µ V (map-µ ((x, g(ts)) ·mp)) (map-µ s);
return (mp′, i+ 1) }

(8)

This version does not have the problem of recomputing Vincr(µ) and we just have
to replace the initial call simplify-mp µ mp [] by simplify-mp µ Vincr(µ) mp [].

Although, this looks straightforward and maybe not even worth mentioning,
we stress that this solution does not work properly. The problem is that by
introducing V , we can call simplify-mp using some V 6= Vincr(µ), which can cause
nontermination. Take for example µ as the empty substitution and V = {x},
then the function call simplify-mp µ V [(x, g(ts))] [] directly leads to exactly
the same function call via (8). Hence, termination of simplify-mp defined by
(8) cannot be proven. Therefore, Isabelle/HOL’s function package [14] weakens
equality (8) by the assumption that simplify-mp has to be terminating on the
arguments µ, V , ((x, g(ts) ·mp), and s.

Of course, we can instantiate (8) by V = Vincr(µ). Then we can get rid of the
additional assumption. But still, the corresponding unconditional equation is not
suitable for code generation, since Vincr on the left-hand side is not a constructor.

Our final solution is to use the recent partial-function [15] command of Is-
abelle/HOL which generates unconditional equations even for nonterminating
functions, provided that some syntactic restrictions are met (only one defining
equation and the function must either return an option type or be tail-recursive).

Since simplify-mp already returns an option type, we just had to merge all
equations into a single case statement. (If the result is not of option type, we can
just wrap the original return type into an option type). Afterwards the partial-
function command is applicable and we obtain an equation similar to (8) which



can be processed by the code generator and efficiently computes simplify-mp
without recomputing Vincr(µ). Moreover, since we have already shown termina-
tion of the inefficient version of simplify-mp, we know that also the efficient
version does terminate whenever it is called with V = Vincr(µ). In our formal-
ization we actually have two versions of simplify-mp: an abstract version which
is unsuitable for code generation (and also inefficient) and a concrete version.
All the above properties are proven on the abstract version neglecting any effi-
ciency problems. Afterwards it is shown that the concrete version computes the
same results as the abstract one (which is relatively easy since the call-structure
is the same). In this way, we get the best of two worlds: abstraction and ease
of reasoning from the abstract version (using sets, existential statements, and
the induction rules from the function package), and efficiency from the concrete
version (using lists and concrete functions to obtain witnesses).

The above mentioned problem is not restricted to simplify-mp. Whenever the
termination of a function relies on the correct initialization of some precomputed
values, a similar problem arises. Currently, this can be solved by writing a second
function via the partial-function command, as shown above. Although the second
definition is mainly a copy of the original one, we can currently not recommend
to use it as a replacement, since the function package provides much more con-
venience for standard definitions than when using the partial-function command.
If the functionality of partial functions is extended, the situation might change
(and we would welcome any effort in that direction).

Continuing with deciding matching problems, we are in the situation, that
by using simplify-mp we can either directly detect that a matching problem is
unsolvable or obtain an equivalent generalized matching problem in solved form
M = {t1 m x1, . . . , tk m xk}. In principle, M has the solution (n, σ) where n
is arbitrary and σ(xi) = tiµ

n. However, this definition of σ is not always well-
defined if there are i and j such that xi = xj and i 6= j. To decide whether it is
possible to adapt the proposed solution, we must know whether tiµn = tjµ

n for
some n, i.e., we must solve the identify problem ti u tj .

The following result of [1, Theorem 14 (iv)] is easily formalized and also poses
no challenges for certification. Afterwards it remains to decide identity problems.

Theorem 15. Let M = {t1 m x1, . . . , tk m xk} be a generalized matching prob-
lem in solved form. Define Iinit = {ti u tj | 1 6 i < j 6 k, xi = xj}. Then M is
solvable iff all identity problems in Iinit are solvable.

To prove this theorem, the key observation is that we can always combine
several solutions of identity problems: Whenever nij are solutions to the identity
problems ti u tj , respectively, then the maximum n of all nij is a solution to
all identity problems ti u tj . And then also (n, σ) is a solution to M where
σ(xi) = tiµ

n is guaranteed to be well-defined.

Example 16. For the remaining matching problem of Example 12 we generate
one identity problem: x u y.



Deciding Identity Problems. In [1, Section 3.4] a complicated algorithm is pre-
sented to decide solvability of an identity problem s u t. The main idea is to
iteratively generate (s, t), (sµ, tµ), (sµ2, tµ2), . . . until either some (sµi, tµi) with
sµi = tµi is generated, or it can be detected that no solution exists. For the lat-
ter, some easy conditions for unsolvability are identified, e.g., sµi = C[f(ss)] and
tµi = C[x] where x /∈ Vincr. However, these conditions do not suffice to detect all
unsolvable identity problems. Therefore, in each iteration conflicts (indicating
which subterms have to become equal after applying µ several times, to obtain
overall equality), are stored in a set S, and two sufficient conditions on pairs of
conflicts from S are presented that allow to conclude unsolvability.

For the overall algorithm, soundness is rather easy to establish, completeness
is more challenging, and the termination proof is the most difficult part. To
be more precise, it is shown that nontermination of the algorithm allows to
construct an infinite sequence of terms where no two terms are embedded into
each other (which is not possible due to Kruskal’s tree theorem). Hence, the
formalization would require a formalization of the tree theorem. Moreover, the
implicit complexity bound on the number of required iterations is quite high.

The reason for using Kruskal’s tree theorem is that in [1] the conflicts in S
consist of a variable, a position, and a term which is not bounded in its size. So,
there is no a priori bound on S. We were able to simplify the decision procedure
for s u t considerably since we only store conflicts whose constituting terms are
in the set of conflict terms

CT (s, t) = {u | v D u, v ∈ {s, t} ∪ ran(µ)}.

To be more precise, all conflicts are of the form (u, v,m) where (u, v) is contained
in the finite set S = (CT (s, t)∩V)×CT (s, t). Whenever we see a conflict (u, v, )
for the second time, the algorithm stops. Thus, we get a decision procedure which
needs at most |S| iterations and whose termination proof is easy. In contrast to
[1], our procedure does neither require any preprocessing on µ nor unification.

The key idea to get an a priory bound on the set of conflicts, is to consider
identity problems of a generalized form s u tµn which can be represented by the
triple (s, t, n). Then applying substitutions can be done by increasing n, and all
terms that are generated during an execution of the algorithm are terms from
CT (s, t).

Before presenting the main algorithm for deciding identity problems s u tµn,
we require an auxiliary algorithm conflicts (s, t, n) that computes the set of
conflicts for an identity problem, i.e., subterms of s and tµn with different roots.

conflicts (s, y, n+ 1) = conflicts (s, µ(y), n)
conflicts (x, y, 0) = if x = y then ∅ else {(x, y, 0)}
conflicts (f(ss), y, 0) = {(y, f(ss), 0)}
conflicts (x, g(ts), n) = {(x, g(ts), n)}
conflicts (f(ss), g(ts), n) = if f = g ∧ |ss| = |ts|

then
⋃

(si,ti)∈zip ss ts conflicts (si, ti, n)
else {(f(ss), g(ts), n)}

We identified and formalized the following properties of conflicts and CT .



Lemma 17. – sσ = tµnσ iff ∀(u, v,m) ∈ conflicts (s, t, n). uσ = vµmσ.
– if (u, v,m) ∈ conflicts (s, t, n) then
• root(u) 6= root(v)
• v ∈ V implies m = 0 ∧ u ∈ V
• ∃k p. n = m+ k ∧ ((s|p, tµk|p) = (u, v) ∨ ((s|p, tµk|p) = (v, u) ∧m = 0))
• {u, v} ⊆ CT (s, t)

– {u, v} ⊆ CT (s, t) implies CT (u, v) ⊆ CT (s, t)
– CT (u, v) ⊆ CT (uµ, v) whenever u ∈ V

Using conflicts we can now formulate the algorithm ident-solve which decides
identity problem s u t if invoked with ident-solve ∅ (s, t, 0).

ident-solve S idp =
let C = conflicts idp in
if (f(us), , ) ∈ C ∨ ((u, v, ) ∈ C ∧ (u, v, ) ∈ S) then None else do {

ns ← map-option (λ(u, v,m). ident-solve ({(u, v,m)} ∪ S) (uµ, v,m+ 1)) C;
return (max {n+ 1 | n ∈ ns}) }

where map-option is a variant of the map function on lists whose overall result
is None if the supplied function returns None for any element of the given list.

Example 18. We continue Example 16 by invoking ident-solve ∅ (x, y, 0). This
leads to the conflict (x, y, 0). Afterwards, ident-solve {(x, y, 0)} (cons(z, y), y, 1)
is invoked which results in the conflict (y, x, 0). Finally, the conflict (x, y, 0) is
generated again when calling ident-solve {(x, y, 0), (y, x, 0)} (cons(z, x), x, 1) and
the result None is obtained.

We formalized termination, soundness, and completeness of ident-solve.

Lemma 19 (Termination). ident-solve is terminating.

Proof. Take the measure function λS (s, t , ). |(CT (s, t)∩V)×CT (s, t)\{(a, b) |
(a, b, ) ∈ S}|. Then the actual termination proof boils down to showing

L := (CT (s, t) ∩ V)× CT (s, t) \ {(a, b) | (a, b, ) ∈ S}
⊃ (CT (uµ, v) ∩ V)× CT (uµ, v) \ {(a, b) | (a, b, ) ∈ {(u, v,m)} ∪ S} =: R

whenever ident-solve S (s, t, n) leads to a recursive call ident-solve ({(u, v,m)}∪
S) (uµ, v,m + 1), i.e., whenever (u, v,m) ∈ conflicts (s, t, n), (u, v, ) /∈ S, and
u ∈ V. By Lemma 17 we obtain {u, v} ⊆ CT (s, t) and CT (uµ, v) ⊆ CT (u, v) ⊆
CT (s, t). Hence, L ⊇ R and since (u, v) ∈ L \R we even have L ⊃ R. ut

Lemma 20 (Soundness). If ident-solve S (s, t, n) = Some i then sµi = tµnµi.

Proof. We perform induction on the call-structure of ident-solve. So, assume
ident-solve S (s, t, n) = Some i. By definition of ident-solve we know that for all
(u, v,m) ∈ conflicts (s, t, n) there is some j such that ident-solve ({(u, v,m)} ∪
S) (uµ, v,m + 1) = Some j and i is the maximum of all j + 1. Using the
induction hypothesis, we conclude uµj+1 = uµµj = vµm+1µj = vµmµj+1 for all
(u, v,m) ∈ conflicts (s, t, n), and since i ≥ j + 1 we also achieve uµi = vµmµi.
But this is equivalent to sµi = tµnµi by Lemma 17 (where σ = µi). ut



Lemma 21 (Completeness). Whenever the identity problem s u t is solvable
then ident-solve ∅ (s, t, 0) 6= None.

Proof. If s u t is solvable then there is some N such that sµN = tµN . Our
actual proof shows the following property (?) for all S, s′, t′, n, n′, and p where
(a, b) ↔= (c, d) abbreviates (a, b) = (c, d) ∨ (a, b) = (d, c).3

(sµn|p, tµn|p)
↔= (s′, t′µn

′
) (9)

−→ (∀(u, v,m) ∈ S. (m = 0 ∨ v /∈ V) ∧ root(u) 6= root(v) ∧ (10)

(∃q1 q2 n1. p = q1q2 ∧ n1 < n ∧ (sµn1 |q1 , tµn1 |q1) ↔= (u, vµm)))
−→ ident-solve S (s′, t′, n′) 6= None (11)

Once (?) is established, the lemma immediately follows from (?) which is instan-
tiated by S = ∅, s′ = s, t′ = t, n′ = n = 0, and p = ε (the empty position).

To prove (?), we perform induction on the call-structure of ident-solve. So,
we assume (9) and (10), and have to show (11). By sµN = tµN we conclude
sµn|pµN = sµNµn|p = tµNµn|p = tµn|pµN , and thus s′µN = t′µn

′
µN by (9). By

Lemma 17 this shows uµN = vµmµN for all (u, v,m) ∈ conflicts (s′, t′, n′) =: C.
In a similar way we prove uµN = vµmµN for all (u, v,m) ∈ S using (10).

Next we consider an arbitrary (u, v,m) ∈ C. By Lemma 17 we have root(u) 6=
root(v), m = 0 ∨ v /∈ V, and there are q1 and k such that n′ = m + k and
(s′|q1 , t′µk|q1) = (u, v) ∨ ((s′|q1 , t′µk|q1) = (v, u) ∧ m = 0). In particular, this
implies (s′|q1 , t′µk|q1µm) ↔= (u, vµm). Moreover, we know uµN = vµmµN .

First, we show that u ∈ V, and hence the condition (f(us), , ) ∈ C is not
satisfied. The reason is that u /∈ V also implies v /∈ V by Lemma 17 which implies
the contradiction root(u) = root(uµN ) = root(vµmµN ) = root(v) 6= root(u).

Second, ident-solve ({(u, v,m)}∪S) (uµ, v,m+ 1) 6= None. To show this, we
just apply the induction hypothesis where it remains to show that (9) and (10)
are satisfied (where the values of S, s′ ,t′ ,n, n′, p are {(u, v,m)}∪S, uµ, v, n+1,
m+ 1, and pq1, respectively). To this end, we derive the following equality.

(sµn|pq1 , tµn|pq1) = (sµn|p|q1 , tµn|p|q1) ↔= (s′|q1 , t′µn
′ |q1)

= (s′|q1 , t′µk|q1µm) ↔= (u, vµm).
(12)

Using (12), root(u) 6= root(v), and m = 0 ∨ v /∈ V, we conclude that (10) is
satisfied for the new conflict (u, v,m). Moreover, (10) is trivially satisfied for all
(old) conflicts in S, by using (10) (for the old inputs (s′, t′, n′), . . .). Finally, by
applying µ on all terms in (12) we obtain (sµn+1|pq1 , tµn+1|pq1) ↔= (uµ, vµm+1)
which is exactly the required (9).

The last potential reason for ident-solve S (s′, t′, n′) to be None, is that there
is some m′ such that (u, v,m′) ∈ S. We assume that such an m′ exists and
eventually show a contradiction (the most difficult part of this proof). By (10)
we conclude that m′ = 0 ∨ v /∈ V and there are p1, q3, and n2 where p = p1q3,
3 In the formalization, (?) looks even more complicated, since here we dropped all

parts that restrict p and q1 to valid positions.



n2 < n, and (sµn2 |p1 , tµn2 |p1) ↔= (u, vµm
′
). Since n2 < n there is some k1 with

n = n2 + k1 and k1 > 0. Starting from (12) we derive

(u, vµm) ↔= (sµn|pq1 , tµn|pq1)
= (sµn2+k1 |p1q3q1 , tµn2+k1 |p1q3q1) = (sµn2 |p1σ|q, tµn2 |p1σ|q)
↔= (uσ|q, vµm

′
σ|q)

(13)

where σ and q are abbreviations for µk1 and q3q1, respectively. Using (13) it is
possible to derive a contradiction via a case analysis.

If m′ = m then (13) yields both uσσ|qq = u and vµmσσ|qq = vµm. Thus,
u(σσ)i|(qq)i = u and vµm(σσ)i|(qq)i = vµm for all i. For m′ = m we can further
show u 6= vµm and hence, u(σσ)i|(qq)i 6= vµm(σσ)i|(qq)i for all i. This leads to the
desired contradiction since we know that uµN = vµmµN , and hence u(σσ)N =
uµ2k1N = uµNµ(2k1−1)N = vµmµNµ(2k1−1)N = vµmµ2k1N = vµm(σσ)N , which
shows that for i = N the previous inequality does not hold.

Otherwise m 6= m′. Hence, m 6= 0 ∨m′ 6= 0 and in combination with m =
0 ∨ v /∈ V and m′ = 0 ∨ v /∈ V we conclude v /∈ V. Thus, u ∈ V by Lemma 17
as (u, v,m) ∈ conflicts (s′, t′, n′). Then by a case analysis on (13) we can show
that there are i and j such that uµi B uµj . Moreover, from uµN = vµmµN and
uµN = vµm

′
µN we obtain uµN+m = uµN+m′

. In combination with m 6= m′ and
uµi B uµj this leads to the desired contradiction. ut

Putting all lemmas on ident-solve together, we can even give a decision pro-
cedure for identity problems which does not require ident-solve at all, and shows
an explicit bound on a solution.

Theorem 22. An identity problem s u t is solvable iff sµn = tµn where n =
|CT (s, t) ∩ V| · |CT (s, t)|.

Proof. If an identity problem is solvable, then the result of ident-solve ∅ (s, t, 0) =
Some i for some i by Lemma 21. From the termination proof in Lemma 19 we
know that i 6 |CT (s, t) ∩ V| · |CT (s, t)| = n (unfortunately, in Isabelle/HOL we
could not extract this knowledge from the termination proof and had to formalize
this simple result separately). And by Lemma 20 we infer that sµi = tµi. But
then also sµn = tµn. ut

Note that |CT (s, t)| 6 |s| + |t| + |µ| where |µ| is the size of all terms in
the range of µ. Hence, the value of n in Theorem 22 is quadratic in the size
of the input problem. We conjecture that even a linear bound exists, although
some proof attempts failed. As an example, we tried to replace the condition
(u, v, ) ∈ C ∧ (u, v, ) ∈ S by (u, , ) ∈ C ∧ (u, , ) ∈ S in ident-solve to get a
linear number of iterations. However, then ident-solve is not complete anymore.

6 Conclusions

We have formalized several techniques to certify compositional (innermost) non-
termination proofs, where the hardest part was the decision procedure of [1],



which decides whether a loop is an innermost loop. In our formalization, we
were able to simplify the algorithm and the proofs for identity problems consid-
erably: a complex algorithm can be replaced by a single line due to Theorem 22.

With this result we can also show (but have not formalized) that all consid-
ered decision problems of this paper are in P.

Theorem 23. Deciding whether an identity problem, a matching problem, or
a redex problem is solvable is in P. Moreover, deciding whether a loop is an
innermost loop is in P.

Proof. We start with identity problems. By Theorem 22 we just have to check
sµn = tµn for n = |CT (s, t) ∩ V| · |CT (s, t)|. When using DAG compressed
terms we can represent sµn and tµn in polynomial space and in turn use the
algorithms of [16,17] to check equality in polynomial time. Note that even if the
input (s, t, µ) is already DAG compressed, the problem is still in P. The reason
is that |CT (s, t)| 6 |s| + |t| + |µ| also holds when sizes of terms are measured
according to their DAG representation.

For matching problems t m `, we first observe that simplify-mp [(t, `)] []
requires at most |Vincr|·|`|many iterations, and when using DAG compression, the
resulting simplified matching problem can be represented in polynomial space.
Hence, the resulting identity problems can all be solved in polynomial time.

Using the result for matching problems, by Theorem 8 it follows that redex
problems t |m ` are decidable in P: The number of matching problems in Minit

as well as the size of each element of Minit is linear in the sizes of t, `, and µ.
Finally, since redex problems can be decided in P, by Lemma 5 this also holds

for the question, whether a loop is an innermost loop. ut

We have also shown how reflexive transitive closures can be used to avoid ter-
mination proofs, and how partial functions help to develop efficient algorithms.

We tested our algorithms within our certifier CeTA (version 2.3) in combina-
tion with the termination analyzer AProVE [18], which is (as far as we know)
currently the only tool, that can prove innermost nontermination of term rewrite
systems. Through our experiments, a major soundness bug in AProVE was re-
vealed: one of the two loop-finding methods completely ignored the strategy.
After this bug was fixed, all generated nontermination proofs could be certified.
Since the overhead for certification is negligible (AProVE required 151 minutes to
generate all proofs, whereas CeTA required 4 seconds to certify them), we encour-
age termination tool users to always certify their proofs. For more details on
the experiments, we refer to http://cl-informatik.uibk.ac.at/software/
ceta/experiments/nonterm/.

Future work consists of integrating further techniques for which completeness
is not obvious into our framework. Examples are innermost narrowing [10] and
the switch from innermost termination to termination for TRSs and DPPs.
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